SciELO - Scientific Electronic Library Online

vol.55 issue1Diversity of the euglossine bee community (Hymenoptera, Apidae) of an Atlantic Forest remnant in southeastern BrazilInteraction between Telenomus remus and Trichogramma pretiosum in the management of Spodoptera spp. author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Revista Brasileira de Entomologia

On-line version ISSN 1806-9665

Rev. Bras. entomol. vol.55 no.1 São Paulo Jan./Mar. 2011 



Toxic effects of essential plant oils in adult Sitophilus oryzae (Linnaeus) (Coleoptera, Curculionidae)



Andréa Roveré FranzI; Neiva KnaakI; Lidia Mariana FiuzaI,II

ILaboratório de Microbiologia, Programa de Pós Graduação em Biologia, Universidade do Vale do Rio dos Sinos, 93022–000 São Leopoldo-RS, Brasil.;;
IIInstituto Riograndense de Arroz Irrigado, Estação Experimental do Arroz, 94930–030 Cachoeirinha-RS, Brasil




Toxic effects of essential plant oils in adult Sitophilus oryzae (Linnaeus) (Coleoptera, Curculionidae). Stored grains are subject to losses in quality nutritional value and in sanitation from the time they are stored to the time they are consumed. Botanical insecticides may offer an alternative solution for pest control. The objective was to test the insecticidal properties of the essential oils of Cymbopogon citratus (leaf), Zingiber officinale (root) and Mentha sp. (leaf). The efficacy of these oils was tested to control the rice weevil, S. oryzae, using hydrodistillation. Chemical analysis of the essential oils was carried out by gas chromatography. Major components of C. citratus were geranial (48%) and neral (31%), of Z. officinale were α-zingibereno (13%), geranial (16%), neral (10%) and α-farneseno (5%) and of Mentha sp. was menthol (92%). Bioassays were carried out by fumigation and topical application. In topical application assays, the essential oil of C. citratus had greater toxicity (LC50 0.027 µL mL–1) and shorter exposure time than the oils of the other two plants. After 24 h and 48 h, 70% and 100% mortality of S. oryzae occurred, respectively. In fumigation assays, essential oil of Z. officinale had a lower LC50 (1.18 µL cm–2) and 70% mortality after 24 h exposure. Therefore, we recommend the use of essential oils of C. citratus and Z. officinale to control the rice weevil S. oryzae.

Keywords: Medicinal plants; stored product pests; botanical insecticides.


Efeito tóxico de óleos essenciais de plantas medicinais em adultos de Sitophilus oryzae (Linnaeus) (Coleoptera, Curculionidae). Grãos armazenados estão sujeitos a perdas na qualidade física, sanitária e nutricional, desde sua maturação fisiológica até o momento do consumo. Uma alternativa para o manejo de pragas são os inseticidas botânicos. O presente trabalho teve como objetivo avaliar o efeito inseticida de óleos essenciais de Cymbopogon citratus (folha), Zingiber officinale (raiz) e Mentha sp. (folha), obtidos através do método de hidrodestilação,no controle de adultos do gorgulho-do-arroz, S. oryzae. A caracterização química dos compostos encontrados nos óleos essenciais foi realizada por cromatografia gasosa, sendo observados como principais componentes para C. citratus: geranial (48%) e neral (31%), para Z. officinale: 16% de geranial, 13% de α-zingibereno, 10% de neral e 5% de α-farneseno e para Mentha sp.: 92% de mentol. Os bioensaios foram realizados por aplicação tópica e fumigação. Os resultados da aplicação tópica mostraram que o óleo essencial de C. citratus apresenta maior toxicidade quando comparado à Mentha sp.e ao Z. officinale, pois apresentou uma CL50 de 0.027 µL mL–2 e um menor período de exposição, causando 70% e 100% de mortalidade de adultos de S. oryzae, respectivamente, 24 e 48 horas após dos tratamentos. Nos ensaios com fumigação, em adultos de S. oryzae, o óleo essencial de Z. officinale, apresentou a menor CL50 (1,18 µL cm–2) e o menor período de exposição, causando 70% de mortalidade em 24 horas após a aplicação dos tratamentos. Desse modo conclui-se que os óleos de C. citratus e Z. officinale podem ser recomendados no controle de adultos do gorgulho-do-arroz S. oryzae.

Palavras-chave: Plantas medicinais; pragas de grãos armazenados; inseticidas botânicos.



Stored grains are subject to losses due to several causes, including physical, sanitary and nutritional degradation, from their maturation to the consumption. Grain degradation may be caused by fungi, insects, inadequate handling from harvest to storage and can result in important financial losses (Lazzari 1997; Lazzari & Lazzari 2002). Losses may reach 10% of the total product each year, which translates to 10,000,000 tons of grain lost per year (Smiderle 2007).

Among the stored grain pests, the rice weevil, Sitophilus oryzae (Linnaeus, 1763) (Coleoptera, Curculionidae), and the maize weevil, Sitophilus zeamais Motschulsky, 1855,are the most important pests of stored rice and maize, causing quantitative and qualitative losses (Amorim 1986; Sartori et al. 1990). In Brazil, these two species are found throughout warm, tropical regions of the world and they may infest grains in the field prior to storage (Pacheco & Paula 1995).

Despite the availability of modern technologies for grain storage and pest control, some farmers still use traditional methods of storage, such as corn in the cob in small cribs and rice stored in boxes or bags. Grain stored under such conditions is very susceptible to heavy losses (Amorim 1986). In warmer regions, natural aeration is not sufficient to control infestations, requiring the application of chemical control (Moreira 1993). The most effective and fast method to suppress stored grain pests is fumigation. Nowadays, phosphine is the most used fumigant, even though its use has several disadvantages. It corrodes non-ferric metals, requires a long aeration period, is inflammable in high concentrations and is acutely toxic and may cause depreciation of the value of the fumigated product (Santos 2006). The incorrect use of phosphine has selected resistant pest populations (Rosseto 1966; Calil 1995). The use of a mixture of insecticides also favors the development of resistant strains which then makes subsequent pest management difficult (Pereira et al. 1997).

Plants, due to their coevolutionary history with pests, are sources of natural insecticides and antimicrobial chemicals compounds that are produced to defend themselves against those organisms. Many plants are rich in secondary compounds with insecticidal activities, especially monoterpenes and their analogues, which are abundant in essential oils of higher plants. These compounds are typically lipophylic, with potential for toxic interference in basic biochemical processes with physiological and behavioral consequences for the insects (Prates & Santos 2002).

Monoterpenoid compounds have been tested as control agents for several insect pests in stored grains, working through contact, ingestion, as fumigant or repellant, showing ovicidal effects or acting on the life cycles of insects (Karr & Coats 1988; Rice & Coats 2003; Lee et al. 2003). In general, toxicity due to essential oils is related to the most abundant chemical component in the oils (Obeng-Ofori & Reichmuth 1997; Obeng-Ofori et al. 1997; Tapondjou et al. 2002; Singh et al. 2003; Aslan et al. 2004).

The lemon grass Cymbopogon citratus (DC.) Stapf (Poaceae), also known as bee balm, is a species commonly found in many tropical countries, its essential oil is composed mainly of citral, with 70–80%, which has insecticidal activity (Souza et al. 1991; Vartak et al. 1994).

The mint, Mentha sp. (Labiatae) produces an essential oil rich in menthone (14–32%) and menthol (30–50%) (Matos 1994; Cardoso et al. 2001). Menthol has wide application in the food and pharmaceutical industry; also exhibits insecticidal activity (Agarwal et al. 2001).

The essential oil of one of the oldest medicinal plants in the world, Zingiber officinale Roscoe (Zingiberaceae), also known as ginger, consists mainly of gingerol and gingerona (Chen et al. 1986; Balachandran et al. 2006). However, evaluation of these compounds with different aims, for example, insecticide, is recent, since there are few research papers published in this area.

Stored grain insect pests have unique characteristics that justify their importance and the need for specific control measures that should be used in their management. It can also be regarded as another reason for the growing interest in phytotoxins, the wide range of new sites of action in target organisms. This is important if we consider the speed with which the insects have developed resistance to chemicals. Thus, the insecticidal properties of plant essential oils of Cymbopogon citratus, Zingiber officinale and Mentha sp. were tested to control the rice weevil, S. oryzae.



This study was carried out in the Microbiology laboratory at the Vale do Rio dos Sinos University, in São Leopoldo, Rio Grande do Sul, State, Brazil. Adults of S. oryzae were reared in environmental controlled chambers (25 ± 2ºC, rela tive humidity 70%, 12 h photophase). The insects were obtained from commercially available packed rice in Rio Grande do Sul, and reared for several generations on rice.

Fresh leaves of the lemon grass, C. citratus (DC.) Stapf. and spearmint, Mentha sp. were collected on campus in November 2007, while roots of ginger, Z. officinale were obtained at a market. Plants were hydrodistilled to extract the essential oils in an apparatus similar to a Clevenger, built according to Santos et al. (2004). Oils were stored in amber-colored glass jars hermetically sealed at ambient temperatures until use. Essential oils were analyzed by gas chromatography (HP-6890) in an HP-Innowax column at the Essential Oil Laboratory of the Caxias do Sul University.

For topical application bioassays, the weevils were first anesthetized at –4ºC for 2 min to allow manipulation. The following quantities were used for topical application on the thorax of adult beetles using a micropipette in Petri dishes: C. citratus (0.01, 0.02, 0.04, 0.05 µL), Mentha sp. (0.01, 0.02, 0.04, 0.05, 0.09 µL), Z. officinale (0.05, 0.08, 0.10, 0.15, 0.20 µL), each one diluted in 1 µL of acetone. The same volumes were used for the control treatments, but only with acetone. Dosages were determined by a pilot study. Each treatment was applied to 120 adults of unknown sex. Dead and live beetles were counted 24 and 48 h after application.

Fumigation assays used 0.5, 1.0, 2.0, 4.0% C. citratus and Mentha sp. and 0.05, 0.1, 0.5, 0.8, 1.0% Z. officinale in 2 mL acetone; quantities were established in preliminary trials. These quantities were used to treat 20 g of rice, which were grounded with a mortar and pestle. After grinding, the resultant powder was dried, allowing the complete elimination of acetone. Similarly, control treatments used the equivalent volumes of acetone alone. After drying, 10 weevils were added to each quantity of 20 g, in 100 mL sealed jars. Each treatment included a total of 120 adults (12 jars with 10 beetles each). Live and dead beetles were counted 24 and 48 h after treatment. Mortality estimates were corrected following Abbott (1925). The 50% lethal concentration (LC50) was determined by Probit analysis (Finney 1971).



The principal constituents of the essential oil of C. citratus were geranial (48%) and neral (31%), which isomerical forms are citral (79%) and mirceno (11%) (Table I). Neral and geranial are the most important oils that are responsible for the citric aroma of the plant (Craveiro et al. 1981). Other studies have found slightly different concentrations of these two oils (32% to 40% neral, 41% to 32% geranial) (Sacchetti et al. 2005; Pereira et al. 2008).



The most important oils from ginger, Z. officinale, were geranial (16%), α-zingiberene (13%), neral (10%) and α-farnesene (5%). These values are similar to those obtained by Singh et al. (2008), for example, geranial (26%), α-zingiberene (10%), α-farneseno (8%), neral (8%). Differences may be due to the collect from different seasons of the year, soil type and climate, among others.

The main essential oil of Mentha sp. is the monoterpene menthol (91%). Essential oils in Mentha sp. vary from 62% to 90% with an average of 70%, found commercially (Brilho 1963). The essential oil of Mentha sp. are rich in menthol, menthona, pinene, limonene, camphor, organic acids, flavonoids, heterosids of histeoline, apigenine (Martins et al. 2000) and 1,2-epoxipulegone (Matos 1994).

Mortality of S. oryzae varied from 10 to 100% after 48 h of topic application of C. citratus, Mentha sp. and Z. officinale, at 0.01 to 0.20 µL. These results demonstrate that the efficiency of the oils was directly related to concentration (Table II). Oil from C. citratus was the most efficient, causing 100% mortality at the lower lethal concentration (0.05 µL) in 48 h.



The oil from C. citratus comprises mostly α-citral (geranial) and β-citral (neral, 70% to 80% v/v), which are acyclic monoterpene aldehydes, usually called citral (Carlini et al. 1985; Ferreira & Fonteles 1989). Insecticide activity of C. citratus (Simões et al. 1986; Souza et al. 1991; Simões & Spitzer 2004) is primarily due to citral (Vartak et al. 1994) and is probably the cause of the insecticidal activity in this study.

The most toxic of the essential oils was that of C. citratus, when compared to the others, with an LD50 of 0.027 µL mL–1 (Table III), reaching 70% and 100% mortality 24 and 48 h after topical application, respectively (Table II). In comparison, mortality due to Mentha sp. and Z. officinale was 40% after 24 h, and 55% after 48 h. The greater mortality caused by C. citratus essential oil may have been because of higher concentration of citral (63%) in comparison with Z. officinale in which the most concentrated component was 41%. In Mentha sp., without citral, there was only menthol (91%). L-menthol has been shown to have insecticidal activies for Tribolium castaneum Herbst, 1797 (Coleoptera, Tenebrionidae), with a lethal dose (LD50) of 108.4 ppm (Agarwal et al. 2001).



There are few studies that demonstrate the mechanisms of action of volatile oils. In general, the complexity of the chemical composition of most of the volatile oils gives them low specificity (Bakkali et al. 2008), because biological activity is not assigned to a single mechanism of action, since the wide variety of chemical groups allows for multiple targets in the cell (Burt 2004).

As in this study, others have shown that essential oils can be efficient insecticides for pest control in stored grain. Estrela (2006) tested essential oils of Piper hispidinervum C. DC. and P. aduncum L. (Piperaceae) with topical application on the maize weevil, S. zeamais, and found from 90 to 100% mortality. Restello et al. (2009) tested the insecticidal effects of the essential oil from Tagetes patula L. (Asteraceae) on maize weevil and found it to be an effective control at concentrations of 10 µL. Also, oil from seeds of neem, Azadirachta indica A. Juss. (Meliaceae), were used at concentrations of 0.2 to 0.5% for controlling the beetles S. oryzae, S. zeamais, Rhyzopertha dominica (Fabricius, 1792) (Coleoptera, Bostrichidae), T. castaneum, T. confusum Jaquelin Du Val, 1868 (Coleoptera, Tenebrionidae), Callosobruchus chinenses (L., 1758) (Coleoptera, Bruchidae), C. maculatus (Fabricius, 1775) and Oryzaephilus surinamensis (L., 1758) (Coleoptera, Cucujidae), being very effective with high toxicity (Rodríguez C, comm. pers.). Essential oils of Evodia rutaecarpa Evodiamine (Rutaecarpine) used to control S. zeamais and T. castaneum was effective to both insects when applied topically. As fumigants or repellent it worked best on T. castaneum (Liu & Ho 1999).

Using rice grounded with the essential oils, mortality ranged from 10 and 85% after 48 h. Oils of Z. officinale was the most efficient, causing 85% mortality at low concentration (1%) after 48 h. In fumigation, oils of Z. officinale had lower LC50 and were effective after a shorter exposure time, causing 70% mortality after 24 h. Mortality due to C. citratus and Mentha sp. Essential oils was between 60 and 80% in 24 h.

The use of ginger essential oils has increasing and its effectiveness is due to gingerol and gingerone (Chen et al. 1986; Balachandran et al. 2006). We have found those same components in this study; however, geranial, α-zingeberene and neral were found in higher concentrations. In many plants are found substances with potential insecticide or repellent, these substances are generally volatile and can be detected by the antennae or tarsi of insects. Among these are the monoterpenes (citronellal, linalool, menthol, α- and β-pinene, menthone, carvone and limonene), sesquiterpenes (farnesol, nerolidol), the phenylpropanoids (safrole, eugenol) and many other compounds (Panizzi & Parra 1991).

The potential use of essential oils as fumigants to control stored grain pests has been the subject of many studies (Klingauf et al. 1983; Su 1991; Shingh et al. 1989; El Nahal et al. 1989; Shaaya et al. 1991; Sarac & Tunc 1995; Ho et al. 1997; Shaaya et al. 1997; Tunc et al. 2000; Bouda et al. 2001; Park et al. 2003; Lee et al. 2004). The results obtained in this study demonstrate that the essential oils tested can be used to control stored grain pests and to support further studies.

The toxic effects of essential oils involve many factors, among which are the entry points of toxins (inhaled, ingested or absorbed) and which may have contact, fumigation and phagoinhibitory effects (Regnault-Roger 1997). We also found variation in toxicity depending upon the application method of the essential oils. The essential oils, especially C. citratus and Z. officinale, can be used as effective control for stored grain pests, and they may be applied either topically or by fumigation.



To James J. Roper for translating this manuscript from the original Portuguese.



Abbott, W. S. 1925. A method of computing the effectiveness insecticides. Journal Economic Entomology 18: 265–267.         [ Links ]

Agarwal, M.; S. Walia; S. Dringra & B. P. S Khambay. 2001. Insect growth inhibition, antifeedant and antifungical activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes. Pest Management Science 57: 289–300.         [ Links ]

Amorim, D. 1986. Recomendações para a produção de sementes fiscalizadas no Piauí. Teresina, CESCEM-PI, 31 p.         [ Links ]

Aslan, I.; H. Ozbek; S. Kordali; O. Calmasur & A. Cakir. 2004. Toxicity of essential oil vapours obtained from Pistacia spp. to the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Journal of Plant Diseases and Protection 111: 400–407.         [ Links ]

Bakkali, F.; S. Averbeck; D. Averbeck; M. Idaomar. 2008. Biological effects of essential oils – a review. Food and Chemical Toxicology 46: 446–475.         [ Links ]

Balachandran, S.; S. E. Kentish & R. Mawson. 2006. The effects of both preparation method and season on the supercritical extraction of ginger. Separation and Purification Technology 48: 94–105.         [ Links ]

Bouda. H.; L. A. Tapondjou; D. A. Fontem & M. Y. D. Gumedzoe. 2001. Effect of essential oils from leaves of Ageratum conyzoides, Lantana camara and Chromolaena odorata on the mortality of Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Stored Products Research 37: 103–109.         [ Links ]

Brilho, R. C. 1963. Viveiro de mudas de hortelã. Campinas, Instituto Agronômico de Campinas, 6 p.         [ Links ]

Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods – a review. International Journal of Food Microbiology 94: 223–253.         [ Links ]

Calil, A. C. P. 1995. Efeito de doses de fosfina e períodos de exposição, na mortalidade de formas adultas e imaturas de Rhyzopertha dominica (Coleoptera: Bostrichidae), em trigo. Tese de Doutorado, Viçosa, Universidade Federal de Viçosa, 67 p.         [ Links ]

Cardoso, M. G.; A. Y. K. V. Shan; J. E. B. P. Pinto; N. Delu Filho; S. K. V. Bertolucci. 2001. Metabólitos secundários vegetais: visão geral química e medicinal. Lavras, UFLA, 81 p.         [ Links ]

Carlini, E. L. A.; A. R. Silva-Filho; D. Suchecki; E. Maluf; H. M. Calil; H. M. Lodder; J. R. Leite; J. D. P. Contar; K. R. M. Assolant; M. L. Seabra; M. L. O. Souza; M. L. Frochtengartten; N. G. Silveira-Filho; O. F. A. Bueno; O. G. Filho; S. Klepacz; S. M. V. Girardi; S. Tufuk & T. M. S. Ferreira. 1985. Farmacologia pré-clínica, clínica e toxicologia do Capim-cidrão, Cymbopogon citratus. Brasília, CEME, 51 p.         [ Links ]

Chen, C. C.; C. T. HO & R. T. Rosen. 1986. Chromatographic analysis of gingerol compounds in ginger (Zingiber officinale Roscoe) extracted by liquid carbon dioxide. Journal of Chromatografy 360: 163–173.         [ Links ]

Craveiro, A. A.; A. G. Fernandes; C. H. S. Andrade; F. J. A. Matos; J. W. Alencar & M. I. L. Machado. 1981. Óleos essenciais de plantas do Nordeste. Fortaleza, UFC. 210 p.         [ Links ]

El Nahal, G. H.; A. K. M. Schmidt & E. M. Risha. 1989. Vapours of Acarus calamus oil-a space treatment for stored-product insects. Journal of Stored Products Research 25: 211–216.         [ Links ]

Estrela, V. L. J.; M. Fazolin; V. Catani; R. M. Alécio & S. M. Lima. 2006. Toxicidade de óleos essenciais de Piper aduncum e Piper hispidinervum em Sitophilus zeamais. Pesquisa Agropecuária Brasileira 41: 217–222.         [ Links ]

Ferreira, M. S. C. & M. C. Fonteles. 1989. Aspectos etnobotânicos e farmacológicos do Cymbopogon citratus Stapf (capim-limão). Revista Brasileira de Farmácia 70: 94–97.         [ Links ]

Finney, D. J. 1971. Probit Analysis. Cambridge, University Press, 255 p.         [ Links ]

Ho, S. H.; Y. Ma & Huang Y. 1997. Anethole, a potencial insecticide from Ielicium verum Hookf., against two stored-product insects. International Pest Control 39: 50–51.         [ Links ]

Karr, L. L. & J. R. Coats. 1988. Insecticidal properties of d-limonene. Journal of Pesticide Science 13: 287–289.         [ Links ]

Klingauf, F.; H. J. Bestam; O. Vostroveski & K. Michaelis. 1983. Virkung von atherischen Olen auf Schadinsektem. Mitteihingen der Deutschen Gesellschuft fur Allgemeine und Angewandte. Entomologia Experimentalis et Applicatta 4: 123–126.         [ Links ]

Lazzari, F. A. 1997. Umidade, fungos e micotoxinas na qualidade de sementes, grãos e rações. Curitiba, edição do autor, 134 p.         [ Links ]

Lazzari, F. A. & S. M. N. Lazzari. 2002. Colheita, recebimento, secagem e armazenamento de milho. Apucarana, ABIMILHO, 22 p.         [ Links ]

Lee, S.; C. J. Peterson & J. R. Coats. 2003. Fumigation toxicity of monoterpenoids to several stored product insects. Journal of Stored Products Research 39: 77–85.         [ Links ]

Lee, S.; H. O. Byung; P. C. Annins; F. Turmaalii & C. H. O. I. Won-Sik. 2004. Fumigant toxicity of essential oils from the Myrtaceae family and 1,8-cineole against 3 major stored-grain. Journal of Stored Products Research 40: 553–564.         [ Links ]

Liu, Z. L. & S. H. Ho. 1999. Bioactivity of the essential oils extracted from Evodia rutecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch and Tribolium castaneum (Herbst). Journal of Stored Products Research 35: 317–328.         [ Links ]

Martins, E. R.; D. M. Castro & D. C. Castellani. 2000. Plantas Medicinais. Viçosa, Editora UFV, 220 p.         [ Links ]

Matos, F. J. 1994. Farmácias vivas: sistemas de utilização de plantas medicinais projetados para pequenas comunidades. 2. ed. Fortaleza, EUFC, 180 p.         [ Links ]

Moreira, R. G. 1993. Aeração de grãos usando ar natural e frio, p. 177–196. In: International Symposium on Grains Conservation. Proceedings, Canela, 1076 p.         [ Links ]

Obeng-Ofori, D. & C. H. Reichmuth. 1997. Bioactivity of eugenol, a major component of essential oils of Ocimum suave (Wild) against four species stored product Coleoptera. International Journal Pest Management 43: 89–94.         [ Links ]

Obeng-Ofori, D.; C. H. Reichmuth; J. Bekele & A. Hassanali. 1997. Biological activity of 1,8 cineole, a major component of essential oils of Ocimum kenyense (Ayobangira) against stored product beetles. Journal of Applied Entomology 121: 237–243.         [ Links ]

Pacheco, I. A. & D. C. Paula. 1995. Insetos de grãos armazenados – identificação e Biologia. Campinas, Fundação Cargill, 228 p.         [ Links ]

Panizzi, A. R.; J. R. P. Parra. 1991. Ecologia nutricional de insetos e suas implicações no manejo de pragas. São Paulo, Manole Ltda, 359 p.         [ Links ]

Park, I. K.; S. G. Lee; D. H. Choi; J. D. Park & Y. J. Ahn. 2003. Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.)and Sitophilus oryzae (L.). Journal of Stored Products Research 39: 375–384.         [ Links ]

Pereira, P. R. V. S.; R. S. Furiatti; F. A. Lazzari & A. R. Pinto Júnior. 1997. Evaluation of insecticides in the control of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae) in shelled corn. Anais da Sociedade Entomológica do Brasil 26: 411–416.         [ Links ]

Pereira, A. A.; M. G. Cardoso, L. R. Abreu; A. R. Morais; L. G. L. Guimarães & A. P. S. P. Salgado. 2008. Caracterização química e efeito inibitório de óleos essenciais sobre o crescimento de Staphylococcus aureus e Escherichia coli. Ciência e Agrotecnologia 32: 887–893.         [ Links ]

Prates, H. T. & J. P. Santos. 2002. Óleos essenciais no controle de pragas de grãos armazenados, p. 443–461. In: Lorini, I.; L. H. Miike & V. M. Scussel (eds.). Armazenagem de grãos. Ed Campinas: IBG, 1000 p.         [ Links ]

Regnault-Roger, C. 1997. The potential of botanical essential oils for insect pest control. Integrated Pest Management Reviews 2: 25–34.         [ Links ]

Restello, R. M.; C. Menegatt & A. J. Mossi. 2009. Efeito do óleo essencial de Tagetes patula L. (Asteraceae) sobre Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). Revista Brasileira de Entomologia 53: 304–307.         [ Links ]

Rice, P. J. & J. R. Coats. 2003. Insecticidal properties of several of several monoterpenoids to the house fly (Diptera: Muscidae), red flour beetle (Coleoptera: Tenebrionidae), and southern maize rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology 87: 1172–1179.         [ Links ]

Rosseto, C. J. 1966. Sugestões para o armazenamento de grãos no Brasil. O agronômico 18: 38–51.         [ Links ]

Sacchetti, G.; S. Maietti; M. Muzzoli; M. Scaglianti; S. Manfredini & M. Radice. 2005. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry 91: 621–632.         [ Links ]

Santos, J. P. 2006. Controle de pragas durante o armazenamento de milho. Circular Técnica 84, Sete Lagoas, 20 p.         [ Links ]

Santos, S. C.; J. P. Ribeiro; D. O. Guimarães; M. O. Silva; P. H. Ferri; A. C. F. Garcia; J. S. Pires; A. C. M. Castros; M. R. R. Silva & J. R. Paula. 2004. Antifungal activity of Eugenia uniflora L. fractions against Paracoccidiodes brasiliensis (Splendore) Almeida. Revista Brasileira de Plantas Medicinais 7: 30–33.         [ Links ]

Sarac, A. & I. Tunc. 1995. Residual toxicity and repellency of essential oils to stored-product insets. Journal Plant Diseases Protection 102: 429–434.         [ Links ]

Sartori, M. R.; I. A. Pacheco; M. Iaderosa & R. W. D. Taylor. 1990. Ocorrência e especificidade de resistência ao inseticida malation em insetos-pragas de grãos armazenados no Estado de São Paulo. Coletânea do ITAL 20: 94–209.         [ Links ]

Shaaya, E.; M. Kostjukovski; J. Eilberg & C. Sukprakarn. 1997. Plant oils as fumigants and contact insecticides for the control of stored-product insects. Journal of Stored Products Research 33: 7–15.         [ Links ]

Shaaya, E.; V. Ravid; N. Paster; B. Juven; V. Zisman & V. Pissarev. 1991. Fumigant toxicity of essential oils against four major stored-product insects. Journal of Chemical Ecology 17: 499–504.         [ Links ]

Shingh, D.; M. S. Siddiqui & S. Scharma. 1989. Reproduction retardant and fumigant properties in essential oils against rice weevil (Coleoptera: Curculionidae) in stored wheat. Journal of Economic Entomology 82: 727–733.         [ Links ]

Simões, C. M. D.; L. A. Mentz; E. P. Schenkel; B. E. Irgang & J. R. Stehmann. 1986. Plantas da medicina popular do Rio Grande do Sul. Porto Alegre, Editora da Universidade, 171 p.         [ Links ]

Simões, C. M. O.; V. Spitzer. 2004. Óleos Voláteis, p. 467–495. In: Simões, C. M. O.; E. P. Schenkel; G. Gosmann; J. P. C. Mello; L. A. Mentz; P. R. Petrovik. (orgs.). Farmacognosia: da planta ao medicamento. Porto Alegre, Editora da UFSC, 821 p.         [ Links ]

Singh, G.; O. P. Singh; M. P. de Lampasona & A. N. Cesar Catalan. 2003. Studies on essential oils, Part 35: Chemical and biocidal investigation on Tagetes erecta leaf volatile oil. Flavour and Fragrance Journal 18: 62–65.         [ Links ]

Singh, G.; I. P. S. Kapoor; P. Singh; C. S. Heluani; M. P. Lampasona & C. A. N. Catalan. 2008. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food and Chemical Toxicology 46: 3295–3302.         [ Links ]

Smiderle, O. 2007. Manejo integrado de pragas de grãos armazenados: identificação e controle. Available from: <>. (accessed 19 February 2008).         [ Links ]

Souza, M. P.; M. E. O. Matos; F. J. A. Matos; M. I..L. Machado & A. A. Craveiro. 1991. Constituintes químicos ativos de plantas medicinais brasileiras. Fortaleza, Editora da UFC, 416 p.         [ Links ]

Su, H. C. F. 1991. Toxicity and repellency of Chenopodium oil to four species of stored-product insect. Journal of Entomology Science 26: 178–182.         [ Links ]

Tapondjou, L. A.; C. Adler; H. Bouda & D. A. Fontem. 2002. Efficacy of power and essential oil from Chenopodium ambrosioides haves post-harvest grain protectants against six-stored beetles. Journal of Stored Products Research 38: 395–402.         [ Links ]

Tunc I.; B. M. Berger; F. Erler & F. Dagli. 2000. Ovicidal of essential oils from five plants against two stored-product insect. Journal of Stored Products Research 36: 161–168.         [ Links ]

Vartak, P. H.; V. B. Tun Gikar & R. N. Sharma. 1994. Comparative repellent properties of certain chemicals against mosquitoes house flies and cockroaches using modifiedl techniques. Journal of Community Diseases 26: 156–160.         [ Links ]



Received 10/12/2009;
accepted 141/1/2011



Editor: Sonia Maria Noemberg Lázzari

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License