SciELO - Scientific Electronic Library Online

 
vol.59Comments on taxonomical status of three gobiid nominal species (genus Gobius) described from Brazilian coast (Teleostei: Gobiiformes: Gobiidae)Continental fishes from the Tambaba Environmentally Protected Area, Paraíba State, Brazil author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Papéis Avulsos de Zoologia

Print version ISSN 0031-1049On-line version ISSN 1807-0205

Pap. Avulsos Zool. vol.59  São Paulo  2019  Epub Nov 07, 2019

https://doi.org/10.11606/1807-0205/2019.59.49 

ARTICLE

Use of microhabitats affects butterfly assemblages in a rural landscape

Elton Orlandin1  3 
http://orcid.org/0000-0002-1987-9727

Mônica Piovesan1  4 
http://orcid.org/0000-0003-3367-9358

Fernanda Maurer D’Agostini2  5 
http://orcid.org/0000-0002-1115-6153

Eduardo Carneiro1  6 
http://orcid.org/0000-0002-4796-0020

1Universidade Federal do Paraná (UFPR), Departamento de Zoologia (DZOO), Laboratório de Estudos de Lepidoptera Neotropical (LABLEPNEO). Curitiba, PR, Brasil.

2Universidade do Oeste de Santa Catarina (UNOESC), Departamento de Ciências Biológicas e da Saúde. Joaçaba, SC, Brasil.


Abstract

Landscapes composed of small rural properties may support highly heterogeneous habitat, because they often cover distinct types of land uses adjacent to surrounding forest fragments. Many butterfly species may benefit from this kind of landscape, as very distinct microhabitats can be found in a very restricted spatial scale. To better understand how different microhabitats are related to fragmentation in rural landscapes the present study collected the butterfly fauna in 18 sampling point sites, representing distinct types of forest edges and forest interiors. Although closely located, these sites showed no spatial autocorrelation. Instead, a major distinction in species richness and composition was found among forest interior and edge habitats while no significant difference was found in species composition among distinct edge types. Therefore, the high segregation of butterfly assemblages found in a very restricted geographic scale suggests the presence of two different groups of butterflies that respond independently to forest fragmentation, the forest interior assemblages and forest edge assemblages. This distinction of butterfly assemblages related to forest interior and forest edges were already reported, but our results highlights that these differences are found mostly due to species turnover between those habitats. In other words, both microhabitat types present a high number of specialized species compared to a smaller fraction of generalist species that may occurs in both microhabitats. In the case of Atlantic Forest, the species of special conservation concern are those true specialized in forest interior habitats and not those specialized in forest edges, thus the present study corroborates the importance of sampling different microhabitats when studying fragmentation processes, both inside and outside of fragments. Although forest edges may present different kinds of habitat types, species present along border tend to be as heterogeneous as species present in different locations inside the forest. This information should be considered in sampling designs of biodiversity essays that focus on a more consistent representation of local diversity.

Key-Words. Atlantic Rainforest; Landscape fragmentation; Host plants; Species list

INTRODUCTION

The increase in land exploitation for agricultural use have been identified as one of the main causes of habitat fragmentation (Foley, 2005; Foley et al., 2011). This phenomena increases the isolation and the number of small habitat patches, as well as decreases the original area size of natural habitats (Fahrig, 2003), thus affecting the organisms diversity and distribution (Prugh et al., 2008; Foley et al., 2011; Gibson et al., 2013; Ibáñez et al., 2014; Haddad et al., 2015). All these effects however, are dependent of how different landscape variables change across geographical scales (Brown Jr. & Hutchings, 1997; Driscoll et al., 2013; Prugh et al., 2008; Verbeylen et al., 2003).

Studies using butterflies as models have demonstrated that local habitat fragmentation can affect their abundance, richness, composition, and diversity (Brown Jr. & Hutchings, 1997; Bobo et al., 2006; Uehara-Prado et al., 2007; Ribeiro et al., 2008; Uehara-Prado et al., 2009; Bonebrake et al., 2010; Collier et al., 2010; Ribeiro et al., 2012; Robinson et al., 2014; Filgueiras et al., 2016). Most importantly, local butterfly distribution is closely associated with habitat conditions as impacted by habitat fragmentation, such as fragment interior vs. fragment edges (Ribeiro et al., 2012; Brito et al., 2014; Filgueiras et al., 2016). This occurs because species that feed as adults on fruits, decomposing matter or bird excrement, find these resources mainly inside the forest, while nectarivorous species find most of the food resources in the canopy, on the edges or in open areas (Brown Jr. & Hutchings, 1997; Devries & Walla, 2001; Hill et al., 2001; Brown Jr. & Freitas, 2002). As distinct types of matrices surrounding fragments may influence the availability of food resources to butterflies, more complex landscapes may offer greater resource diversity (Tews et al., 2004). Therefore, it is expected that rural landscapes under predominance of small farms can harbour more rich and complex assemblages when compared to the extensive monocultural and urban landscapes (Fahrig et al., 2015; Iserhard et al., 2018). This is because small rural properties tend to have different kinds of land occupations, promoting peculiar characteristics, which enable population maintenance and species interaction (Fahrig et al., 2011, 2015).

In addition, the transition area between the fragment and the surrounding matrix may provide differentiated food resources for some groups of insects, relative to those found within the fragment and in the matrix (Landis et al., 2000; Poggio et al., 2010). These areas, the fragment edges, usually have pioneering plant species (Rigueira et al., 2012) and unique micro-climates (Lawson et al., 2014) that form peculiar microhabitats, attracting not only nectarivores, but also predators and other herbivorous insects (Didham et al., 1996; Jokimäki et al., 1998; Albrecht et al., 2010). Fragments surrounded by matrices composed of different occupations (e.g., abandoned areas, crop lands, or roads) present these differentiated transition areas, which form microhabitats at different levels of complexity (e.g., different types of resources). Several butterfly species, for example, are recognized for inhabiting these environments, from where they extract food, both at the larval and adult stages (Brown Jr. & Hutchings, 1997; Brown Jr. & Freitas, 2002).

This study aimed to verify whether the butterfly species richness and composition in a rural fragmented landscapes is influenced by these kinds of microhabitat, thus testing the following hypotheses: (1) Despite of their close proximity, the butterfly assemblages have distinct species richness and composition in different microhabitats present in a fragmented landscape; (2) forest edges and interior have distinct butterfly richness and composition, because butterfly species usually prefer for a particular microhabitat type and (3) different edges types presents distinct butterfly richness and composition.

MATERIALS AND METHODS

Study site

The study was conducted in the municipality of Joaçaba (27°10’41.0”S, 51°30’17.0”W), in the western region of Santa Catarina State, southern Brazil (Fig. 1a). This region is broadly characterized by its rural landscape, with small urban areas (Maté et al., 2015). Small farms predominate in the rural landscape, some of them raising livestock such as cattle, pigs, and poultry, while the others grow corn, beans, rice, tobacco, soy, apple, and oranges (Begnini & Almeida, 2016). The forest fragments are relicts from a transition area (ecotone) between the Araucaria forest and Deciduous forest (Vibrans et al., 2012). The climate is mesothermal humid with a hot summer (according to Köppen-Geiger climatic classification), the average annual temperature is 18°C, annual rainfall of about 2,000 mm, relative annual humidity average is 76% (Alvares et al., 2013), and an altitude of range 700-830 m (Google Earth, 2016).

Figure 1 Location of the study area in the Joaçaba Municipality, Santa Catarina State, Brazil. (a) Fragments sampled; (b-c) Distribution of collection points of A, B and C fragments. 

Sampling

Butterfly assemblages were measured in 18 sample sites representing four microhabitat types: forest interiors (n = 6); road edges: edge of the fragment closer to the road (n = 4); farmland edges: crops of soybean and corn and cattle ranching (n = 4); and abandoned edges: early-regrowth vegetation areas (n = 4) (Fig. 2). The focus of the present study was to measure distribution of these butterfly assemblages in a very fine geographical scale. Therefore, these 18 sample sites were choosen in three fragments, being some of them more closely located to each other than to others (Fig. 1b-d, Appendix I). Sample sites in the same fragment were distant from each other by a minimum of 50 m meters distance when representing distinct microhabitats, or at least 100 m distance when representing the same microhabitat. Inside the forest, butteflies were captured in a radius up to 10 m, while in forest edges the butterflies were sampled in a transect up to 30 m.

Figure 2 Characterization of the sampled microhabitats in a rural landscape in Southern Brazil. (a, b) forest interior; (c, d) abandoned edge; (e, f) farmland edge; (g, h) road edge. 

Sampling was conducted with an entomological net between 08:30 AM and 04:00 PM between January 2016 and March 2017, except in April, June, July, and August, totaling 15 replicates for each sample site. Butterfly sampling was performed at each site for 01:15 hours, following a rotation, resulting a total of 337.5 h/net per site. Therefore, all sites were equally sampled during different times of the day in the same period of the year. Only the butterfly captured and euthanized were considered in the samples. The specimens were identified based on photographs of type series available in Warren et al. (2013) and/or confirmed by specialists. Voucher specimens are deposited in the “Coleção Entomológica Padre Jesus Santiago Moure (DZUP)”.

Statistical analyses

Considering that butterflies can easily move among the sample sites and use more closely located food resources, the samples in this study are potentially subject to spatial autocorrelation. To determine if this was the case, a Mantel test was employed using a Euclidean distance matrix to represent the geographic distances between samples and a similarity matrix based on Bray-Curtis index to represent species composition.

Later, we measured the richness and composition of butterfly assemblages at each sample site. The butterfly richness was estimated using the interpolation and extrapolation methodology proposed by Chao & Jost (2012), available in the iNEXT package (Hsieh et al., 2016). This method is particularly efficient to estimates the differences in species richness estimated from communities with distinct structure (e.g., abundances distribution). Non-metric multidimentional scaling (NMDS) based on the Bray-Curtis similarity index was used to access assemblage composition at different microhabitats. This method generates a scatter plot in which closely localized samples (e.g., clustered) exhibit similar fauna composition. Thus, distances between sample sites can be used as surrogates of composition dissimilarity (Melo & Hepp, 2008). A PERMANOVA test (n = 999 permutations) was performed to test the significance of microhabitat type in shaping the butterfly species composition. The PERMANOVA was performed for two distinct datasets in our study, since the fragment interior showed a very distinct species composition when compared to all other microhabitat types. Therefore, after testing the whole dataset, a subsequent analysis was performed after removing the forest interior samples.

Additionally, we partitioned the Bray-Curtis coefficient into two measurements to test if any of the microhabitat types are distinct in terms of species turnover (βturn-diversity) and nestedness (βnest-diversity) (Baselga, 2013). These results were used to infer whether the differences in species compostion are due to the segregation of different species at different microhabitats (turnover) or because one microhabitat have only a smaller amount of the same species as the other (nestedness). Therefore, if all microhabitats have a large amout of specialists butterflies a higher βturn-diversity is expected. On the contrary, when most of the species in a microhabitat are generalists (e.g., found across other microhabitats) a higher βnest-diversity is expected. Also to complement this goal, we employed the INDVAL test to verify how many butterfly species present close ecological affinities with any microhabitat type. The INDVAL yields a maximum value when all specimens of a given species are recorded in only one type of habitat and in all samples representing this habitat, despite other species abundances (Dufrene & Legendre, 1997). Since all forest edges revealed no significant changes in the species composition, we only scored microhabitats as forest edges or forest interior. In this test, we considered only species with ≥ 10 individuals, thus totalling 190 species tested. The species that presented significant value were compared with the literature’s observations regarding adult habits and larvae host plants. All analyses were performed in the R environment (R Core Team, 2015) using the package vegan (Oksanen et al., 2017), betapart (Baselga, 2013) and labdsv (Roberts, 2016).

RESULTS

A total of 7,941 butterflies belonging to 431 species were recorded. Twenty-nine species were later recorded during occasional collects totalling 460 species; these species were attached to the species list, but not accounted in the statistical analyses (Appendix II). The Mantel test showed no correlation between species composition and the geographical proximity of sample sites (R = 0.07, p > 0.05), indicating that sample sites are not spatial autocorrelated.

Comparisons among butterfly richness revealed that different microhabitat types do play a role on butterfly species richness patterns (Fig. 3). Assemblages are richer in forest edges than the forest interiors, with the abandoned edges being the richest, followed by the road edge and the farmland edge (Fig. 4, Appendix III). Also a major distinction in species composition is found among forest interior and edges (R² = 0.36476, p < 0.001, Fig. 5a), but in this case the different types of edges revealed no significant differences between each other, even when the samples from the forest interior were removed from the analyses (R² = 0.14894, p = 0.909, Fig. 5b). In both types of microhabitats, beta-diversity is mostly represented by species turnover (Forest interior: βturn = 0.5; Forest edges: βturn = 0.56; p = 0.58) instead of nestedness (Forest interior: βnest = 0.03; Forest edges: βnest = 0.04; p = 0.67), showing that the differences between habitat types is mostly represented by specialists species instead of generalists species. By comparing microhabitat types, the fragment edges show a much larger number of indicator species (n = 68), than the forest interior (n = 20) (Appendix IV).

Figure 3 Results of integrated coverage-based rarefaction-extrapolation (Chao & Jost, 2012) of butterfly richness between microhabitat types in a rural landscape in Southern Brazil (confidence interval = 95%). Continuous lines (rarefaction), dotted lines (extrapolation). 

Figure 4 Results of integrated coverage-based rarefaction-extrapolation (Chao & Jost, 2012) of butterfly richness between 18 sampled points in a rural landscape in Southern Brazil (confidence interval = 95%). Continuous lines (rarefaction), dotted lines (extrapolation). 

Figure 5 Non-metric multidimensional scaling (NMDS), plots representing butterfly assemblages composition measured in distinct types of microhabitats (abandoned edge, road edge, farmland edge and forest interior) in a rural landscape in Southern Brazil. a) Including forest interior sampled sites (Stress = 0.11); b) Excluding forest interior sampled sites (Stress = 0.14). Forest interior butterfly communities are distinct from all edge communities, but all edge habitats support similar butterfly communities despite microhabitat differences (even when interior samples are removed from the data analysis). 

DISCUSSION

The fragmentation impacts of natural environments have been extensively studied in different animal and botanical groups (Uehara-Prado et al., 2007; Buchmann et al., 2013; Sancha et al., 2014; Filgueiras et al., 2016; Justino et al., 2016). In general, several studies already demonstrated how the type of matrix surrounding a fragmented landscape may influence on species richness and composition (Gascon et al., 1999; Steffan-Dewenter, 2003; Vieira et al., 2009; Öckinger et al., 2012; Driscoll et al., 2013). The phenomena associated with these patterns are mostly related to species dispersal, colonization and extinction. However, few studies tested how the use of distinc microhabitat in a fragmented landscapes may influence on the assemblage structure of highly mobile organisms. Considering, for example, that sites inside fragments and sites along fragment border present very distinct habitats traits over a narrow geographical distance, highly mobile organisms such as winged insects could easily make use of both microhabitat types. Our study results showed, using distinct assemblage measurements, that this is not the case of butterfly assemblages.

Butterflies are widely known to have special preference for specific microhabitats (Brown Jr. & Hutchings, 1997; Devries & Walla, 2001; Hill et al., 2001; Brown Jr. & Freitas, 2002; Uehara-Prado et al., 2007; Ribeiro et al., 2012), such as shady environments (Hill et al., 2001; Brown Jr. & Freitas, 2002), hilltops (Prieto & Dahners, 2006; Carneiro et al., 2014); or to fly very close to their host plants (Rutowski, 1991). Most frequently (although not always) this association with microhabitats is based on the presence and abundance of adult and/or larval food resources (Hamer et al., 2006). According to our data, the assemblages sampled within microhabitats are more similar when compared among microhabitats. Therefore, the structure and distribution of butterfly assemblages in a fragment may be very heterogeneous, even when this fragment is deeply reduced in size (Ribeiro et al., 2008).

This pattern cannot be explained by their geographical proximity between sample sites. Actually, even delimiting sample sites in a very narrow distance between each other (< 100 m), we could not find a spatial bias in our assemblages. In general, forest edges concentrated greater species richness than the forest interior, and consequently a higher number of significant indicator species. This difference could occur due to the higher concentration of food resources offered to butterflies at the forest borders. The abundance of flowers attractive to butterflies inside the forest is scarce when compared to the forest edges, where several pioneering plant species bloom mainly from the Asteraceae and Rubiaceae family (Silberbauer-Gottsberger & Gottsberger, 1988; Andersson et al., 2002; Brown Jr. & Freitas, 2002; Ramírez, 2004). Such phanerogams are concentrated to a greater or lesser abundance around fragments, depending on which type of edge is found. For example, while abandoned edges are occupied by pioneer vegetation, farmers extend their crop fields closer to the fragment edge, thereby reducing the abundance of pioneer vegetation. Therefore, a greater richness is likely to be found in the abandoned habitat due to the greater abundance and diversity of flowers of this pioneer vegetation richness. Brown & Hutchings (1997) observed a similar pattern in the Amazon forest fragments, that is, small fragments surrounded by homogeneous areas (burned or pasture) and interiors of large fragments presenting low richness when compared with fragments that contained areas in regrowth and flowers in abundance. Similarly, Öckinger et al. (2012) found that butterfly species’ richness is higher in fragments surrounded by matrixes whose vegetation was more similar to the forest fragment. Hence, the quality of forest edges is of great relevance in order to maximize the species richness in fragmented landscapes.

Nevertheless, it is important to highlight that butterfly species richness is not always a good descriptor of habitat quality (Shuey et al., 2017). Instead, species composition has shown to be more sensitive measurement to detect differences between habitat types (Uehara-Prado et al., 2007; Truxa & Fiedler, 2012; Filgueiras et al., 2019). Although we could not find a significant difference in the species composition between different types of edges, (despite of their difference in species richness), the differences between forest interior and edges are remarkable. This distinction of butterfly assemblages related to forest interior and forest edges were already reported, including those of fruit-feeding butterfly (Brown Jr. & Hutchings, 1997; Uehara-Prado et al., 2007; Ribeiro et al., 2012; Filgueiras et al., 2016). Moreover, our results highlights that these differences are found mostly due to species turnover between those habitats. In other words, both types of microhabitat have a larger fraction of specialized species and only a smaller set of species can be found inhabiting forest interior and forest edges. This pattern is the opposite to those found in the Northern Hemisphere, in which the structure of butterfly assemblages across fine scale habitat use is mostly nested (Summerville et al., 2002; Trivellini et al., 2016). Most likely, the higher turnover rate observed here was produced by the behavior of butterflies. The species commonly found around the fragment hardly perch or forage inside the forest, or when they do, they should use the canopy stratum instead (Hill et al., 2001). The opposite behavior is observed to forest interior species, who usually avoids flying in habitats with high luminosity rates. These species are known to be adapted to shady and humid microclimates, frequently presenting cryptic behaviours and/or coloration (Uehara-Prado & Freitas, 2009, Iserhard et al., 2018).

Evidently, in the case of Atlantic Forest the species of special conservation concern are those specialized in forest interior habitats and not those specialized in forest edges (Brown Jr. & Hutchings, 1997; Ribeiro et al., 2012; Filgueiras et al., 2016). However, not all of them are reliable indicators of habitat quality. The abundance of some Ithomiini species for example, respond only to the presence of small pockets of humidity generated inside the fragments, instead of habitat quality (Brown Jr. & Freitas, 2002). The same could occur with some Satyrinae species whose larvae feed on grasses that invades the understory of strongly modified fragments. On the contrary, species such as Celaenorrhinus eligius punctiger (Burmeister, 1878) may indicate habitat quality because both larvae and adults feed on typical understory food resources (De Jong, 1982; Brown, 1992). Although our results pointed to a relevant number of interior forest indicators, we believe it is possible that several forest specialists are no longer present in the region due to their sensitiveness to disturbances (Hill et al., 2001; Cleary & Genner, 2004, Filgueiras et al., 2019). This hypothesis would also explain the lower number of species found in forest interiors when compared to forest edges.

The present study corroborates the importance of sampling different microhabitats when studying fragmentation processes, both inside and outside of fragments. Although forest edges may present different kinds of habitat types, species present along border tend to be as heterogeneous as species present in different locations inside the forest. This information should be considered in sampling designs of biodiversity essays that focus on a more consistent representation of local diversity.

ACKNOWLEDGEMENTS

We would like to thank Diego Rodrigo Dolibaina, Fernando Maia Silva Dias, Marlon Paluch, Mirna Martins Casagrande, Olaf Hermann Hendrik Mielke, Thamara Zacca Bispo Taumaturgo and Wildio Ikaro da Graça Santos for help with species identification.

REFERENCES

Albrecht, M.; Schmid, B.; Obrist, M.K.; Schüpbach, B.; Kleijn, D. & Duelli, P. 2010. Effects of ecological compensation meadows on arthropod diversity in adjacent intensively managed grassland. Biological Conservation, 143(3): 642-649. [ Links ]

Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L. & Sparovek, G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6): 711-728. [ Links ]

Andersson, S.; Nilsson, L.A.; Groth, I. & Bergström, G. 2002. Floral scents in butterfly-pollinated plants: Possible convergence in chemical composition. Botanical Journal of the Linnean Society, 140(2): 129-153. [ Links ]

Baselga, A. 2013. Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution, 4(6): 552-557. [ Links ]

Beccaloni, G.W.; Viloria, A.L. Hall, S.K. & Robinson, G.S. 2008. Catalogue of the hostplants of the Neotropical butterflies / Catálogo de las plantas huésped de las mariposas neotropicales. Zaragoza, Sociedad Entomológica Aragonesa. 536p. [ Links ]

Begnini, S. & Almeida, L.E.D.F. de. 2016. Grau de desenvolvimento regional dos municípios da mesorregião oeste catarinense: caracterização e classificação. Interações, Campo Grande, 17(4): 547-560. [ Links ]

Biezanko, C.M. & Mielke, O.H.H. 1973. Contribuição ao estudo faunístico dos Hesperiidae americanos. IV. Espécies do Rio Grande do Sul, Brasil, com notas taxonômicas e descrições de espécies novas (Lepidoptera). Acta Biológica Paranaense, 2: 51-102. [ Links ]

Biezanko, C.M.; Ruffinelli, A. & Link, D. 1974. Plantas y otras sustancias alimenticias de las orugas de los lepidópteros uruguayos. Revista do Centro de Ciências Rurais, 4: 107-148. [ Links ]

Bobo, K.S.; Waltert, M.; Fermon, H.; Njokagbor, J. & Mühlenberg, M. 2006. From forest to farmland: butterfly diversity and habitat associations along a gradient of forest conversion in Southwestern Cameroon. Journal of Insect Conservation, 10(1): 29-42. [ Links ]

Bonebrake, T.C.; Ponisio, L.C.; Boggs, C.L. & Ehrlich, P.R. 2010. More than just indicators: A review of tropical butterfly ecology and conservation. Biological Conservation, 143(8): 1831-1841. [ Links ]

Brito, M.M.; Ribeiro, D.B.; Raniero, M.; Hasui, É.; Ramos, F.N. & Arab, A. 2014. Functional composition and phenology of fruit-feeding butterflies in a fragmented landscape: Variation of seasonality between habitat specialists. Journal of Insect Conservation, 18(4): 547-560. [ Links ]

Brown Jr., K.S. & Freitas, A.V.L. 2002. Butterfly communities of urban forest fragments in Campinas, São Paulo, Brazil: Structure, instability, environmental correlates, and conservation. Journal of Insect Conservation, 6(4): 217-231. [ Links ]

Brown Jr., K.S. & Hutchings, R.W. 1997. Disturbance, fragmentation, and the dynamics of diversity in Amazonian forest butterflies. In: Laurance, W.F. & Bierregaard Jr., R.O. Tropical forest remnants: Ecology, management, and conservation of fragmented communities. Chicago, Chicago University Press. p. 91-110. [ Links ]

Brown, K. 1992. Borboletas da Serra do Japi: Diversidade, habitats, recursos alimentares e variação temporal. In: Morellto, L.P.C. História Natural da Serra do Japi: Ecologia e Preservação de uma área Florestal no Sudeste do Brasil. Campinas, UNICAMP. p. 142-186. [ Links ]

Buchmann, C.M.; Schurr, F.M.; Nathan, R. & Jeltsch, F. 2013. Habitat loss and fragmentation affecting mammal and bird communities.The role of interspecific competition and individual space use. Ecological Informatics, 14: 90-98. [ Links ]

Carneiro, E.; Mielke, O.H.H.; Casagrande, M.M. & Fiedler, K. 2014. Skipper richness (Hesperiidae) along elevational gradients in Brazilian Atlantic Forest. Neotropical Entomology, 43(1): 27-38. [ Links ]

Chao, A. & Jost, L. 2012. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12): 2533-2547. [ Links ]

Cleary, D.F.R. & Genner, M.J. 2004. Changes in rain forest butterfly diversity following major ENSO-induced fires in Borneo. Global Ecology and Biogeography, 13(2): 129-140. [ Links ]

Collier, N.; Gardner, M.; Adams, M.; McMahon, C.R.; Benkendorff, K. & Mackay, D.A. 2010. Contemporary habitat loss reduces genetic diversity in an ecologically specialized butterfly: Contemporary habitat loss and genetic diversity. Journal of Biogeography, 37(7): 1277-1287. [ Links ]

De Jong, R. 1982. Secondary sexual characters in Celaenorrhinus and the delimitation of the genus (Lepidoptera, Hesperiidae). Journal of Natural History, 16(5): 695-705. [ Links ]

Devries, P.J. & Walla, T.R. 2001. Species diversity and community structure in neotropical fruit-feeding butterflies. Biological Journal of the Linnean Society, 74(1): 1-15. [ Links ]

Didham, R.K.; Ghazoul, J.; Stork, N.E. & Davis, A.J. 1996. Insects in fragmented forests: A functional approach. Trends in Ecology & Evolution, 11(6): 255-260. [ Links ]

Driscoll, D.A.; Banks, S.C.; Barton, P.S.; Lindenmayer, D.B. & Smith, A.L. 2013. Conceptual domain of the matrix in fragmented landscapes. Trends in Ecology & Evolution, 28(10): 605-613. [ Links ]

Duarte, M.; Robbins, R.K. & Mielke, O. H. H. 2005. Immature stages of Calycopis caulonia (Hewitson, 1877) (Lepidoptera, Lycaenidae, Theclinae, Eumaeini), with notes on rearing detritivorous hairstreaks on artificial diet. Zootaxa, 1063: 1-31 [ Links ]

Dufrene, M. & Legendre, P. 1997. Species Assemblages and Indicator Species: The Need for a Flexible Asymmetrical Approach. Ecological Monographs, 67(3): 345. [ Links ]

Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 487-515. [ Links ]

Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M. & Martin, J.-L. 2011. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes: Heterogeneity and biodiversity. Ecology Letters, 14(2): 101-112. [ Links ]

Fahrig, L.; Girard, J.; Duro, D.; Pasher, J.; Smith, A.; Javorek, S.; King, D.; Lindsay, K.F.; Mitchell, S. & Tischendorf, L. 2015. Farmlands with smaller crop fields have higher within-field biodiversity. Agriculture, Ecosystems & Environment, 200: 219-234. [ Links ]

Filgueiras, B.K.C.; Melo, D.H.A.; Leal, I.R.; Tabarelli, M.; Freitas, A.V.L. & Iannuzzi, L. 2016. Fruit-feeding butterflies in edge-dominated habitats: Community structure, species persistence and cascade effect. Journal of Insect Conservation, 20(3): 539-548. [ Links ]

Filgueiras, B.K.C.; Melo, D.H.A.; Uehara-Prado, M.; Freitas, A.V.L.; Leal, I.R. & Tabarelli, M. 2019. Compensatory dynamics on the community structure of fruit-feeding butterflies across hyper-fragmented Atlantic forest habitats. Ecological Indicators, 98: 276-284. [ Links ]

Foley, J.A. 2005. Global Consequences of Land Use. Science, 309(5734): 570-574. [ Links ]

Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; Balzer, C.; Bennett, E.M.; Carpenter, S.R.; Hill, J.; Monfreda, C.; Polasky, S.; Rockström, J.; Sheehan, J.; Siebert, S.; Tilman, D. & Zaks, D.P.M. 2011. Solutions for a cultivated planet. Nature, 478(7369): 337-342. [ Links ]

Freitas, A.V.; Kaminski, L.A.; Mielke, O.H.H.; Barbosa, E.P. & Silva-Brandao, K.L. 2012. A new species of Yphthimoides (Lepidoptera: Nymphalidae: Satyrinae) from the southern Atlantic forest region. Zootaxa, 3526: 31-44. [ Links ]

Gascon, C.; Lovejoy, T.E.; Bierregaard Jr., R.O.; Malcolm, J.R.; Stouffer, P.C.; Vasconcelos, H.L.; Laurance, W.F.; Zimmermann, B.; Tocher, M. & Borges, S. 1999. Matrix habitat and species richness in tropical forest remnants. Biological Conservation, 91(2-3): 223-229. [ Links ]

Gibson, L.; Lynam, A.J.; Bradshaw, C.J.A.; He, F.; Bickford, D.P.; Woodruff, D.S.; Bumrungsri, S. & Laurance, W.F. 2013. Near-Complete Extinction of Native Small Mammal Fauna 25 Years After Forest Fragmentation. Science, 341(6153): 1508-1510. [ Links ]

Google Earth. 2016. Joaçaba (27°10’41.0”S, 51°30’17.0”W). Available at: Available at: https://www.google.com.br/intl/pt-BR/earth . Access in: 28/10/2017. [ Links ]

Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; Cook, W.M.; Damschen, E.I.; Ewers, R.M.; Foster, B.L.; Jenkins, C.N.; King. A.J.; Faurance, W.F.; Levey, D.J.; Margules, C.R.; Melbourne, B.A.; Nicholls, A.O.; Orrock, J.L.; Song, D.-X. & Townshend, J.R. 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1(2): e1500052. [ Links ]

Hamer, K.C.; Hill, J.K.; Benedick, S.; Mustaffa, N.; Chey, V.K. & Maryati, M. 2006. Diversity and ecology of carrion- and fruit-feeding butterflies in Bornean rain forest. Journal of Tropical Ecology, 22(01): 25-33. [ Links ]

Hill, J.; Hamer, K.; Tangah, J. & Dawood, M. 2001. Ecology of tropical butterflies in rainforest gaps. Oecologia, 128(2): 294-302. [ Links ]

Hsieh, T.C.; Ma, K.H. & Chao, A. 2016. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12): 1451-1456. [ Links ]

Ibáñez, I.; Katz, D.S.W.; Peltier, D.; Wolf, S.M. & Connor Barrie, B.T. 2014. Assessing the integrated effects of landscape fragmentation on plants and plant communities: The challenge of multiprocess-multiresponse dynamics. Journal of Ecology, 102(4): 882-895. [ Links ]

Iserhard, C.A.; Duarte, L.; Seraphim, N. & Freitas, A.V.L. 2018. How urbanization affects multiple dimensions of biodiversity in tropical butterfly assemblages. Biodiversity and Conservation, 28(3): 621-638. [ Links ]

Jokimäki, J.; Huhta, E.; Itämies, J. & Rahko, P. 1998. Distribution of arthropods in relation to forest patch size, edge, and stand characteristics. Canadian Journal of Forest Research, 28(7): 1068-1072. [ Links ]

Justino, C.E.L.; dos Santos, E.F. & Noll, F.B. 2016. Diversity of Tiphiidae (Insecta: Hymenoptera) in the fragmented Brazilian semi-deciduous Atlantic Forest. Journal of Insect Conservation, 20(3): 417-431. [ Links ]

Landis, D.A.; Wratten, S.D. & Gurr, G.M. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45(1): 175-201. [ Links ]

Lawson, C.R.; Bennie, J.; Hodgson, J.A.; Thomas, C.D. & Wilson, R.J. 2014. Topographic microclimates drive microhabitat associations at the range margin of a butterfly. Ecography, 37(8): 732-740. [ Links ]

Maté, C.; Micheleti, T. & Santiago, A.G. 2015. Cidades de pequeno porte em Santa Catarina: Uma reflexão sobre planejamento territorial. Revista Políticas Públicas & Cidades, 3(2): 28-47. [ Links ]

Melo, A.S. & Hepp, L.U. 2008. Ferramentas estatísticas para análises de dados provenientes de biomonitoramento. Oecologia brasiliensis, 12(3): 463-486. [ Links ]

Öckinger, E.; Lindborg, R.; Sjödin, N.E. & Bommarco, R. 2012. Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography, 35(3): 259-267. [ Links ]

Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; Wagner, H. 2017. Vegan: community ecology package, R package version 2.4-3. https://CRAN.R-project.org/package=vegan. [ Links ]

Poggio, S.L.; Chaneton, E.J. & Ghersa, C.M. 2010. Landscape complexity differentially affects alpha, beta, and gamma diversities of plants occurring in fencerows and crop fields. Biological Conservation, 143(11): 2477-2486. [ Links ]

Prieto, C. & Dahners, H.D. 2006. Eumaeini (Lepidoptera: Lycaenidae) del cerro San Antonio: Dinámica de la riqueza y comportamiento de “Hilltopping”. Revista Colombiana de Entomología, 32(2): 179-190. [ Links ]

Prugh, L.R.; Hodges, K.E.; Sinclair, A.R.E. & Brashares, J.S. 2008. Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences, 105(52): 20770-20775. [ Links ]

R Core Team.2015. R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at: Available at: http://www.R-project.org . Access in: 27/08/2017. [ Links ]

Ramírez, N. 2004. Ecology of pollination in a tropical Venezuelan savanna. Plant Ecology, 173(2): 171-189. [ Links ]

Ribeiro, D.B.; Batista, R.; Prado, P.I.; Brown, K.S. & Freitas, A.V.L. 2012. The importance of small scales to the fruit-feeding butterfly assemblages in a fragmented landscape. Biodiversity and Conservation, 21(3): 811-827. [ Links ]

Ribeiro, D.B.; Prado, P.I.; Brown Jr., K.S. & Freitas, A.V.L. 2008. Additive partitioning of butterfly diversity in a fragmented landscape: Importance of scale and implications for conservation. Diversity and Distributions, 14(6): 961-968. [ Links ]

Rigueira, D.M.G.; Molinari, A.L.M.; Mariano, D.L.S.; Reis, R.M.; Portugal, A.B.; Santana, N.S. & Santos, R.A. 2012. Influência da distância da borda e do adensamento foliar sobre a abundância de plantas pioneiras em um fragmento de floresta tropical submontana na Estação Ecológica de Wenceslau Guimarães (Bahia, Brasil). Acta Botanica Brasilica, 26(1): 197-202. [ Links ]

Roberts, D.W. 2016. Package ‘labdsv’. Available at: Available at: https://cran.r-project.org/src/contrib/Archive/labdsv . Access in: 28/09/2017. [ Links ]

Robinson, N.; Kadlec, T.; Bowers, M.D. & Guralnick, R.P. 2014. Integrating species traits and habitat characteristics into models of butterfly diversity in a fragmented ecosystem. Ecological Modelling, 281: 15-25. [ Links ]

Rutowski, R.L. 1991. The evolution of male mate-locating behavior in butterflies. The American Naturalist, 138(5): 1121-1139. [ Links ]

Sancha, N.U. de la, Higgins, C.L.; Presley, S.J. & Strauss, R.E. 2014. Metacommunity structure in a highly fragmented forest: Has deforestation in the Atlantic Forest altered historic biogeographic patterns? Diversity and Distributions, 20(9): 1058-1070. [ Links ]

Shuey, J.A.; Labus, P.; Carneiro, E.V.; Dias, F.M.S.; Leite, L.A.R. & Mielke, O.H.H. 2017. Butterfly communities respond to structural changes in forest restorations and regeneration in lowland Atlantic Forest, Paraná, Brazil. Journal of Insect Conservation, 21(3): 545-557. [ Links ]

Silberbauer-Gottsberger, I. & Gottsberger, G. 1988. A polinização de plantas do cerrado. Revista Brasileira de Biologia, 48(4): 651-663. [ Links ]

Steffan-Dewenter, I. 2003. Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conservation Biology, 17(4): 1036-1044. [ Links ]

Summerville, K.S.; Veech, J.A. & Crist, T.O. 2002. Does variation in patch use among butterfly species contribute to nestedness at fine spatial scales? Oikos, 97(2): 195-204. [ Links ]

Tews, J.; Brose, U.; Grimm, V.; Tielbörger, K.; Wichmann, M.C.; Schwager, M. & Jeltsch, F. 2004. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures: Animal species diversity driven by habitat heterogeneity. Journal of Biogeography, 31(1): 79-92. [ Links ]

Trivellini, G.; Polidori, C.; Pasquaretta, C.; Orsenigo, S. & Bogliani, G. 2016. Nestedness of habitat specialists within habitat generalists in a butterfly assemblage. Insect Conservation and Diversity, 9(6): 495-505. [ Links ]

Truxa, C. & Fiedler, K. 2012. Down in the flood? How moth communities are shaped in temperate floodplain forests: Floodplain forest moths. Insect Conservation and Diversity, 5(5): 389-397. [ Links ]

Uehara-Prado, M. & Freitas, A.V.L. 2009. The effect of rainforest fragmentation on species diversity and mimicry ring composition of ithomiine butterflies. Insect Conservation and Diversity, 2(1): 23-28. [ Links ]

Uehara-Prado, M.; Brown, K.S. & Freitas, A.V.L. 2007. Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic Forest: Comparison between a fragmented and a continuous landscape. Global Ecology and Biogeography, 16(1): 43-54. [ Links ]

Uehara-Prado, M.; Fernandes, J. de O.; Bello, A. de M.; Machado, G.; Santos, A.J.; Vaz-de-Mello, F.Z. & Freitas, A.V.L. 2009. Selecting terrestrial arthropods as indicators of small-scale disturbance: A first approach in the Brazilian Atlantic Forest. Biological Conservation, 142(6): 1220-1228. [ Links ]

Verbeylen, G.; De Bruyn, L.; Adriaensen, F. & Matthysen, E. 2003. Does matrix resistance influence Red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landscape Ecology, 18(8): 791-805. [ Links ]

Vibrans, A.C.; Sevegnani, L.; Gasper, A.L. de & Lingner, D.V. 2012. Inventário florístico florestal de Santa Catarina. Vol. 2: Floresta estacional decidual. Blumenau, Universidade Regional de Blumenau. [ Links ]

Vieira, M.V.; Olifiers, N.; Delciellos, A.C.; Antunes, V.Z.; Bernardo, L.R.; Grelle, C.E.V. & Cerqueira, R. 2009. Land use vs. Fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biological Conservation, 142(6): 1191-1200. [ Links ]

Warren, A.D.; Davis, K.J.; Grishin, N.V.; Pelham, J.P. & Stangeland, E.M. 2013. Butterflies of America. Illustrated Lists of American Butterflies. http://butterfliesofamerica.com/intro.htm. [ Links ]

Zacca, T.; Paluch, M.; Siewert, R.; Freitas, A.; Barbosa, E.; Mielke, O.H.H. & Casagrande, M.M. 2017. Revision of Godartiana Forster (Lepidoptera: Nymphalidae), with the description of a new species from northeastern Brazil. Austral Entomology, 56: 169-190. [ Links ]

Published with the financial support of the "Programa de Apoio às Publicações Científicas Periódicas da USP"

APPENDIX I

Geographic coordinates of sampled sites in the studied area.

F = Fragments (A, B, C); T = Microhabitat types (I = forest interior, F = farmland edge, R = road edge, Ab = abandoned edge)

F/T Latitude Longitude F/T Latitude Longitude
A1/I -27.163431 -51.584744 B1/I -27.162906 -51.521150
A2/I -27.162514 -51.582222 B2/F -27.160906 -51.523441
A3/I -27.163406 -51.580575 B3/R -27.160169 -51.521833
A4/I -27.165284 -51.581486 B4/R -27.163364 -51.519058
A5/F -27.166906 -51.584844 B5/Ab -27.165044 -51.520150
A6/R -27.16569 -51.565428 C1/Ab -27.101853 -51.607444
A7/R -27.160314 -51.582244 C2/F -27.099936 -51.607708
A8/Ab -27.161467 -51.587906 C3/F -27.100242 -51.606400
A9/Ab -27.163155 -51.587621 C4/I -27.100831 -51.607111

APPENDIX II

List of butterflies (Papilionoidea) sampled in the sites studied, Joaçaba, Santa Catarina, Brazil.

Fragments (A, B, C). * Indicates species sampled by chance

FAMILY/Subfamily/Tribe/Specie A1 A2 A3 A4 A5 A6 A7 A8 A9 B1 B2 B3 B4 B5 C1 C2 C3 C4 Total
HESPERIIDAE
Eudaminae
Eudamini
1 Aguna asander asander (Hewitson, 1867) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2
2 *Aguna glaphyrus (Mabille, 1888)
3 Astraptes aulus (Plötz, 1881) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 3
4 Astraptes enotrus (Stoll, [1781]) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 2
5 Astraptes erycina (Plötz, 1881) 0 0 0 1 0 0 0 0 2 0 0 0 0 0 1 0 0 0 4
6 Cecropterus dorantes dorantes (Stoll, [1790] 0 0 2 0 0 1 3 2 0 0 1 1 2 0 1 0 3 1 17
7 Cecropterus doryssus albicuspis (Herrich-Schäffer, 1869) 0 0 0 0 2 2 0 0 0 1 0 0 0 0 0 0 0 0 5
8 Cecropterus rica (Evans, 1952) 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 2
9 Cecropterus zarex (Hübner, 1818) 1 0 0 0 1 0 0 0 5 0 0 0 0 0 1 0 1 0 9
10 Oechydrus evelinda (Butler, 1870) 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 3
11 Polygonus leo leo (Gmelin, [1790]) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
12 Polygonus savigny savigny (Latreille, [1824]) 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 7
13 Proteides mercurius mercurius (Fabricius, 1787) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
14 Spicauda procne (Plötz, 1880) 0 1 1 0 0 1 4 1 1 0 5 2 3 2 2 1 0 1 25
15 Spicauda simplicius (Stoll, [1790]) 1 0 0 0 0 2 2 1 0 0 1 1 7 0 5 3 0 0 23
16 Spicauda teleus (Hübner, 1821) 2 0 0 0 2 2 10 4 5 0 7 4 4 9 9 3 6 0 67
17 Spicauda zagorus (Plötz, 1880) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
18 *Telegonus alardus alardus (Stoll, 1790)
19 Telegonus cretatus adoba (Evans, 1952) 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 5
20 Telegonus creteus siges (Mabille, 1903) 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 4
21 Telegonus elorus (Hewitson, 1867) 2 1 1 0 0 3 0 0 0 0 0 0 1 0 0 0 1 0 9
22 Telegonus fulgerator fulgerator (Walch, 1775) 5 0 1 2 1 1 0 2 1 1 0 0 0 0 0 1 2 3 20
23 Urbanus esta Evans, 1952 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 2 0 5
24 Urbanus pronta Evans, 1952 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 3
25 Urbanus proteus (Linnaeus, 1758) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
Phocidini
26 Nascus phocus (Cramer, [1777]) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
27 Phocides charon (C. & R. Felder, 1859) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
28 *Phocides pialia pialia (Hewitson, 1857)
Heteropterinae
29 Dardarina aspila Mielke, 1966 0 0 0 0 0 0 1 2 4 0 0 0 0 0 6 0 1 0 14
30 Dardarina rana Evans, 1955 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 4
Hesperiinae
Hesperiini
31 Anthoptus epictetus (Fabricius, 1793) 6 0 4 0 1 1 32 16 29 1 5 10 2 1 12 15 2 2 139
32 Arita arita (Schaus, 1902) 0 1 2 1 2 1 1 1 0 1 0 0 1 0 0 0 0 0 11
33 Arita mubevensis (Bell, 1932) 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
34 Artines satyr Evans, 1955 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3
35 Callimormus interpunctata (Plötz, 1884) 22 12 13 1 9 0 5 9 13 13 1 7 0 1 4 2 18 10 140
36 Callimormus rivera (Plötz, 1882) 0 0 0 0 0 6 11 10 7 0 15 8 3 4 11 9 7 0 91
37 *Calpodes ethlius (Stoll, [1782])
38 Chalcone briquenydan australis Mielke, 1980 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
39 Cobalopsis hazarma (Hewitson, 1877) 0 0 0 0 1 2 0 1 1 1 2 0 2 0 2 0 3 0 15
40 Cobalopsis miaba (Schaus, 1902) 6 5 6 3 6 0 0 3 1 3 0 0 1 0 0 0 2 5 41
41 Cobalopsis nero (Herrich-Schäffer, 1869) 0 0 0 0 0 2 0 4 0 3 0 4 7 6 1 0 1 1 29
42 Cobalopsis vorgia (Schaus, 1902) 0 2 2 0 4 0 2 2 2 2 0 1 2 0 0 0 3 1 23
43 Conga chydaea (Butler, 1877) 3 0 0 0 1 7 2 2 3 4 2 1 0 2 1 3 4 0 35
44 Conga iheringii (Mabille, 1891) 0 0 0 0 0 4 4 2 1 0 4 3 0 1 9 1 0 0 29
45 Conga immaculata (Bell, 1930) 4 1 1 2 3 5 1 3 12 0 2 3 1 2 10 1 4 4 59
46 Conga urqua (Schaus, 1902) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
47 Corticea corticea (Plötz, 1883) 1 0 0 0 0 0 7 1 1 0 1 1 0 1 2 0 0 0 15
48 Corticea lysias potex Evans, 1955 2 0 0 1 0 10 3 14 24 2 14 31 8 7 19 7 6 1 149
49 Corticea mendica ssp. n. 0 0 2 0 5 0 2 2 4 0 2 0 1 2 3 2 0 0 25
50 Corticea noctis (Plötz, 1883) 0 0 1 1 2 0 2 1 3 1 0 2 1 2 0 0 0 0 16
51 Corticea oblinita (Mabille, 1891) 1 0 1 1 0 10 8 6 9 0 4 10 4 5 7 4 1 1 72
52 Corticea obscura Mielke, 1969 0 0 0 0 0 0 1 1 0 0 2 3 0 0 0 0 1 0 8
53 Corticea sp. n. 0 0 0 0 4 0 0 0 1 0 1 0 0 0 5 0 0 0 11
54 Cumbre meridionalis (Hayward, 1934) 0 0 0 0 0 2 0 1 1 2 2 1 2 0 2 0 1 1 15
55 Cymaenes distigma (Plötz, 1882) 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3
56 Cymaenes gisca Evans, 1955 0 0 0 0 0 1 2 2 0 0 4 0 12 2 1 0 0 0 24
57 Cymaenes laureolus loxa Evans, 1955 0 0 0 0 0 2 0 0 1 0 0 0 0 0 4 1 1 0 9
58 Cymaenes lepta (Hayward, 1939) 0 0 0 0 0 0 0 2 0 0 0 1 0 0 1 0 0 1 5
59 Cymaenes odilia odilia (Burmeister, 1878) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 2
60 Cymaenes perloides (Plötz, 1882) 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 4
61 Cymaenes tripunctata tripunctata (Latreille, [1824]) 1 0 0 0 2 4 25 7 8 0 6 4 2 1 10 5 8 0 83
62 Cyclosma altama (Schaus, 1902) 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 4
63 Cynea sp. 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
64 *Decinea decinea decinea (Hewitson, 1876)
65 Decinea lucifer (Hübner, [1831]) 0 0 0 0 0 1 1 0 0 0 0 2 1 2 0 0 0 0 7
66 Dion meda (Hewitson, 1877) 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2
67 Enosis schausi Mielke & Casagrande, 2002 2 0 1 0 4 0 3 0 1 0 0 0 0 0 0 0 0 0 11
68 Euphyes leptosema (Mabille, 1891) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
69 Eutychide physcella (Hewitson, [1866]) 3 1 2 2 0 1 3 2 7 0 0 0 0 1 0 2 0 0 24
70 *Evansiella cordela (Plötz, 1882)
71 Gallio carasta (Schaus, 1902) 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 5
72 Ginungagapus ranesus (Schaus, 1902) 20 1 0 0 3 19 31 4 13 0 12 5 3 13 1 0 2 1 128
73 Hansa devergens hydra Evans, 1955 1 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 4
74 Hansa hyboma (Plötz, 1886) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
75 Hylephila phyleus phyleus (Drury, [1773]) 0 0 0 0 0 1 0 0 0 0 0 4 3 1 6 0 0 0 15
76 Justinia kora (Hewitson, 1877) 1 0 0 0 2 1 3 1 5 1 0 3 0 0 1 0 0 1 19
77 Lamponia lamponia (Hewitson, 1876) 0 0 0 0 1 1 0 0 0 0 0 0 2 0 0 0 0 0 4
78 Lerema duroca lenta Evans, 1955 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 2
79 Levina levina (Plötz, 1884) 1 2 3 1 6 0 1 2 1 0 0 0 5 0 0 0 1 0 23
80 Libra anatolica (Plötz, 1883) 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 3
81 Lucida lucia lucia (Capronnier, 1874) 5 6 3 6 5 0 0 2 2 1 0 2 1 4 0 0 4 5 46
82 Miltomiges cinnamomea (Herrich-Schäffer, 1869) 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 4
83 Mnasitheus chrysophrys (Mabille, 1891) 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 3
84 Mnasitheus gemignanii (Hayward, 1940) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
85 Mnasitheus ritans (Schaus, 1902) 1 3 1 1 3 0 10 8 5 1 0 1 0 1 0 0 1 0 36
86 Mnasitheus submetallesces (Hayward, 1940) 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 5
87 Mnasilus allubita (Butler, 1877) 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 1 5
88 Moeris seth Carneiro, Mielke & Casagrande, 2015 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 2
89 Moeris striga striga (Geyer, [1832]) 0 0 0 0 0 1 0 0 0 0 0 3 0 1 0 0 1 0 6
90 Morys geisa (Möschler, 1879) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
91 Monca branca Evans, 1955 1 0 0 0 0 1 3 2 0 1 2 6 0 1 8 5 1 1 32
92 *Nastra dryas (Hayward, 1940)
93 Nastra lurida (Herrich-Schäffer, 1869) 0 1 0 0 1 0 1 1 1 0 0 1 0 0 3 5 4 0 18
94 Neoxeniades scipio scipio (Fabricius, 1793) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
95 Niconiades caeso (Mabille, 1891) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
96 Niconiades merenda (Mabille, 1878) 3 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 1 0 12
97 Nyctelius nyctelius nyctelius (Latreille, [1824]) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
98 Nyctelius paranensis (Schaus, 1902) 0 0 0 0 0 1 0 2 2 0 0 0 0 0 0 0 0 0 5
99 Orthos orthos hyalinus (Bell, 1930) 0 0 0 0 1 8 1 0 5 1 1 0 2 0 0 0 0 0 19
100 Panoquina ocola ocola (Edwards, 1863) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
101 Papias phainis Godman, [1900] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
102 Paracarystus evansi Hayward, 1938 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3
103 Parphorus pseudecorus (Hayward, 1934) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2
104 Pheraeus argynnis (Plötz, 1884) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
105 Polites vibex catilina (Plötz, 1886) 0 0 0 0 0 5 2 1 0 0 7 4 0 5 4 0 1 0 29
106 Pompeius amblyspila (Mabille, 1898) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
107 Pompeius pompeius (Latreille, [1824]) 0 0 0 0 0 2 3 1 0 0 1 6 1 0 3 2 3 0 22
108 Psoralis stacara (Schaus, 1902) 0 0 1 0 5 1 0 0 3 1 0 1 1 0 0 0 0 0 13
109 Quinta cannae (Herrich-Schäffer, 1869) 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 4
110 Remella remus (Fabricius, 1798) 2 3 0 2 3 1 0 2 5 0 1 4 5 4 2 0 3 1 38
111 Rufocumbre celioi Dolibaina, Mielke & Casagrande, 2017 0 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 0 0 4
112 *Saliana antoninus (Latreille, [1824])
113 Saniba sabina (Plötz, 1882) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2
114 Saturnus reticulata conspicuus (Bell, 1941) 1 0 0 0 0 0 0 1 0 0 1 0 0 1 2 0 0 0 6
115 Sodalia coler (Schaus, 1902) 5 7 18 6 51 0 11 3 3 7 2 3 1 10 2 0 2 1 132
116 Styriodes sp. 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
117 *Synale hylaspes (Stoll, 1781)
118 Synapte malitiosa antistia (Plötz, 1882) 0 0 1 0 1 0 0 2 0 7 2 3 7 6 0 2 2 1 34
119 Synapte silius (Latreille, [1824]) 4 6 18 7 4 1 0 0 0 0 0 0 0 1 0 0 0 0 41
120 Thargella caura occulta (Schaus, 1902) 1 3 1 2 1 1 3 0 0 0 0 0 0 0 0 0 0 0 12
121 Thargella evansi Biezanko & Mielke, 1973 5 18 35 12 10 0 5 0 0 1 0 0 1 0 1 0 0 0 88
122 Thespieus ethemides (Burmeister, 1878) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
123 Thespieus jora Evans, 1955 0 0 0 0 0 8 12 3 3 1 6 12 2 1 8 1 1 1 59
124 Thespieus lutetia (Hewitson, [1866]) 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2
125 Thracides cleanthes cleanthes (Latreille, [1824]) 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2
126 Tigasis fusca (Hayward, 1940) 3 3 0 1 0 2 1 3 4 0 0 0 2 0 1 0 0 0 20
127 Tirynthia conflua (Herrich-Schäffer, 1869) 1 0 1 0 1 1 1 1 2 2 0 0 2 1 0 0 0 0 13
128 Tisias lesueur lesueur (Latreille, [1824]) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
129 Turesis complanula (Herrich-Schäffer, 1869) 0 0 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 5
130 Vehilius clavicula (Plötz, 1884) 0 1 6 0 2 2 16 6 3 0 8 4 1 0 11 0 2 0 62
131 Vehilius inca (Scudder, 1872) 0 0 0 0 0 2 0 1 0 0 1 2 3 2 6 0 0 0 17
132 Vehilius stictomenes stictomenes (Butler, 1877) 0 0 0 0 0 3 5 2 2 0 6 14 12 11 10 12 4 1 82
133 Vettius artona (Hewitson, 1868) 9 15 12 5 6 2 0 16 4 1 0 1 5 2 0 0 2 5 85
134 Vettius umbrata (Erschoff, 1876) 0 0 11 18 49 0 0 2 0 0 0 0 0 0 0 0 0 0 80
135 Vinius letis (Plötz, 1883) 17 13 13 16 6 7 0 0 7 7 0 0 6 7 6 0 3 7 115
136 Virga austrinus (Hayward, 1934) 1 2 2 1 2 1 2 2 3 1 0 6 0 1 0 0 1 0 25
137 Virga riparia Mielke, 1969 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
138 Wallengrenia premnas (Wallengren, 1860) 0 0 0 0 0 1 0 0 1 0 3 6 2 1 3 0 0 0 17
139 Xeniades orchamus orchamus (Cramer, [1777]) 0 0 1 0 2 2 0 13 2 4 0 1 2 0 0 0 0 1 28
140 Zariaspes mys (Hübner, [1808]) 0 0 0 0 0 0 7 7 0 1 1 2 2 0 0 4 2 0 26
141 Zenis jebus jebus (Plötz, 1882) 0 0 0 1 0 1 0 0 2 1 0 0 0 0 0 0 0 0 5
142 *Zenis minos (Latreille, [1824])
Pericharini
143 Lycas argentea (Hewitson, [1866]) 0 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 6
144 Lychnuchoides ozias ozias (Hewitson, 1878) 2 18 5 3 2 0 2 9 0 1 1 0 0 0 0 0 1 0 44
145 Orses itea (Swainson, 1821) 2 0 3 0 4 0 0 0 1 1 1 0 0 0 0 0 1 2 15
146 *Perichares adela (Hewitson, 1867)
147 Perichares aurina Evans, 1955 0 0 1 0 0 0 1 0 0 1 1 2 0 1 1 0 0 0 8
148 *Perichares lotus (A. Butler, 1870)
149 Perichares seneca seneca (Latreille, [1824]) 4 23 13 5 2 1 1 15 0 2 2 2 0 0 0 0 0 0 70
Pyrginae
Achlyodini
150 Achlyodes busirus rioja Evans, 1953 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 3
151 Achlyodes mithridates thraso (Hübner, [1807]) 1 1 2 0 2 7 2 3 13 1 3 3 2 1 6 5 6 1 59
152 Aethilla echina coracina Butler, 1870 0 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 4
153 Milanion leucaspis (Mabille, 1878) 1 1 0 0 2 0 0 0 4 0 0 0 0 0 0 0 3 1 12
154 Pythonides lancea (Hewitson, 1868) 1 0 0 0 0 1 0 0 4 1 0 1 0 1 5 1 0 1 16
155 Quadrus u‑lucida mimus (Mabille & Boullet, 1917) 1 0 0 0 0 0 1 0 0 1 0 1 1 0 3 0 0 0 8
156 Zera hyacinthinus servius (Plötz, 1884) 0 2 0 0 0 0 0 0 1 0 0 0 2 1 0 1 2 0 9
157 Zera tetrastigma erisichthon (Plötz, 1884) 0 1 2 0 0 0 1 1 1 0 0 2 0 0 0 2 1 2 13
Carcharodini
158 Nisoniades bipuncta (Schaus, 1902) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
159 Noctuana diurna (Butler, 1870) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
160 Pellicia vecina vecina Schaus, 1902 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 4
161 Polyctor polyctor polyctor (Prittwitz, 1868) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
162 Staphylus coecatus (Mabille, 1891) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
163 Staphylus minor minor Schaus, 1902 0 0 0 0 0 0 0 0 0 7 0 8 2 4 0 0 0 0 21
164 Staphylus musculus (Burmeister, 1875) 0 0 0 0 0 1 14 5 3 1 3 6 1 0 0 3 5 0 42
165 Viola violella (Mabille, 1898) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 9 2 1 0 13
Erynnini
166 Anastrus sempiternus simplicior (Möschler, 1877) 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 3
167 Chiomara mithrax (Möschler, 1879) 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2
168 Cycloglypha stellita (Zikán, 1938) 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3
169 Cycloglypha thrasibulus thrasibulus (Fabricius, 1793) 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 1 0 5
170 Ebrietas anacreon anacreon (Staudinger, 1876) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2
171 Gorgythion begga begga (Prittwitz, 1868) 2 0 0 1 0 0 4 2 1 0 4 7 1 1 7 5 6 3 44
172 Helias phalaenoides palpalis (Latreille, [1824]) 0 0 0 0 0 1 1 1 0 0 1 4 0 2 0 1 1 0 12
173 Mylon maimon (Fabricius, 1775) 0 0 0 0 0 2 0 0 0 0 0 3 2 1 1 0 0 0 9
174 Sostrata bifasciata bifasciata (Ménétriés, 1829) 1 4 4 0 0 2 0 2 3 1 1 0 0 1 2 0 3 0 24
175 Theagenes dichrous (Mabille, 1878) 0 0 0 0 0 1 0 0 0 0 0 2 0 0 1 0 0 0 4
Pyrgini
176 Antigonus liborius areta Evans, 1953 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
177 Antigonus minor Mielke, 1980 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
178 Burnsius orcus (Stoll, [1780]) 0 0 0 0 0 1 4 9 1 0 12 9 3 1 12 21 12 0 85
179 Burnsius orcynoides (Giacomelli, 1928) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 3 0 0 6
180 Carrhenes canescens pallida Röber, 1925 5 4 3 5 1 1 1 2 3 0 0 2 0 0 2 3 1 1 34
181 Heliopetes alana (Reakirt, 1868) 0 0 0 0 0 1 2 2 2 0 1 6 2 0 1 0 2 0 19
182 Heliopetes arsalte (Linnaeus, 1758) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 4
183 Heliopetes omrina (Butler, 1870) 0 0 0 0 0 2 1 1 1 0 0 1 0 1 10 2 1 0 20
184 Trina geometrina geometrina (C. & R. Felder, [1867]) 0 0 0 0 1 2 8 2 1 0 5 0 1 1 1 1 7 0 30
185 Xenophanes tryxus (Stoll, [1780]) 0 0 0 0 0 0 12 3 2 0 0 4 0 0 3 1 1 0 26
Pyrrhopyginae
186 *Microceris adonis (E. Bell, 1931)
187 Mysoria barcastus barta Evans, 1951 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 2
188 *Oxinetra roscius roscius (Hopffer, 1874)
189 *Pyrrhopyge charybdis charybdis Westwood, 1852
Tagiadinae
Celaenorrhinini
190 *Celaenorrhinus similis Hayward, 1933
191 Celaenorrhinus eligius punctiger (Burmeister, 1878) 2 22 18 10 2 0 0 4 0 2 1 1 0 0 0 0 3 2 67
LYCAENIDAE
Polyommatinae
1 Leptotes cassius cassius (Cramer, [1775]) 0 0 0 0 0 2 0 3 0 0 0 6 3 0 3 0 1 0 18
2 Zizula cyna (Edwards, 1881) 0 0 0 0 0 0 2 0 0 0 2 5 0 0 3 0 0 0 12
Theclinae
Eumaeini
3 Allosmaitia strophius (Godart, [1824]) 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 2
4 Arawacus dolylas (Cramer, [1777]) 0 0 0 0 0 3 0 0 2 0 0 0 0 1 0 0 1 0 7
5 Arawacus ellida (Hewitson, 1867) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 2
6 Arawacus meliboeus (Fabricius, 1793) 1 1 1 3 4 1 6 7 11 1 5 5 2 4 9 17 9 3 90
7 Arawacus tadita (Hewitson, 1877) 0 0 0 0 0 5 0 0 6 0 0 0 0 0 1 4 3 0 19
8 Arcas ducalis (Westwood, 1852) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2
9 Arzecla nubilum (H. Druce, 1907) 2 2 0 0 1 2 0 0 1 0 0 0 0 0 2 0 0 1 11
10 Atlides atys (Cramer, [1779]) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
11 Brevianta celelata (Hewitson, 1874) 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 3
12 Calycopis caulonia (Hewitson, 1877) 1 1 5 6 1 11 4 7 4 2 9 5 11 5 4 8 7 4 95
13 Chalybs chloris (Hewitson, 1877) 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 4
14 Contrafacia catharina (Draudt, 1920) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
15 Contrafacia imma (Prittwitz, 1865) 1 0 0 0 0 5 0 1 0 0 0 0 0 2 0 1 0 0 10
16 Cyanophrys acaste (Prittwitz, 1865) 0 1 0 0 0 2 0 0 1 1 0 1 1 0 1 2 1 0 11
17 Cyanophrys bertha (Jones, 1912) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
18 Cyanophrys herodotus (Fabricius, 1793) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 1 0 0 5
19 Cyanophrys remus (Hewitson, 1868) 0 0 0 0 0 6 1 4 1 1 1 0 4 1 4 4 4 0 31
20 Dicya dicaea (Hewitson, 1874)
21 Dicya eumorpha (Hayward, 1949) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
22 Enos thara (Hewitson, 1867) 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
23 Erora biblia (Hewitson, 1868) 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 5
24 Erora campa (Jones, 1912) 0 0 0 0 0 1 1 0 0 0 3 0 0 1 0 0 0 0 6
25 Erora gabina (Godman & Salvin, [1887]) 0 0 0 0 0 2 0 0 0 0 0 0 1 1 0 1 0 0 5
26 Erora aff campa 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
27 Kolana ligurina (Hewitson, 1874) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
28 Kolana sp. n. 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 3
29 Laothus phydela (Hewitson, 1867) 0 0 0 2 0 1 1 0 2 0 2 0 1 0 4 4 2 2 21
30 Magnastigma hirsuta (Prittwitz, 1865) 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 4
31 Ministrymon cruenta (Gosse, 1880) 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 1 0 0 4
32 Ministrymon azia (Hewitson, 1873) 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 2 6
33 Mithras catrea (Hewitson, 1874) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
34 Nicolaea cupa (Druce, 1907) 0 0 0 0 1 0 0 2 1 0 0 0 0 0 0 0 0 1 5
35 Ocaria ocrisia (Hewitson, 1868) 0 0 0 0 0 1 1 0 2 0 0 0 0 0 2 1 0 0 7
36 *Ocaria sp. n.
37 Ocaria thales (Fabricius, 1793) 2 2 0 1 0 0 0 1 7 0 1 0 0 0 1 0 0 0 15
38 Ostrinotes sophocles (Fabricius, 1793) 2 0 0 0 0 1 0 1 0 0 0 0 1 2 0 1 1 1 10
39 Panthiades hebraeus (Hewitson, 1867) 0 0 0 0 0 2 0 0 0 0 2 1 0 1 0 0 0 0 6
40 Parrhasius orgia (Hewitson, 1867) 0 0 0 0 1 0 0 0 2 0 0 0 0 1 5 0 1 0 10
41 Parrhasius polibetes (Stoll, [1781]) 0 0 0 0 0 3 0 0 0 0 1 1 0 0 2 0 0 0 7
42 Parrhasius selika (Hewitson, 1874) 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 9
43 Pseudolycaena marsyas (Linnaeus, 1758) 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 2
44 Rekoa malina (Hewitson, 1867) 0 0 0 0 0 7 0 0 2 0 0 1 0 0 3 2 0 0 15
45 Rekoa palegon (Cramer, [1780]) 0 0 0 0 0 1 0 0 1 1 0 0 0 0 2 0 0 0 5
46 Siderus eliatha (Hewitson, 1867) 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 5
47 Strephonota elika (Hewitson, 1867) 0 1 2 1 0 0 0 0 0 6 0 1 0 0 2 2 0 10 25
48 Strymon bazochii (Godart, [1824]) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 3
49 Strymon eurytulus (Hübner, [1819]) 0 0 0 1 0 1 0 1 4 0 0 2 1 0 1 0 0 0 11
50 Strymon oreala (Hewitson, 1868) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
51 Thereus cithonius (Godart, [1824]) 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 2
52 Theritas chaluma (Schaus, 1902) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
53 Theritas deniva (Hewitson, 1874) 3 1 0 0 1 9 0 0 3 2 0 0 0 0 4 2 2 0 27
54 Theritas triquetra (Hewitson, 1865) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
55 Tmolus echion (Linnaeus, 1767) 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 3
NYMPHALIDAE
Apaturinae
1 Doxocopa kallina (Staudinger, 1886) 0 0 0 0 0 0 1 1 4 0 0 2 0 1 1 3 1 1 15
2 Doxocopa laurentia laurentia (Godart, [1824]) 0 0 2 1 1 2 2 5 7 1 1 1 1 1 6 13 4 3 51
3 Doxocopa zunilda zunilda (Godart, [1824]) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1 0 4
Danainae
Danaini
4 Lycorea ilione ilione (Cramer, [1775]) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 2
5 Danaus erippus (Cramer, [1775]) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
6 Danaus gilippus gilippus (Cramer, [1775]) 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2
Ithomiini
7 Aeria olena olena Weymer, 1875 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
8 Dircenna dero dero (Hübner, [1823]) 0 1 0 2 1 4 1 2 2 6 2 0 0 1 3 5 1 11 42
9 Episcada carcinia Schaus, 1902 2 7 11 6 2 0 0 0 1 2 2 0 1 0 1 5 0 19 59
10 Episcada hymenaea hymenaea (Prittwitz, 1865) 1 1 2 1 1 1 0 0 0 1 0 0 0 0 2 4 3 7 24
11 Epityches eupompe (Geyer, 1832) 8 9 12 8 4 8 2 7 1 9 5 1 1 5 3 13 4 19 119
12 Hypoleria adasa adasa (Hewitson, 1855) 6 13 11 10 0 0 1 2 0 15 1 0 1 3 2 0 4 20 89
13 Hypothyris euclea laphria (Doubleday, [1847]) 0 2 4 2 0 0 0 0 0 1 0 0 0 0 5 1 1 8 24
14 Ithomia agnosia zikani d’Almeida, 1940 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 2 7
15 Ithomia drymo Hübner, 1816 1 0 0 0 0 0 0 2 0 3 0 0 1 2 0 1 0 3 13
16 Mechanitis lysimnia lysimnia (Fabricius, 1793) 6 1 1 1 1 0 5 1 1 2 2 0 1 3 5 2 3 11 46
17 Methona themisto (Hübner, 1818) 0 0 2 1 0 0 0 0 0 1 0 0 2 0 0 0 0 0 6
18 Placidina euryanassa (C. Felder & R. Felder, 1860) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 2
19 Pseudoscada erruca (Hewitson, 1855) 3 12 24 7 2 0 2 1 0 10 1 1 1 0 4 2 2 20 92
20 Pteronymia sylvo (Geyer, 1832) 2 3 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 10
21 Thyridia psidii cetoides (Rosenberg & Talbot, 1914) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2
Biblidinae
Ageroniinni
22 Ectima thecla thecla (Fabricius, 1796) 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2
23 Hamadryas amphinome amphinome (Linnaeus, 1767) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2
24 Hamadryas epinome (C. & R. Felder, 1867) 1 2 0 0 4 4 0 6 1 3 1 0 13 1 1 1 0 1 39
25 Hamadryas februa februa (Hübner, [1823]) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
26 Hamadryas fornax fornax (Hübner, [1823]) 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 3
Biblidini
27 Biblis hyperia nectanabis (Fruhstorfer, 1909) 5 0 2 1 1 6 6 7 4 4 10 4 5 3 2 1 7 1 69
Callicorini
28 Callicore pygas eucale (Fruhstorfer, 1916) 3 2 0 0 0 1 1 0 0 0 0 0 0 0 2 1 0 0 10
29 Diaethria candrena candrena (Godart, [1824]) 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 2 2 2 10
30 Diaethria clymena meridionalis (Bates, 1864) 0 0 0 0 2 0 0 0 0 0 0 1 2 0 4 7 0 0 16
31 Haematera pyrame pyrame (Hübner, [1819]) 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 4
Catonephelini
32 Cybdelis phaesyla (Hübner, [1831]) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
33 Eunica caelina caelina (Godart, [1824]) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
34 Eunica eburnea Fruhstorfer, 1907 0 0 0 0 0 0 5 1 0 0 4 6 2 0 3 2 3 0 26
35 Eunica tatila bellaria Fruhstorfer, 1908 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 4
36 Myscelia orsis (Drury, [1782]) 0 0 0 0 0 0 0 1 0 2 1 1 2 1 0 0 0 0 8
Eubagini
37 Dynamine agacles agacles (Dalman, 1823) 0 0 0 0 1 7 2 0 0 0 0 1 2 5 0 0 0 0 18
38 Dynamine artemisia artemisia (Fabricius, 1793) 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 5
39 Dynamine athemon athemaena (Hübner, [1824]) 0 0 1 0 0 0 0 0 0 0 1 3 2 3 0 0 0 0 10
40 Dynamine coenus (Fabricius, 1793) 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 5
41 Dynamine myrrhina (Doubleday, 1849) 10 0 0 0 7 2 6 12 6 9 10 4 2 3 7 15 15 8 116
42 Dynamine postverta postverta (Cramer, [1780]) 0 0 0 0 0 2 1 2 0 0 0 1 0 1 0 0 0 0 7
43 Dynamine tithia tithia (Hübner, [1823]) 0 1 0 0 0 1 1 0 1 0 1 2 1 4 0 0 0 0 12
Epiphelini
44 Epiphile hubneri Hewitson, 1861 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 6 1 2 12
45 Epiphile orea orea (Hübner, [1823]) 0 0 1 0 0 0 1 0 0 1 0 0 0 0 2 0 1 1 7
46 Temenis laothoe meridionalis Ebert, 1965 0 0 0 0 0 0 2 0 1 0 0 3 0 0 0 1 0 0 7
Charaxinae
Anaeini
47 Hypna clytemnestra huebneri Butler, 1866 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
48 Memphis acidalia victoria (Druce, 1877) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
49 Memphis moruus stheno (Prittwitz, 1865) 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 3
50 Memphis otrere (Hübner, 1825) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
51 Zaretis strigosus (Gmelin, [1790]) 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 2
Preponini
52 *Archaeoprepona amphimachus pseudomeander (Fruhstorfer, 1906)
53 Archaeoprepona chalciope (Hübner, [1823]) 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
54 *Archaeoprepona demophon thalpius (Hübner, [1814])
55 *Archaeoprepona demophoon antimache (Hübner, [1819])
56 Prepona pylene Hewitson, 1854 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Cyrestinae
Cyrestini
57 *Marpesia petreus (Cramer, [1776])
Heliconiinae
Acraeini
58 Actinote carycina Jordan, 1913 0 0 0 0 7 13 2 1 13 4 12 9 12 25 15 8 13 0 134
59 Actinote dalmeidai Francini, 1996 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 0 4
60 Actinote genitrix R.F. d’Almeida, 1922 1 0 0 0 3 1 0 1 0 0 0 1 0 4 0 2 0 0 13
61 Actinote melanisans Oberthür, 1917 1 0 0 0 2 3 2 2 3 1 1 1 6 0 1 4 2 0 29
62 Actinote surima surima (Schaus, 1902) 0 0 0 0 0 2 0 0 0 0 5 0 0 3 2 0 0 0 12
Argynnini
63 Euptoieta hortensia (Blanchard, 1852) 0 0 0 0 3 0 0 0 0 0 1 0 0 0 3 0 0 0 7
Heliconiini
64 Agraulis vanillae maculosa (Stichel, [1908]) 0 0 0 0 0 0 2 1 0 0 1 2 3 2 0 0 0 0 11
65 Dione juno juno (Cramer, [1779]) 0 0 0 0 0 0 0 0 1 0 0 2 1 0 0 0 0 0 4
66 Dione moneta moneta Hübner, [1825] 0 0 0 0 0 1 0 0 1 0 0 1 1 0 2 4 4 0 14
67 Dryas iulia alcionea (Cramer, 1779) 0 0 0 0 1 0 0 0 0 0 2 0 7 2 2 1 5 2 22
68 Eueides aliphera aliphera (Godart, 1819) 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2 1 1 6
69 Eueides isabella dianasa (Hübner, [1806]) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
70 Heliconius erato phyllis (Fabricius, 1775) 15 4 3 2 7 4 2 3 3 21 10 4 6 15 4 2 9 4 118
71 Heliconius ethilla narcaea Godart, 1819 1 0 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 1 8
Libytheinae
72 Libytheana carinenta carinenta (Cramer, [1777]) 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 6 2 0 13
Limenitidinae
Limenitidini
73 Adelpha falcipennis Fruhstorfer, 1915 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 4
74 Adelpha hyas hyas (Doyère, [1840]) 0 0 0 0 0 1 0 2 1 0 0 1 0 1 0 0 0 0 6
75 Adelpha iphiclus ephesa (Ménétriés, 1857) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
76 Adelpha mythra (Godart, [1824]) 6 0 1 0 0 1 0 2 3 1 0 1 0 0 2 0 4 1 22
77 Adelpha serpa serpa (Boisduval, [1836]) 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 5
78 Adelpha syma (Godart, [1824]) 15 2 1 1 2 6 15 6 24 4 20 16 4 5 15 7 7 2 152
79 Adelpha thessalia indefecta Fruhstorfer, 1913 6 0 1 1 0 7 0 4 15 0 0 0 0 1 2 6 4 1 48
80 Adelpha zea (Hewitson, 1850) 1 0 0 0 0 2 0 1 5 0 0 0 0 2 1 0 0 0 12
Nymphalinae
Melitaeini
81 Chlosyne lacinia saundersi (Doubleday, [1847]) 0 0 0 0 0 3 0 3 3 0 1 6 1 0 0 5 0 0 22
82 Eresia lansdorfi (Godart, 1819) 2 2 0 2 0 2 1 0 0 0 1 2 1 4 0 1 1 1 20
83 Ortilia dicoma (Hewitson, 1864) 0 0 1 0 2 1 0 1 0 9 2 1 0 5 0 3 2 0 27
84 Ortilia ithra (Kirby, 1900) 0 0 0 0 0 3 4 4 2 0 2 10 1 1 10 9 1 1 48
85 Ortilia orthia (Hewitson, 1864) 3 0 1 0 1 3 3 11 12 5 8 29 7 3 9 10 11 0 116
86 Ortilia velica durnfordi (Godman & Salvin, 1878) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
87 Tegosa claudina (Eschscholtz, 1821) 1 0 0 0 0 1 5 23 14 5 16 29 7 7 13 18 17 0 156
88 Telenassa teletusa teletusa (Godart, [1824]) 3 2 3 5 4 1 1 6 1 2 1 3 1 0 0 2 1 3 39
Nymphalini
89 Hypanartia bella (Fabricius, 1793) 0 0 3 0 1 2 2 2 2 2 7 12 1 4 4 2 2 0 46
90 Hypanartia lethe lethe (Fabricius, 1793) 0 0 1 0 2 4 2 5 2 0 1 0 6 0 1 7 6 1 38
91 Smyrna blomfildia blomfildia (Fabricius, 1781) 2 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 5
92 Vanessa braziliensis (Moore, 1883) 0 0 0 0 0 5 2 2 0 0 6 2 2 3 10 2 1 0 35
93 Vanessa carye (Hübner, [1812]) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
94 Vanessa myrinna (Doubleday, 1849) 0 0 0 0 0 2 2 1 0 0 0 0 1 1 0 0 0 0 7
Junoniini
95 Junonia evarete evarete (Cramer, [1779]) 0 0 0 0 0 3 0 1 0 0 1 0 0 0 7 1 0 0 13
Victorinini
96 Anartia amathea roeselia (Eschscholtz, 1821) 3 0 7 0 0 6 9 3 2 0 8 26 4 1 25 14 4 0 112
97 Siproeta epaphus trayja Hübner, [1823] 0 0 1 0 0 0 1 1 1 1 0 0 1 0 3 1 0 0 10
Satyrinae
Brassolini
98 Blepolenis bassus (C. & R. Felder, [1867]) 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 6
99 Blepolenis batea batea (Hübner, [1821]) 0 0 0 0 0 0 1 2 1 0 6 0 0 2 4 0 1 0 17
100 *Caligo illioneus pampeiro Fruhstorfer, 1904
101 Caligo martia (Godart, [1824]) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
102 Eryphanis reevesii (Doubleday, [1849]) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2
103 Opoptera sulcius (Staudinger, 1887) 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
104 *Opsiphanes cassiae crameri C. Felder & R. Felder, 1862
105 * Opsiphanes quiteria meridionalis Staudinger, 1887
106 Opsiphanes invirae amplificatus Stichel, 1904 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
Morphini
107 Morpho aega aega (Hübner, [1822]) 0 0 0 0 5 0 0 0 0 3 0 0 1 1 0 0 0 1 11
108 Morpho anaxibia (Esper, 1801) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
109 Morpho epistrophus catenaria (Perry, 1811) 1 2 1 0 0 0 0 1 3 1 0 0 0 1 4 7 1 2 24
110 Morpho helenor violaceus Fruhstorfer, 1912 0 2 2 1 0 0 1 3 4 2 2 0 0 0 1 1 4 4 27
Satyrini
111 Capronnieria galesus (Godart, [1824]) 0 0 0 0 0 1 0 0 2 0 4 0 0 0 4 1 0 0 12
112 Carminda griseldis (Weymer, 1911) 2 0 0 0 1 0 0 1 1 0 0 0 2 1 0 0 0 0 8
113 Carminda paeon (Godart, [1824]) 3 5 2 1 2 0 0 1 0 1 1 0 1 1 1 0 1 9 29
114 Cissia eous (Butler, 1867) 0 0 0 0 0 0 0 2 0 2 0 0 0 2 0 0 1 0 7
115 Cissia phronius (Godart, [1824]) 0 0 0 0 2 1 2 1 0 2 2 0 2 2 2 5 3 2 26
116 Eteona tisiphone (Boisduval, [1836]) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 7
117 Euptychoides castrensis (Schaus, 1902) 5 1 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 3 14
118 Forsterinaria necys (Godart, [1824]) 0 0 1 3 2 0 0 0 1 7 0 0 0 0 1 0 0 1 16
119 Forsterinaria quantius (Godart, [1824]) 1 0 0 1 11 2 0 0 4 1 0 0 4 1 2 0 0 1 28
120 Godartiana muscosa (Butler, 1870) 16 22 24 39 3 0 0 0 2 18 0 0 3 6 4 2 4 17 160
121 Guaianaza pronophila (Butler, 1867) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
122 Hermeuptychia aff hermes sp.1 6 4 7 3 2 7 5 1 5 0 11 3 11 6 14 18 3 6 112
123 Hermeuptychia aff hermes sp.2 6 4 1 0 1 1 0 1 0 0 1 0 0 0 1 0 2 1 19
124 Hermeuptychia aff hermes sp.3 1 0 0 1 0 0 0 1 2 0 0 0 0 0 0 0 1 1 7
125 Hermeuptychia sp. n. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
126 Moneuptychia soter (Butler, 1877) 2 1 1 0 1 4 5 5 1 0 5 0 2 2 2 8 7 7 53
127 Paryphthimoides poltys (Prittwitz, 1865) 1 4 4 0 0 0 0 1 0 1 0 1 0 0 0 0 2 3 17
128 Paryphthimoides undulata (Butler, 1867) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
129 Praepedaliodes phanias (Hewitson, 1862) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
130 Taygetis acuta Weymer, 1910 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
131 Taygetis ypthima Hübner, [1821] 5 2 1 22 0 0 0 1 3 0 0 0 0 0 0 0 0 0 34
132 Yphthimoides celmis (Godart, [1824]) 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2
133 Yphthimoides leguialimai (Dyar, 1913) 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2
134 Yphthimoides sp. n. 0 0 0 0 0 1 6 0 0 0 8 0 0 0 0 0 0 0 15
135 Yphthimoides ordinaria Freitas, Kaminski & Mielke, 2012 0 0 0 0 1 2 1 0 0 0 4 5 10 6 0 0 0 0 29
136 Yphthimoides renata (Stoll, [1780]) 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
137 Zischkaia pacarus (Godart, [1824]) 1 0 0 0 4 2 1 1 2 0 0 0 3 1 4 0 0 0 19
PAPILIONIDAE
Papilioninae
Leptocircini
1 Mimoides lysithous lysithous (Hübner, [1821]) 0 0 0 0 1 0 0 0 0 0 1 1 2 0 0 0 1 2 8
2 Mimoides lysithous rurik (Eschscholtz, 1821) 0 0 0 1 1 4 1 2 1 0 0 0 1 1 0 0 1 2 15
3 Protesilaus helios (Rothschild & Jordan, 1906) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
4 *Protesilaus protesilaus nigricornis (Staudinger, 1884)
5 Protesilaus stenodesmus (Rothschild & Jordan, 1906) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
Troidini
6 Battus polydamas polydamas (Linnaeus, 1758 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 3
7 Battus polystictus polystictus (Butler, 1874) 0 0 0 0 1 1 0 3 0 0 0 0 4 2 1 0 0 0 12
8 Parides agavus (Drury, 1782) 1 1 0 0 1 0 2 5 0 1 0 0 0 2 1 0 0 0 14
9 Parides anchises nephalion (Godart, 1819) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
10 Parides bunichus perrhebus (Boisduval, 1836) 0 0 0 1 3 1 3 6 0 0 0 0 4 8 2 0 1 0 29
Papilionini
11 Heraclides anchisiades capys (Huebner,. 1809) 0 0 0 0 0 0 1 0 0 0 0 0 1 4 0 0 0 0 6
12 Heraclides astyalus astyalus (Godart, 1819) 1 0 0 0 0 3 0 2 0 0 1 1 1 1 3 0 1 0 14
13 Heraclides hectorides (Esper, 1794) 0 2 1 1 0 1 1 0 1 1 0 1 1 6 1 1 1 5 24
14 Heraclides thoas brasiliensis (Rothschild & Jordan, 1906) 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 4
15 Pterourus menatius cleotas (G. Gray, 1832) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
16 Pterourus scamander scamander (Boisduval, 1836) 0 0 0 0 0 2 0 0 0 0 1 0 0 0 6 0 0 0 9
PIERIDAE
Dismorphiinae
1 Dismorphia amphione astynome (Dalman, 1823) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2
2 Dismorphia astyocha Hübner, [1831] 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 4
3 Dismorphia melia (Godart, [1824]) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
4 Dismorphia thermesia thermesia (Godart, 1819) 0 0 3 4 3 0 0 0 0 0 2 0 0 0 0 0 0 0 12
5 Enantia clarissa (Weymer, 1895) 0 0 0 1 0 0 0 0 0 2 0 0 2 1 0 0 0 0 5
6 Enantia lina psamanthe (Fabricius, 1793) 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2
7 Pseudopieris nehemia nehemia (Boisduval, 1836) 1 0 0 2 1 5 1 1 4 0 1 2 1 1 10 8 7 4 49
Coliadinae
8 Colias lesbia lesbia (Fabricius, 1775) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
9 Eurema albula albula (Cramer, [1776]) 2 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 5
10 Eurema arbela arbela Geyer, 1832 0 0 0 0 1 4 0 0 1 0 0 3 0 0 1 1 0 0 11
11 Eurema deva deva (Doubleday, 1847) 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1 1 1 0 6
12 Eurema elathea flavescens (Chavannes, 1850) 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 0 0 0 5
13 Phoebis argante argante (Fabricius, 1775) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
14 Phoebis neocypris neocypris (Hübner, [1823]) 10 1 0 0 3 1 4 4 1 3 3 22 6 10 10 1 7 1 87
15 Phoebis philea philea (Linnaeus, 1763) 0 0 0 0 0 1 0 0 0 0 0 4 1 0 1 0 1 0 8
16 Phoebis sennae marcellina (Cramer, [1779]) 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 4
17 Phoebis trite banksi (Breyer, 1939) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
18 Pyrisitia leuce leuce (Boisduval, 1836) 0 0 0 0 0 0 1 1 1 0 0 0 0 0 8 4 1 0 16
19 Pyrisitia nise tenella (Boisduval, 1836) 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 4
Pierinae
Anthocharidini
20 *Hesperocharis erota (Lucas, 1852)
21 Hesperocharis paranensis paranensis Schaus, 1898 0 0 0 0 1 4 0 0 0 0 1 0 1 0 0 0 0 0 7
Pierini
22 Leptophobia aripa balidia (Boisduval, 1836) 0 0 0 0 0 1 2 1 0 2 7 2 4 3 0 0 2 0 24
23 Pereute antodyca (Boisduval, 1836) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
24 Pereute swainsonii (Gray, 1832) 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 4
25 Tatochila autodice autodice (Hübner, 1818) 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 3
26 Theochila maenacte maenacte (Boisduval, 1836) 0 0 0 0 1 1 1 1 0 0 3 0 0 6 7 1 1 0 22
RIODINIDAE
Nemeobiinae
Euselasiini
1 Euselasia eucerus (Hewitson, 1872) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 7
2 Euselasia hygenius occulta Stichel, 1919 0 0 0 1 0 0 0 3 2 2 4 0 0 1 1 0 0 0 14
3 *Euselasia zara (Westwood, 1851)
Riodininae
Emesidini
4 Emesis fatimella fatimella Westwood, 1851 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2
5 Emesis mandana mandana (Cramer, [1780]) 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 3
6 Emesis ocypore zelotes Hewitson, 1872 0 0 0 0 2 0 1 0 0 3 0 2 2 0 3 9 0 1 23
7 Emesis russula Stichel, 1910 0 0 0 0 0 5 1 1 2 0 1 0 1 0 0 1 0 0 12
8 Emesis satema (Schaus, 1902) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
Eurybiini
9 Ionotos alector (Geyer, 1837) 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
10 Ithomiola orpheus (Westwood, 1851) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2
11 Mesosemia odice (Godart, [1824]) 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
12 Mesosemia rhodia (Godart, [1824]) 5 1 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15
Nymphidiini
13 Adelotypa bolena (Butler, 1867) 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 4
14 Catocyclotis sejuncta (Stichel, 1910) 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 3
15 Mycastor leucarpis (Stichel, 1925) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 Synargis paulistina (Stichel, 1910) 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 3
17 Theope thestias Hewitson, 1860 0 0 0 0 0 1 1 0 4 0 0 0 0 2 0 0 0 0 8
Riodinini
18 Barbicornis basilis mona Westwood, 1851 0 0 0 0 0 1 0 1 2 0 1 0 1 0 1 3 0 0 10
19 Calephelis braziliensis McAlpine, 1971 0 0 0 0 0 6 10 0 1 0 12 2 2 1 2 0 1 0 37
20 Chalodeta theodora (C. & R. Felder, 1862) 0 0 1 0 0 5 2 1 1 1 1 1 1 2 1 5 0 1 23
21 Chamaelimnas briola doryphora Stichel, 1910 1 2 0 0 0 0 1 0 0 2 1 1 0 0 1 1 1 4 15
22 Charis cadytis Hewitson, 1866 0 2 0 0 1 0 3 2 3 1 2 0 0 0 0 0 0 0 14
23 *Chorinea licursis (Fabricius, 1775)
24 Lasaia agesilas agesilas (Latreille, [1809]) 0 0 0 0 0 4 0 1 2 0 0 0 0 0 0 0 0 0 7
25 Lasaia incoides (Schaus, 1902) 0 0 0 0 0 6 0 0 1 0 0 0 0 0 0 0 0 0 7
26 Melanis smithiae smithiae (Westwood, 1851) 1 0 0 6 1 0 0 0 1 2 0 2 0 1 1 0 3 1 19
27 Melanis xenia xenia (Hewitson, 1853) 0 0 0 1 0 0 0 0 2 1 1 3 1 0 0 0 0 1 10
28 Parcella amarynthina (C. & R. Felder, [1865]) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
29 Rhetus periander eleusinus Stichel, 1910 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 3
30 Riodina lycisca (Hewitson, 1853) 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 3
31 Syrmatia nyx (Hübner, [1817]) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
Symmachiini
32 Mesene pyrippe sanguilenta Stichel, 1910 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 5
33 Mesene sp. n. 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
34 Stichelia bocchoris suavis (Stichel, 1911) 8 1 0 0 0 5 2 0 1 2 5 0 0 0 1 2 0 0 27
35 Symmachia arion (C. & R. Felder, 1865) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
460 390 326 389 299 374 490 499 500 580 312 459 553 399 402 691 498 434 346 7941

APPENDIX III

Butterflies richness and abundance in the studied site

F = Fragments (A, B, C)

T = Microhabitat types (I = Forest interior, F = Farmland edge, R = Road edge, Ab = Abandoned edge)

F Abundance Richness Estimated richness (95%) Singletons Doubletons
A 3846 363 303.676 79 50
B 2125 284 261.73 63 52
C 1969 284 273.867 86 39
T Abundance Richness Estimated richness (95%) Singletons Doubletons
I 2062 227 201.673 61 34
F 1764 269 264.176 84 34
R 1941 299 289.163 82 50
Ab 2173 338 327.172 91 48
Site sampled Abundance Richness Estimated richness (90%) Singletons Doubletons
A1/I 390 120 142.325 56 21
A2/I 326 83 86.648 36 19
A3/I 389 93 99.432 43 17
A4/I 299 84 100.889 42 15
A5/F 373 114 125.102 49 28
A6/R 490 190 243.988 94 40
A7/R 499 140 148.573 59 32
A8/Ab 500 168 190.231 74 42
A9/Ab 580 180 208.411 80 33
B1/I 312 113 157.015 61 21
B2/F 459 132 148.106 58 24
B3/R 553 143 149.036 59 23
B4/R 399 154 182.644 72 40
B5/Ab 402 148 197.868 75 26
C1/Ab 691 195 202.487 75 40
C2/F 498 133 135.681 51 28
C3/F 434 150 194.529 72 23
C4/I 346 107 146.982 57 16

APPENDIX IV

Butterflies species indicators in the studied area (only species with n ≥ 10 were included)

H: Habitat = E: edge, I: forest interior

Habits and Host plants information were obtained from literature cited below this table

Family/Subfamily/ Specie H P Habits Host plants
Hesperiidae/Eudaminae
Spicauda teleus E 0.001 *** Open areas1 Cyperaceae; Poaceae: Coelorachis sp., Cynodon dactylon, Oryza latifolia, Panicum maximum, Sorghum halepense; Fabaceae: Schrankia sp., Glycine max, Phaseolus vulgaris, Pisum sativum 5.
Hesperiinae
Anthoptus epictetus E 0.016 * Disturbed forest3, Open areas1 Poaceae5
Callimormus rivera E 0.002 **
Cobalopsis miaba I 0.001 ***
Conga iheringii E 0.014 * Clearings1
Corticea lysias potex E 0.006 ** Open areas3
Corticea mendica ssp. n. E 0.039 *
Corticea oblinita E 0.004 **
Cymaenes tripunctata tripunctata E 0.001 *** Open areas1,3
Lucida lucia lucia I 0.015 *
Polites vibex catilina E 0.018 * Open areas1,3 Poaceae3; Smilacaceae: Smilax spp.; Solanaceae: Solanum variabile 5
Pompeius pompeius E 0.011 * Open areas1,3 Poaceae5
Synapte silius I 0.017 * Forest3, Clearings1 Arecaceae: Syagrus romanzoffiana 5
Thargella evansi I 0.014 * Forest3
Thespieus jora E 0.003 ** Clearings1
Vehilius inca E 0.03 * Disturbed areas3, Open areas1 Poaceae: Panicum maximum, Rottboellia cochinchinensis 5
Vehilius stictomenes stictomenes E 0.002 ** Open areas3 Poaceae: Paspalum spp.5
Vinius letis I 0.002 ** Open areas1
Wallengrenia premnas E 0.037 * Open areas1 Poaceae: Echinochloa crus-galli, Leersia hexandra, Oryza sativa, Stenotaphrum secundatum 5
Pyrginae
Achlyodes mithridates thraso E 0.001 *** Rutaceae: Citrus spp., Zanthoxylum spp.5
Burnsius orcus E 0.001 *** Open areas1 Malvaceae: Abelmoschus esculentus, Alcea rosea, Althaea sp., Hibiscus sp., Malva spp., Malvastrum sp., Sida spp.5
Helias phalaenoides palpalis E 0.038 * Disturbed forest3 Verbenaceae: Citharexylum montevidense 5
Heliopetes alana E 0.011 * Open areas1,3 Malvaceae: Sida sp.3
Heliopetes omrina E 0.01 ** Open areas1,3 Convolvulaceae: Convolvulus arvensis, Ipomoea spp.; Malvaceae: Abutilon spp., Pavonia spinifex, Sida sp.5
Staphylus musculus E 0.023 * Clearings1 Amaranthaceae: Gomphrena spp.5
Trina geometrina geometrina E 0.001 *** Disturbed forest3 Malvaceae: Sida rhombifolia 5
Xenophanes tryxus E 0.048 * Open areas3 Fabaceae: Glycine max; Malvaceae: Hibiscus sp., Malachra spp., Pavonia spp.5
Tagiadinae
Celaenorrhinus eligius punctiger I 0.003 ** Humid forest3 Acanthaceae: Justicia carnea 11
Lycaenidae/Theclinae
Arawacus meliboeus E 0.002 ** Solanaceae: Solanum spp.5,11
Calycopis caulonia E 0.022 * Cannabaceae: Celtis iguanaea 5, leaf detritus4
Cyanophrys remus E 0.016 * Fabaceae: Calliandra parvifolia 5
Strephonota elika I 0.016 *
Nymphalidae/Apaturinae
Doxocopa laurentia laurentia E 0.031 * Cannabaceae: Celtis sp.5,11
Biblidinae
Biblis hyperia nectanabis E 0.036 * Euphorbiaceae: Tragia spp.5
Eunica eburnea E 0.026 * Euphorbiaceae: Sebastiania commersoniana 5
Danainae
Episcada carcinia I 0.004 ** Dense forest3 Solanaceae: Solanum spp.3
Episcada hymenaea hymenaea I 0.025 * Solanaceae: Cestrum spp., Solanum spp.5
Epityches eupompe I 0.018 * Fragments6 Solanaceae: Acnistus arborescens, Athenaea picta, Aureliana lucida, Brunfelsia australis, Cestrum spp., Physalis neesiana, Solanum spp., Vassobia breviflora, Witheringia 5
Hypoleria adasa adasa I 0.001 *** Fragments6 Solanaceae: Cestrum spp.5
Hypothyris euclea laphria I 0.013 * Solanaceae: Solanum spp.5
Pseudoscada erruca I 0.003 ** Fragments6 Solanaceae: Brunfelsia spp., Cestrum spp., Sessea spp.5
Pteronymia sylvo I 0.001 *** Solanaceae: Brunfelsia australis, Cestrum spp., Solanum spp.5
Heliconiinae
Actinote carycina E 0.001 *** Disturbed areas3 Asteraceae: Eupatorium spp., Mikania micranta, Symphyopappus reticulatus, Trichogonia gardneri 5
Actinote melanisans E 0.007 ** Disturbed areas4 Asteraceae: Mikania spp.5
Dione moneta moneta E 0.046 * Passifloraceae: Passiflora spp.5
Limenitidinae
Adelpha syma E 0.047 * Disturbed areas3 Rosaceae: Rubus spp.; Rubiaceae: Cephalanthus glabratus 5
Libytheinae
Libytheana carinenta E 0.03 * Cannabaceae: Celtis spp.2,5
Nymphalinae
Anartia amathea roeselia E 0.03 * Disturbed areas3 Acanthaceae: Acanthus sp., Dicliptera spp., Justicia spp., Ruellia spp.5
Chlosyne lacinia saundersi E 0.036 * Open areas3 Amaranthaceae: Amaranthus hybridus; Asteraceae: Acanthospermum spp., Ambrosia spp., Bidens pilosa, Emilia sonchifolia, Eupatorium sp., Galinsoga parviflora, Helianthus spp., Parthenium hysterophorus, Senecio brasiliensis, Sonchus oleraceus, Sphagneticola trilobata, Synedrella nodiflora, Verbesina spp., Vernonia sp., Viguiera sp., Wedelia glauca, Xanthium strumarium; Fabaceae: Glycine max; Rubiaceae: Richardia brasiliensis 5
Hypanartia bella E 0.01 ** Mountain forest3 Cannabaceae: Celtis spp., Trema micranta; Urticaceae: Boehmeria spp., Parietaria debilis, Phenax laevigatus, Urtica spathulata 5
Hypanartia lethe E 0.015 * Clearings3 Cannabaceae: Celtis spp., Trema micranta; Urticaceae: Boehmeria spp., Phenax sp., Urera baccifera 5
Ortilia ithra E 0.001 *** Disturbed forest3 Acanthaceae: Acanthus spp., Asystasia gangetica, Dicliptera sericea, Fittonia spp., Justicia spp., Ruellia spp.5
Ortilia orthia E 0.004 ** Disturbed forest3 Acanthaceae: Ruellia coerulea; Asteraceae: Aster spp., Calistephus chinensis, Noticastrum diffusum 5
Tegosa claudina E 0.002 ** Disturbed areas3 Acanthaceae: Ruellia sp.; Asteraceae: Mikania spp.; Scrophulariaceae: Verbascum spp.; Verbenaceae: Glandularia spp., Verbena spp.5
Vanessa braziliensis E 0.004 ** Open areas3 Asteraceae: Achyrocline spp., Antennaria spp., Gamochaeta spp., Gnaphalium spp., Pseudognaphalium obtusifolium 5
Satyrinae
Blepolenis batea E 0.035 * Matrix specialist9 Cyperaceae; Poaceae; Arecaceae: Butia capitata, Syagrus romanzoffiana 5
Carminda paeon I 0.004 ** Forest3 Poaceae: Bambusoideae5
Euptychoides castrensis I 0.017 * Clearings3 Cyperaceae3
Godartiana muscosa I 0.001 *** Forest10 Cyperaceae; Poaceae: Setaria poiretiana 5,10
Paryphthimoides poltys I 0.008 ** Early-regrowth forest8 Poaceae3
Taygetis ypthima I 0.025 * Forest specialist9 Poaceae: Bambusoideae5
Yphthimoides ordinaria E 0.042 * Open areas7 Poaceae: Axonopus compressus, Panicum maximum 7
Pieridae/Coliadinae
Dismorphiinae
Pseudopieris nehemia nehemia E 0.026 * Fabaceae: Acacia spp., Calliandra spp.,5 Senegalia sp.11
Pierinae
Theochila maenacte maenacte E 0.019 * Cruciferae5
Riodinidae/Riodininae
Barbicornis basilis mona E 0.026 * Sapotaceae: Pouteria gardneriana; Cannabaceae: Celtis sp.5
Calephelis braziliensis E 0.016 *
Emesis russula E 0.035 * Apocynaceae: Aspidosperma tomentosum; Aquifoliaceae: Ilex paraguariensis; Burceraceae: Protium ovatum; Connaraceae: Rourea induta; Erythroxylaceae: Erythroxylum spp.; Euphorbiaceae: Maprounea guianensis, Ricinus communis; Malpighiaceae: Byrsonima spp.; Moraceae: Ficus carica; Myrtaceae: Eugenia spp.; Salicaceae: Casearia sylvestris; Sapotaceae: Pouteria ramiflora 5
Mesosemia rhodia I 0.004 **

1Biezanko & Mielke (1973)

2Biezanko et al. (1974)

3Brown (1992)

4Duarte et al. (2005)

5Becalloni et al. (2008)

6Uehara-Prado & Freitas (2009)

7Freitas et al. (2012)

8Ribeiro et al. (2012)

9Brito et al. (2014)

10Zacca et al. (2017)

11 Orlandin et al. (in prep.)

Significance level: ***, P < 0.001; **, P < 0.01; *, P < 0.05

Received: March 07, 2019; Accepted: September 20, 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License