SciELO - Scientific Electronic Library Online

 
vol.47 issue2Candidate SNPs for carcass and meat traits in Nelore animals and in their crosses with Bos taurus author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Pesquisa Agropecuária Brasileira

Print version ISSN 0100-204X

Pesq. agropec. bras. vol.47 no.2 Brasília Feb. 2012

http://dx.doi.org/10.1590/S0100-204X2012000200020 

ZOOTECNIA

 

Meta-análise de parâmetros genéticos relacionados ao consumo alimentar residual e a suas características componentes em bovinos

 

Meta-analysis of genetic parameter estimates of residual feed intake and of its component traits in cattle

 

 

Ana Cecília Del ClaroI; Maria Eugênia Zerlotti MercadanteI; Josineudson Augusto II Vasconcelos SilvaII

IAgência Paulista de Tecnologia dos Agronegócios, Instituto de Zootecnia, Bovinos de Corte, Rodovia Carlos Tonani, Km 94, Caixa Postal 63, CEP 14160-970 Sertãozinho, SP. E-mail: acdelclaro@gmail.com, mercadante@iz.sp.gov.br
IIUniversidade Estadual Paulista, Faculdade de Medicina Veterinária e Zootecnia, CEP 18618-000 Botucatu, SP. E-mail: jaugusto@fmvz.unesp.br

 

 


RESUMO

O objetivo deste trabalho foi estimar, por meio de meta-análise, a herdabilidade (h2) e as correlações genética (rg) e fenotípica (rf) do consumo alimentar residual (CAR), e das suas características componentes, em bovinos de 19 raças ou grupamentos genéticos. Foram utilizados 22 trabalhos científicos publicados entre 1963 e 2011, de oito países, o que totalizou 52.637 bovinos com idades que variaram de 28 dias até a idade de abate. As estimativas de CAR, consumo de matéria seca (CMS), ganho médio diário (GMD) e peso metabólico (PV0, 75) foram ponderadas pelo inverso da variância amostral. A variação da h2 de cada característica entre os estudos foi analisada por quadrados mínimos ponderados. Os efeitos de sexo, país e raça foram significativos para h2 de CAR e explicaram 67% da variação entre os estudos. Para CMS, os efeitos de país e raça foram significativos e explicaram 96% da variação. As estimativas combinadas de h2 foram: 0, 255±0, 008, 0, 278±0, 012, 0, 321±0, 015 e 0, 397±0, 032 para CAR, CMS, GMD e PV0, 75, respectivamente. As estimativas combinadas de correlação genética e fenotípica foram baixas entre CAR e GMD e entre CAR e PV0, 75 (de -0, 021±0, 034 a 0, 025±0, 035), e de média magnitude entre CAR e CMS (0, 636±0, 035 a 0, 698±0, 041) e entre CMS, GMD e PV0, 75 (0, 441±0, 062 a 0, 688±0, 032). O CAR apresenta estimativa de herdabilidade menor que a de suas características componentes.

Termos para indexação: consumo de matéria seca, correlação genética, eficiência alimentar, estimativas combinadas, herdabilidade, peso metabólico.


ABSTRACT

The objective of this work was to estimate, by meta-analysis, the heritability (h2) and the genetic (rg) and phenotypic (rf) correlations of residual feed intake (RFI), and of its component traits in beef cattle from 19 breeds or genetic groups. Twenty-two scientific papers published from 1963 to 2011, from eight countries, totaling 52, 637 cattle of ages from 28 days up to slaughter, were evaluated. The estimates of RFI, dry matter intake (DMI), average daily gain (ADG) and metabolic weight (BW0.75) were weighted by the inverse of sample variance. The variation between studies of h2 for each trait was analyzed by weighted least squares. The effects of sex, country and breed were significant for h2 of RFI, explaining 67% of variation between studies. For DMI, country and breed effects were significant and explained 96% of variation. Pooled estimates of h2 were: 0.255±0.008, 0.278±0.012, 0.321±0.015, and 0.397±0.032 for RFI, DMI, ADG and BW0.75, respectively. Pooled estimates of genetic and phenotypic correlations were low between RFI and ADG and between RFI and BW0.75 (from -0.021±0.034 to 0.025±0.035), and moderate between RFI and DMI (0.636±0.035 and 0.698±0.041) and between DMI, ADG and BW0.75 (0.441±0.062 to 0.688±0.032). The trait RFI has lower heritability estimates than its components.

Index terms: dry matter intake, genetic correlation, feed efficiency, pooled estimates, heritability, metabolic weight.


 

 

Introdução

Um dos grandes problemas da meta-análise é o viés que pode ser criado pelos estudos, em virtude da não publicação de resultados negativos (Sousa & Ribeiro, 2009) e da avaliação de amostras pequenas. Segundo Egger & Smith (1998), um gráfico de dispersão em funil ("funnel plot") é uma forma estatística de avaliar o viés de publicação. A ocorrência de assimetria no gráfico indica viés de publicação dos dados, com tendência de publicações com valores parecidos.

Por meio da meta-análise, é possível avaliar se o delineamento experimental dos estudos analisados cria viés nos resultados, bem como determinar as causas da variação entre os estudos (Sousa & Ribeiro, 2009). Isso pode ser testado por meio da estratificação dos resultados em subgrupos de acordo com as características da amostra avaliada, como sexo, idade e país, para a análise das características da amostra quanto aos efeitos nos resultados ou ao tamanho do efeito.

Na meta-análise, utilizam-se técnicas estatísticas para combinar, em uma medida, os resultados de estudos independentes, porém relacionados (Glass, 1976). Esses métodos estatísticos permitem obter estimativa precisa da combinação.

Há várias revisões bibliográficas sobre as estimativas dos parâmetros genéticos (herdabilidade e correlações) de populações bovinas para características de crescimento, produção de leite e reprodução (Mohiuddin, 1993; Koots et al., 1994a, 1994b; Mercadante et al., 1995; Lôbo et al., 2000; Giannotti et al., 2005), mas poucas ou nenhuma relativa à eficiência alimentar. Atualmente, os programas de melhoramento genético que incluem características de eficiência alimentar têm pequena base de dados para estimar, com certa acurácia, os parâmetros genéticos para essas características. A meta-análise dos resultados de estimativas de parâmetros genéticos para características de eficiência alimentar, como consumo alimentar residual e consumo de matéria seca, permite maior acurácia na avaliação genética dos animais.

A maioria dos programas de melhoramento genético para bovinos de corte enfatiza a seleção para características como: pesos em diversas idades, ganho de peso diário, perímetro escrotal, características de carcaça e desempenho reprodutivo. Resultados recentes de estudos de eficiência alimentar em bovinos deixaram clara a necessidade de enfocar a redução de insumos, para aumentar a eficiência e maximizar a lucratividade do sistema de produção como um todo (Herd & Bishop, 2000).

O consumo alimentar estimado é obtido por meio de equação de regressão múltipla do consumo observado sobre o peso vivo médio metabólico e o ganho de peso, em que o consumo alimentar residual (CAR) é considerado como resíduo da equação. A seleção genética para baixo CAR pode resultar em progênies que consomem menos, sem alterar o desempenho animal. Em experimento de seleção, Arthur et al. (2001b) observaram decréscimo anual de 0, 240 kg por dia de consumo alimentar pelos animais de rebanho selecionado para baixo CAR (alta eficiência), em comparação ao selecionado para alto CAR (baixa eficiência). Não houve resposta correlacionada no peso ao ano e no ganho de peso, tendo-se comprovado a eficácia da seleção para baixo CAR na redução dos custos de alimentação, sem afetar a produção.

Embora a característica CAR apresente valores de herdabilidade moderados e haja relatos de redução do consumo de matéria seca pelos animais selecionados (Arthur et al., 2001a, 2001b), no Brasil, não há muitos dados de animais testados quanto a essa característica, o que dificulta estimar os parâmetros genéticos com certa acurácia. No entanto, os resultados de meta-análise de parâmetros genéticos podem ser usados no delineamento de programas de melhoramento genético de bovinos de corte ou até mesmo na avaliação genética de rebanhos com poucos animais testados.

O objetivo deste trabalho foi estimar, por meio de meta-análise, a herdabilidade (h2) e as correlações genética e fenotípica do CAR, e das suas características componentes, em bovinos de 19 raças ou grupamentos genéticos.

 

Material e Métodos

Foram utilizados, para a meta-análise, 22 trabalhos científicos provenientes de oito países, publicados entre 1963 e 2011, o que totalizou 52.637 animais, com idades a partir de 28 dias até a de abate, de 19 raças ou grupamentos genéticos. O tamanho de amostra variou de 464 a 22.099 animais. Nesses trabalhos, foram estimados os parâmetros genéticos para três definições de CAR: CAR fenotípico, resíduo da regressão do consumo de matéria seca sobre os valores fenotípicos do peso vivo metabólico e do ganho médio diário; CAR genético, resíduo da regressão do consumo de matéria seca sobre os valores genéticos do peso vivo metabólico e do ganho médio diário; CAR equação, diferença entre o consumo observado e o consumo estimado por equação de predição de consumo, de acordo com o National Research Council (2001), o Standing Comitee on Agriculture (1990) ou a fórmula de Geay & Micol (1988).

As estimativas dos parâmetros genéticos obtidos nos trabalhos avaliados foram estratificadas de acordo com o sexo, a classe de idade na qual os animais foram testados (até 18 meses, entre 18 e 24 meses e acima de 24 meses), o país de criação (EUA, Austrália, França, Canadá, Japão e outros - Brasil, Irã e Irlanda foram agrupados, em virtude do pequeno número de trabalhos existentes), a raça (britânica, continental, asiática, cruzados ou zebuínos) e a definição de CAR adotada (Tabela 1). Os estudos avaliados foram relacionados em ordem cronológica (Tabela 1), com estimativa da herdabilidade (h2i) da característica CAR, definição de CAR, número de animais, sexo, país, raça e idade na qual os animais foram testados.

O gráfico de funil, que apresenta o valor da estimativa de herdabilidade pelo número de animais da amostra analisada, foi utilizado para verificar se houve vícios de publicação. A meta-análise foi aplicada para obter estimativa combinada de herdabilidade (hC2) a partir das estimativas de herdabilidade publicadas para as características CAR, consumo de matéria seca (CMS), ganho médio diário (GMD) e peso vivo metabólico (PV0, 75).

Foram utilizados diagramas de caixa ("box plot") para representar a distribuição dos valores das h2i das quatro características (Figura 1). A linha central da caixa marca o valor da mediana, e as bordas, o primeiro e o terceiro quartis. O limite inferior e superior é obtido a partir da subtração do valor do primeiro e do terceiro quartis, respectivamente, pelo resultado da multiplicação de 1, 5 e pelo desvio do primeiro e do terceiro quartil. Os valores acima ou abaixo dos limites são considerados discrepantes ("outliers"). A combinação de valores em uma Figura com base em marcadores individuais fornece exibição concisa da distribuição (Tukey, 1977).

 

 

As estimativas de herdabilidade para CAR são bem distribuídas entre valores próximos a 0, 10 e 0, 55, com mediana bem próxima à média e sem valores discrepantes. Já os valores das estimativas de herdabilidade para CMS apresentam intervalo de 0, 12 a 0, 64, com a maior parte dos valores abaixo da média e sem valores discrepantes (Figura 1). As estimativas de herdabilidade para GMD apresentam dispersão com valores de 0, 20 a 0, 40 e com valores de média e mediana bem próximos, porém com dois valores discrepantes: 0, 59 e 0, 65. Entretanto, esses dois valores não foram excluídos das análises por serem próximos a valores de herdabilidade obtidos em outros estudos com maior número de dados, mas sem parâmetros genéticos para as outras características incluídas no presente trabalho. A distribuição das estimativas de herdabilidade do PV0, 75 indica que grande parte delas está concentrada em valores menores que 0, 40, sem valores discrepantes. Além disso, a meta-análise também foi realizada para obter estimativas combinadas de correlação genética (rg) e fenotípica (rf) entre as características avaliadas, a partir das estimativas de correlação genética e fenotípica publicadas na literatura.

A estimativa combinada de herdabilidade (h) foi obtida conforme Koots et al. (1994a), por meio da expressão:

em que: h é o valor da estimativa combinada de herdabilidade; h é cada estimativa de herdabilidade i publicada; e EPh é o erro-padrão de cada estimativa de herdabilidade publicada.

O erro-padrão da estimativa combinada de herdabilidade (EPh) foi estimado com a fórmula:

Após obtidos os valores de h para as quatro características, uma série de análises foram feitas para testar se os fatores sexo, classe de idade, país, raça e definição de CAR (com algumas diferenças entre os modelos, para as quatro características) afetaram significativamente os valores de h. Essas análises foram feitas com o método dos mínimos quadrados ponderados por 1/(EPh)2, de acordo com o seguinte modelo linear:

em que: é a herdabilidade para uma dada característica; µ é a média geral; Si é o efeito do sexo dos animais, i = 1, ..., 3 (machos, fêmeas ou machos e fêmeas); Cj é o efeito da classe de idade dos animais, j = 1, ..., 3 (até 18 meses, entre 18 e 24 meses e acima de 24 meses); Pk é o efeito do país no qual os animais foram criados, k = 1, ..., 6 (EUA, Austrália, França, Canadá, Japão e outros); Rl é o efeito da raça dos animais, l = 1, ..., 4 (britânica, continental, asiática, cruzados ou zebuínos); CARm é o efeito do CAR estimado no estudo, m = 1, ..., 3 (CAR fenotípico, CAR genético e CAR equação); e εijklmn são os erros aleatórios com E[µ = 0; var = σ]. Segundo Lean & Rabiee (2011), o tamanho médio do efeito entre os estudos (considerado, no presente trabalho, como o efeito dos genes de ação aditiva na variação total das características avaliadas) é tão importante quanto entender as causas de variação da resposta entre os estudos.

Para a obtenção da estimativa combinada das correlações genéticas (rg) e fenotípicas (rf), foi feita a transformação de cada estimativa i de correlação genética ou fenotípica publicada (ri), para aproximação da escala normal de Fisher, chamada de transformação Z (Fisher, 1921): Zi = 0, 5log[(1 + ri)/(1 -ri)], com erro-padrão EPZi = [1/(ni-3)]0, 5, em que: ni é o número de animais envolvidos na estimativa de correlação. Os valores de Z dos vários estudos foram combinados (Zc) e ponderados pelo inverso da variância amostral (Koots et al., 1994b): Zc = Σ Zi/(EPZi)2/Σ1/(EPZi)2.

O valor de Zc foi transformado novamente para a escala original, tendo-se obtido o valor da correlação genética ou fenotípica combinada (rc), por meio da equação: rc = (e2z - 1)/(e2z + 1).

 

Resultados e Discussão

Os valores da média não ponderada±erro-padrão das estimativas de herdabilidade das características CAR, CMS, GMD e PV0, 75 foram, respectivamente, 0, 298±0, 127, 0, 411±0, 131, 0, 353±0, 127 e 0, 430±0, 114.

A dispersão das estimativas de herdabilidade das características CAR e CMS apresentou pontos bem distribuídos, semelhante a funil colocado lateralmente, o que indica, com base na técnica do gráfico de funil, que não houve vícios de publicações na revisão realizada (Figura 2). A distribuição das estimativas de herdabilidade do GMD, apesar de apresentar forma de funil, mostra um ponto fora da área. Esse valor é referente ao primeiro trabalho publicado sobre parâmetros genéticos para consumo alimentar residual (Koch et al., 1963), cujos dados foram provenientes de animais de algumas linhas de seleção de Angus, Hereford e Shorthorn e cuja estimativa de herdabilidade foi obtida com uso do modelo touro. Cabe ressaltar que a estimativa de herdabilidade obtida por essa metodologia, disponível na época da publicação do trabalho, pode ser superestimada, uma vez que o componente de variância de touro é utilizado para estimar um quarto da variância genética aditiva e esse mesmo componente é multiplicado por quatro para estimar a variância genética aditiva. Assim, os erros que possam ter ocorrido na estimação desse componente são multiplicados por quatro.

A distribuição das estimativas de herdabilidade do PV0, 75 não evidencia a forma de funil, como era esperado. É provável que isso seja decorrente do pequeno número de publicações avaliadas. Além disso, a maior parte das publicações tem tamanho amostral de 500 a 1.000 animais, sendo menos frequentes trabalhos com até 1.500 animais e raros os com mais de 1.500 animais (Figura 2).

Os valores de herdabilidade combinada (h) para as características GMD e PV0, 75 foram de moderado a alto, enquanto para as características CAR e CMS eles foram considerados de média magnitude (Tabela 2). Ao se comparar os valores da média ponderada (0, 25, 0, 28, 0, 32 e 0, 40) com os da média não ponderada (0, 30, 0, 41, 0, 35 e 0, 43) de CAR, CMS, GMD e PV0, 75, respectivamente, observou-se que os valores ponderados (h) foram menores. Isso pode ser atribuído à tendência de as estimativas de herdabilidade provenientes de amostras menores ou com pior estrutura de família (com erro-padrão maior) apresentarem valores levemente superiores aos das estimativas de herdabilidade de amostras maiores (com erro-padrão menor).

 

 

A análise de quadrados mínimos ponderados dos valores de h indicou que a classe de idade dos animais não teve efeito significativo (p>0, 10) na variação dos valores de h das quatro características avaliadas. Portanto, esse fator foi retirado do modelo de análise. Grande parte (67%) da variação dos valores de h, entre os estudos para a característica CAR, foi explicada pelos fatores sexo, país e raça (Tabela 3).

 

 

Estimativas de h2 provenientes de estudos com machos foram significativamente superiores (h = 0, 34±0, 06) que as obtidas em estudos apenas com fêmeas (h = 0, 12±0, 06). Além disso, as h2 estimadas em amostras de bovinos de origem britânica foram significativamente maiores (h = 0, 42±0, 08) que as das demais raças. Para CMS, os fatores país e raça explicaram quase toda a variação das h entre os estudos. As raças britânicas apresentaram h2 significativamente diferentes e mais altas (h = 0, 45±0, 07) que as das outras raças avaliadas. Para as demais características (GMD e PV0, 75), pouco (para GMD) ou quase nada (para PV0, 75) da variação de h entre os estudos foi explicada pelos fatores considerados no modelo. Embora os efeitos dos fatores país de criação e raça possam estar um pouco confundidos, o efeito de país foi importante para as características CAR e CMS.

A característica CAR é genética e fenotipicamente pouco associada ao GMD e ao PV0, 75, e o aumento da eficiência alimentar por meio da seleção de animais com menores valores genéticos ou fenotípicos de CAR é independente de característica de crescimento (Tabela 4). Consequentemente, não há aumento do valor genético dos animais para características de crescimento, o que é fortemente confirmado pelos valores das estimativas combinadas (rcg e rcf). Essa é uma das vantagens do uso do CAR como critério de seleção para aumento da eficiência do uso de alimentos pelos bovinos, o que pode ser atribuído ao modo de obtenção dessa característica, que é a parte da variação do CMS que não foi explicada por GMD e PV0, 75.

 

 

Se as correlações genéticas entre CMS e as outras características componentes do CAR (GMD e PV0, 75) forem altas, provavelmente haverá pouca variação genética para o CAR, mais especificamente para o CAR genético. As estimativas combinadas (rcg e rcf) entre CMS, GMD e PV0, 75 foram de média magnitude (Tabela 4) e, possivelmente, há variação genética aditiva para CMS, independentemente de GMD e PV0, 75.

Outra vantagem do CAR sobre as demais medidas de eficiência alimentar, expressas como razão de duas características, é que o CAR, apesar de ser composto por outras características, é uma combinação linear. Gunsett (1984) avaliou a seleção de características definidas como proporção, em que uma quantidade desigual de pressão de seleção é colocada no componente ou na característica de maior variação genética, o que resulta em respostas imprevisíveis para a seleção ao longo dos anos. Este autor, ao comparar a eficiência da seleção direta para uma razão de dois componentes e do índice linear para os mesmos dois componente derivados, concluiu que a abordagem em índice foi associada à maior resposta à seleção.

Entretanto, com base nos princípios dos índices de seleção, a seleção para CAR genético é equivalente à seleção baseada em índice com CMS, GMD e PV0, 75, em que se mantém GMD e PV0, 75 constante, ou seja, sem mudança no CMS resultante da mudança em GMD e PV0, 75 (Kennedy et al., 1993). A característica CAR não fornece informação genética adicional àquela fornecida pelas características componentes do CAR. De acordo com estes autores, o melhoramento da eficiência alimentar provavelmente será alcançado, na prática, por meio da seleção multicaracterística de CMS, GMD e PV0, 75, melhor ainda se for usado com função de lucro, para determinar os pesos econômicos relativos de cada uma dessas características.

No Brasil, há interesse em melhorar simultaneamente o CAR e as características de produção, como o GMD, de bovinos da raça Nelore, mas a seleção baseada em CAR e características de produção levará a respostas idênticas à obtida com base na seleção para consumo alimentar e características de produção. As estimativas combinadas dos parâmetros genéticos da característica CAR e das características componentes do CAR, obtidas no presente trabalho com uso de meta-análise, poderão ser usadas para implementar programas de seleção que não dispõem de dados suficientes para estimar os próprios parâmetros genéticos. As h das características componentes do CAR e a matriz completa de rcg e rcf entre as características são úteis para implementar uma avaliação genética multicaracterística (Kennedy et al., 1993) em rebanhos que já iniciaram a obtenção de registro de CMS. Em muitos casos, o uso de estimativas combinadas é mais recomendável que a aplicação das estimativas obtidas dentro de uma população, pois são mais precisas.

 

Conclusões

1. A característica consumo alimentar residual apresenta estimativa de herdabilidade menor que a de suas características componentes consumo de matéria seca, ganho médio diário e peso metabólico, das quais as duas últimas apresentam maior estimativa de herdabilidade.

2. Os fatores sexo, raça e país de origem dos animais explicam grande parte da variação observada entre os estudos, no que se refere às estimativas de herdabilidade da característica consumo alimentar residual.

3. As características componentes do consumo alimentar residual, do consumo de matéria seca, do ganho médio diário e do peso metabólico apresentam correlação genética e fenotípica de média magnitude.

 

Agradecimentos

À Fundação de Amparo à Pesquisa do Estado de São Paulo, pelo apoio financeiro; e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, pela concessão de bolsas.

 

Referências

ARTHUR, P.F.; ARCHER, J.A.; JOHNSTON, D.J.; HERD, R.M.; RICHARDSON, E.C.; PARNELL, P.F. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other post weaning traits in Angus cattle. Journal of Animal Science, v.79, p.2805-2811, 2001a.         [ Links ]

ARTHUR, P.F.; RENAND, G.; KRAUSS, D. Genetic and phenotypic relationships among different measures of growth and feed efficiency in young Charolais bulls. Livestock Production Science, v.68, p.131-139, 2001b.         [ Links ]

BARWICK, S.A.; WOLCOTT, M.L.; JOHNSTON, D.J.; BURROW, H.M.; SULLIVAN, M.T. Genetics of steer daily and residual feed intake in two tropical beef genotypes, and relationships among intake, body composition, growth and other post-weaning measures. Animal Production Science, v.49, p.351-366, 2009.         [ Links ]

BOUQUET, A.; FOUILLOUX, M.-N.; RENAND, G.; PHOCAS, F. Genetic parameters for growth, muscularity, feed efficiency and carcass traits of young beef bulls. Livestock Production Science, v.129, p.38-48, 2010.         [ Links ]

CREWS JUNIOR, D.H.; PENDLEY, C.T.; CARSTEN, G.E.; MENDES, E.D.M. Genetic evaluation of feed intake and utilization traits of beef bulls. In: WORLD CONGRESS ON GENETICS APPLIED TO LIVESTOCK PRODUCTION, 9., 2010. Proceedings. Leipzig: WCGALP, 2010. 4p.         [ Links ]

CREWS JUNIOR, D.H.; SHANNON, N.H.; GENSWEIN, B.M.A.; CREWS, R.E.; JOHNSON, C.M.; KENDRICK, B.A. Genetic parameters for net feed efficiency of beef cattle measured during postweaning growing versus finishing periods. Proceedings, Western Section, American Society of Animal Science, v.54, 2003. Available at: <http://www.asas.org/westernsection/2003/proceedings/1000126.pdf>. Accessed on: 14 Feb. 2012.         [ Links ]

CROWLEY, J.J.; MCGEE, M.; KENNY, D.A.; CREWS JUNIOR, D.H.; EVANS, R.D.; BERRY, D.P. Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance-tested beef bulls. Journal of Animal Science, v.88, p.885-894, 2010.         [ Links ]

EGGER, M.; SMITH, G.D. Meta-analysis - bias in location and selection of studies. British Medical Journal, v.316, p.61-66, 1998.         [ Links ]

GLASS, G.V. Primary, secundary, and meta-analysis of research. Educational Researcher, v.6, p.3-8, 1976.         [ Links ]

GEAY, Y.; MICOL, D. Alimentation des bovins en croissance et à l'engrais. In: JARRIGE, R. (Ed.). Alimentation des bovins, ovins and caprins. Paris: INRA, 1988. p.213-247.         [ Links ]

GIANNOTTI, J. Di G.; PACKER, I.U.; MERCADANTE, M.E.Z. Meta-análise das estimativas de herdabilidade para características de crescimento em bovinos de corte. Revista Brasileira de Zootecnia, v.34, p.1173-1180, 2005.         [ Links ]

GUNSETT, F.C. Linear index selection to improve traits defined as ratio. Journal of Animal Science, v.59, p.1185-1193, 1984.         [ Links ]

HERD, R.M.; BISHOP, S.C. Genetic variation in residual feed intake and its association with other production traits in British Hereford cattle. Livestock Production Science, v.63, p.111-119, 2000.         [ Links ]

HOQUE, M.A.; ARTHUR, P.F.; HIRAMOTO, K.; OIKAWA, T. Genetic relationship between different measures of feed efficiency and its component traits in Japanese black (Wagyu) bulls. Livestock Production Science, v.99, p.111-118, 2006.         [ Links ]

HOQUE, M.A.; HOSONO, M.; OIKAWA, T.; SUZUKI, K. Genetic parameters for measures of energetic efficiency of bulls and their relationships with carcass traits of field progeny in Japanese Black cattle. Journal of Animal Science, v.87, p.99-106, 2009.         [ Links ]

INOUE K.; KOBAYASHI, M.; SHOJI, N.; KATO, K. Genetic parameters for fatty acid composition and feed efficiency traits in Japanese Black cattle. Animal, v.5, p.987-994, 2011.         [ Links ]

JENSEN, J.; MAO, I.L.; ANDERSEN, B.B. Phenotypic and genetic relationships between residual energy intake and growth, feed intake, and carcass traits of young bulls. Journal of Animal Science, v.70, p.386-395, 1992.         [ Links ]

KENNEDY, B.W.; VAN DER WERF, J.H.J.; MEUWISSEN, T.H.E. Genetic and statistical properties of residual feed intake. Journal of Animal Science, v.71, p.3239-3250, 1993.         [ Links ]

KOCH, R.M.; SWIGER, L.A.; CHAMBERS, D.; GREGORY, K.E. Efficiency of feed use in beef cattle. Journal of Animal Science, v.22, p.486-494, 1963.         [ Links ]

KOOTS, K.R.; GIBSON, J.P.; SMITH, C.; WILTON, J.W. Analyses of published genetic parameter estimates for beef production traits. 1. Heritability. Animal Breeding Abstracts, v.62, p.309-338, 1994a.         [ Links ]

KOOTS, K.R.; GIBSON, J.P.; SMITH, C.; WILTON, J.W. Analyses of published genetic parameter estimates for beef production traits: 2. Phenotypic and genetic correlations. Animal Breeding Abstracts, v.62, p.826-853, 1994b.         [ Links ]

LANCASTER, P.A.; CARSTENS, G.E.; CREWS JUNIOR, D.H.; WELSH JUNIOR, T.H.; FORBES, T.D.A.; FORREST, D.W.; TEDESCHI, L.O.; RANDEL, R.D.; ROUQUETTE, F.M. Phenotypic and genetic relationship of residual feed intake with performance and ultrasound carcass traits in Brangus heifers. Journal of Animal Science, v.87, p.3887-3896, 2009.         [ Links ]

LEAN, I.J.; RABIEE, A.R. Meta-analysis: the good, the bad and the ugly. Journal of Animal Science, v.89, 2011. E-Supplement 1.         [ Links ]

LÔBO, R.N.B.; MADALENA, F.E.; VIEIRA, A.R. Average estimates of genetic parameters for beef and dairy cattle in tropical regions. Animal Breeding Abstracts, v.68, p.433-462, 2000.         [ Links ]

MERCADANTE, M.E.Z.; DELCLARO, A.C.; BONILHA, S.F.M.; CYRILLO, J.N.S.G.; BRANCO, R.H. Additive genetic variation of residual feed intake and its components in Nellore cattle. Journal of Animal Science, v.89, 2011. E-Supplement 1.         [ Links ]

MERCADANTE, M.E.Z.; LÔBO, R.B.; REYES, A.B. Parámetros genéticos para características de crecimiento en cebuínos de carne: una revisión. Archivos Latinoamericanos de Producción Animal, v.3, p.45-89, 1995.         [ Links ]

MOHIUDDIN, G. Estimates of genetic and phenotypic parameters of some traits in beef cattle. Animal Breeding Abstract, v.61, p.495-522, 1993.         [ Links ]

NKRUMAH, J.D.; BASARAB, J.A.; WANG, Z.; LI, C.; PRICE, M.A.; OKINE, E.K.; CREWS, D.H.; MOORE, S.S. Genetic and phenotypic relationships of feed intake and measures of efficiency with growth and carcass merit of beef cattle. Journal of Animal Science, v.85, p.2711-2720, 2007.         [ Links ]

NATIONAL RESEARCH COUNCIL. Nutrient requirements of dairy cattle. 7.ed. Washington: National Academy, 2001.         [ Links ]

RENAND, G.; VINET, A.; KRAUSS, D. Genetic relationship between residual feed intake of growing bulls and adult cows. In: WORLD CONGRESS ON GENETICS APPLIED TO LIVESTOCK PRODUCTION, 9., 2010, Leipzig. Proceedings. Leipzig: WCGALP, 2010. 4p.         [ Links ]

ROBINSON, D.L.; ODDY, V.H. Genetic parameters for feed efficiency, fatness, muscle area and feeding behaviour of feedlot finished beef cattle. Livestock Production Science, v.90, p.255-270, 2004.         [ Links ]

ROLFE, K.M.; SNELLING, W.M.; NIELSEN, M.K.; FREETLY, H.C.; FERREL, C.L.; JENKINS, T.G. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle, and opportunities for selection. Journal of Animal Science, v.89, p.3452-3459, 2011.         [ Links ]

RUTHERFORD, W.C.; KRIESE-ANDERSON, L.A.; HECHT, G.S. Heritability and genetic correlations of residual feed intake between Angus and Simmental bulls and resulting steer relatives. Journal of Dairy Science, v.93, p.184-185, 2010. Supplement: 1.         [ Links ]

SCHENKEL, F.S.; MILLER, S.P.; WILTON, J.W. Genetic parameters and breed differences for feed efficiency, growth, and body composition traits of young beef bulls. Canadian Journal of Animal Science, v.84, p.177-185, 2004.         [ Links ]

SOUSA, M.R. de; RIBEIRO, A.L.P. Revisión sistemática y metaanálisis de estudios de diagnóstico y pronóstico: una guía. Arquivos Brasileiros de Cardiologia, v.92 p.241-251, 2009.         [ Links ]

STANDING COMMITTEE ON AGRICULTURE. Ruminants Subcommittee. Feeding standards for Australian livestock: ruminants. Victoria: CSIRO, 1990. 226p.         [ Links ]

TUKEY, J.W. Exploratory data analysis. Reading: Addison-Wesley, 1977. 688p.         [ Links ]

ZAMANI, P.; MIRAEI-ASHTIANI, S.R.; MOHAMMADI, H. Genetic parameters of residual energy intake and its correlations with other traits in Holstein dairy cattle. Turkish Journal of Veterinary and Animal Sciences, v.32, p.255-261, 2008.         [ Links ]

 

 

Recebido em 9 de setembro de 2011 e aprovado em 26 de janeiro de 2012

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License