SciELO - Scientific Electronic Library Online

vol.22 número2Índice de estresse hídrico de tomateiro em função de lâminas de irrigaçãoProdutividade comercial da cebola sob diferentes lâminas de irrigação, com e sem cobertura do solo índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados


Revista Brasileira de Engenharia Agrícola e Ambiental

versão impressa ISSN 1415-4366versão On-line ISSN 1807-1929

Rev. bras. eng. agríc. ambient. vol.22 no.2 Campina Grande fev. 2018 


Nitrogen and phosphorus fertilization of sunflower crop in alkaline Cambisol

Adubação nitrogenada e fosfatada na cultura do girassol em Cambissolo alcalino

Daniely F. Braga1 

Fabio H. T. de Oliveira2 

Hemmannuella C. Santos3 

Adelson P. Araújo4 

Everaldo Zonta4 

1Universidade Federal Rural do Semi-Árido/Centro Multidisciplinar de Caraúbas/Departamento de Ciência e Tecnologia. Mossoró, RN. E-mail:

2Universidade Federal Rural do Semi-Árido/Centro de Ciências Agrárias/Departamento de Ciências Agronômicas e Florestais. Mossoró, RN. E-mail:

3Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco/Campus Vitória de Santo Antão/Departamento de Assuntos Educacionais. Vitória de Santo Antão, PE. E-mail: (Corresponding author)

4Universidade Federal Rural do Rio de Janeiro/Instituto de Agronomia/Departamento de Solos. Seropédica, RJ. E-mail:;


Sunflower is a crop that has aroused the interest of farmers because of its adaptability to wide climatic conditions and for its use in biodiesel production. However, there are only a few studies on sunflower fertilization in alkaline soils. This study aimed to evaluate nitrogen (N) and phosphorus (P) fertilization in sunflower (Helianthus annuus L.) cultivated in alkaline soil. A field experiment was carried out in Baraúnas-RN, Brazil, in a Haplic Cambisol derived from calcareous rock, where the sunflower H-251 hybrid was cultivated. The treatments were a combination of four doses of N (30, 60, 90 and 120 kg ha-1) and four doses of P2O5 (30, 60, 90 and 120 kg ha-1). Sunflower growth and yield increased with the doses of N and P2O5. Doses of 30 kg ha-1 of N and 30 kg ha-1 of P2O5 were more economical, corresponding to grain yield of 2378 kg ha-1. Critical levels associated with these doses of N and P2O5 were 28.2 g kg-1 for N leaf content, 2.84 for P leaf content, and 6.75 mg dm-3 for soil available P extracted by Mehlich-1.

Key words: Helianthus annuus; oilseed crop; nitrogen; phosphorus


O girassol é uma cultura que tem despertado o interesse dos produtores por sua adaptabilidade a diferentes condições climáticas e pela possibilidade de produção de biodiesel. Porém, pesquisas sobre adubação de girassol em solos alcalinos são escassas. Neste trabalho, objetivou-se avaliar a resposta da cultura do girassol (Helianthus annuus L.) à adubação nitrogenada e fosfatada em solo alcalino. O experimento de campo foi conduzido no município de Baraúnas, RN, em um Cambissolo Háplico eutrófico, onde se plantou o híbrido de girassol H-251. Os tratamentos resultaram da combinação de quatro doses de N (30, 60, 90 e 120 kg ha-1) e quatro doses de P2O5 (30, 60, 90 e 120 kg ha-1). O crescimento e a produtividade do girassol aumentaram com o incremento das doses de N e de P2O5. As doses de 30 kg ha-1 de N e 30 kg ha-1 de P2O5 se mostraram mais econômicas, correspondendo à produtividade de 2.378 kg ha-1 de grãos. Os níveis críticos associados a essas doses econômicas de N e de P2O5 foram 28,2 g kg-1 para o teor de N na folha, 2,84 g kg-1 para o teor de P na folha, e 6,75 mg dm-3 para o P disponível no solo pelo extrator Mehlich-1.

Palavras-chave: Helianthus annuus; oleaginosa; nitrogênio; fósforo


Sunflower (Helianthus annuus L.) has high potential for cultivation in Northeast Brazil because of its easy adaptation, great agro-energetic potential, easy management and good economic performance. In the 2014/2015 season, sunflower production (grains) in Brazil reached 153 thousand tons, with mean yield of 1,374 kg ha-1 (CONAB, 2016). In the Northeast region of Brazil, sunflower is still not much cultivated and, when cultivated, low yields are obtained because of the low technological level used by farmers.

At the Apodi Plateau, there is a predominance of soils derived from limestone of the Jandaíra Formation, which in some areas is covered by more recent sandy sediments from the Barreiras Group (Mota et al., 2007). Alkaline Cambisols in Brazil, in general, exhibit very low contents of available phosphorus, micronutrients and organic matter, requiring fertilizations for adequate crop development (Lemos et al., 1997). In the sunflower crop, N is a crucial element for seed and oil production (Alves et al., 2016), and P is directly related to seed production and quality (Silva et al., 2011).

Hence, the practice of N and P fertilization becomes indispensable for crops to obtain high yields in these alkaline soils. Studies on fertilization in the country recommend for the sunflower crop N doses from 25 to 100 kg ha-1 and P2O5 doses from 0 to 110 kg ha-1 (CFSEMG, 1999; SBCS, 2004; Leite et al., 2007; Bezerra et al, 2014; Campos et al., 2015).

Considering the increasing importance of sunflower in the Brazilian semi-arid region and the lack of research on its fertilization in alkaline soils of the northeast region, this study aimed to evaluate the response of sunflower to nitrogen and phosphate fertilizations in alkaline soil at the Apodi Plateau, RN, Brazil.

Material and Methods

The experimental area is located in the municipality of Baraúnas-RN, Brazil (5° 04’ 48’’ S; 37° 37’ 00’’ W; 94 m). The soil of the area is an alkaline eutrophic Haplic Cambisol, with clay texture, derived from limestone of the Jandaíra Formation, little developed and with a small difference between horizons (Mota et al., 2007).

Before conducting the field experiment, a soil sample was collected in the 0-20 cm layer for chemical and physical characterization (EMBRAPA, 1997), and its characteristics are: pH (water) = 7.4; P = 1.8 and K = 210.3 mg dm-3; Ca2+ = 4.8; Mg2+ = 1.3; Al3+ = 0.0; (H + Al) = 1.98; Na+ = 11.5 cmolc dm-3; Sand = 176.6; Silt = 330.9 and Clay = 492.5 g kg-1.

The area was subjected to double cross-subsoiling at 40 cm depth and double cross-harrowing at 20 cm depth. Each plot had four 6-m-long rows spaced by 0.90 m and the two central rows were used for evaluation, disregarding 0.5 m on each end. The H-251 sunflower hybrid, which is small, with short cycle and high yield, was planted at spacing of 0.90 x 0.30 m.

The experimental design was randomized blocks with four replicates and treatments resulted from the combination of four N doses (30, 60, 90 and 120 kg ha-1) and four P2O5 doses (30, 60, 90 and 120 kg ha-1). The experiment did not use doses of 0 (zero) kg ha-1 of N or P2O5, because the soil in the area was very poor in N and P. At planting, P doses were applied according to each treatment, besides 1.5 kg ha-1 of B, 1 kg ha-1 of Zn and 0.5 kg ha-1 of Cu. For N doses, 20% of the dose was applied at planting in the form of urea and the rest was divided into two top-dressing fertilizations at 30 and 50 days after emergence (DAE), using ammonium sulfate. 75 kg ha-1 of K2O were applied, 50% of the dose at planting and the rest at 30 DAE.

Irrigations were performed using a drip system, with pressure-compensating drippers, and the interval between irrigations was based on crop Kc and potential evapotranspiration. Weeds were controlled by two manual weedings until 35 DAE. At 47 DAE, 12 soil samples were collected in the 0-20 cm layer (Oliveira et al., 2007) in the evaluation area of each plot, to determine P contents (EMBRAPA, 1997). At 67 DAE, leaves from the upper middle third of 14 plants were collected in the evaluation area of each plot (Malavolta et al., 1997) for the analysis of N and P contents, according to Tedesco et al. (1997).

At the end of the experiment, at 118 DAE, 10 plants were randomly selected in the evaluation area of each plot and analyzed for: plant height (distance from soil to capitulum insertion), stem diameter (5 cm away from the soil) and capitulum diameter. Plants in the evaluation area of each plot were counted and their capitulum were cut and placed in cloth bags to dry in the sun. Capitulum grains of each plot were manually separated and weighed to obtain grain yield and 1000-grain weight.

A multiple linear regression model was fitted to the means of each treatment and, after selecting the model with best fit, response surfaces were constructed using the program Statistica 6.0 for Windows.

The economic analysis considered the mean price of fertilizers and sunflower bag in the region. Grain yields were estimated for each combination of N and P doses using the fitted multiple regression model, calculating gross revenue, expenditure with fertilizers and net revenue for each combination of N and P doses.

Results and Discussion

The effects of N and P2O5 doses on sunflower growth characteristics, despite being significant, were of small magnitude. The interactions between N and P2O5 doses were not significant. Plant height was higher with the increment in N and P2O5 doses up to the maximum value of 1.86 m, corresponding to the doses of 99 kg ha-1 of N + 99 kg ha-1 of P2O5 (Y = 1.40 + 0.00325**N – 0.00001646*N2 + 0.006023**P – 0.00003035**P2, R2 = 0.89 - Figure 1).

Figure 1 Response surface for sunflower height as a function of N and P2O5 doses applied in the soil 

Sunflower height may exhibit wide variation, reflecting the differences between cultivars regarding plant size. Tomich et al. (2003) found plant height of 2.05 m, whereas Biscaro et al. (2008) estimated that the N dose of 73 kg ha-1 was associated with plant height of 1.15 m, which is inferior to the value found in the present study for a similar N dose (Figure 1). On the other hand, Schwerz et al. (2016) did not observe effect of N fertilization on sunflower height.

The increment in N and P2O5 doses increased sunflower stem diameter up to the maximum value of 2.40 cm, corresponding to the doses of 90 kg ha-1 of N + 99 kg ha-1 of P2O5 (Y = 1.43 + 0.009858**N – 0.00005486**N2 + 0.01049**P – 0.00005278**P2, R2 = 0.84 - Figure 2A). Highest value of capitulum diameter (16.45 cm) was estimated for doses of 95 kg ha-1 of N + 120 kg ha-1 of P2O5 (Y = 12.68 + 0.04768**N – 0.0002509*N2 + 0.01261**P, R2 = 0.67 - Figure 2B).

Figure 2 Response surface for stem diameter (A) and capitulum diameter (B) of sunflower plants as a function of N and P2O5 doses applied in the soil 

Biscaro et al. (2008) observed maximum stem diameter of 1.84 cm at the N dose of 48 kg ha-1 and maximum capitulum diameter of 11.9 cm at N dose of 45 kg ha-1. Freitas et al. (2012) found capitulum diameter of 15.38 cm with N application of 75 kg ha-1. These differences in the results may be attributed to the genetic differences between the cultivars.

There was no significant effect of N and P2O5 doses on leaf N contents, which ranged from 28.2 g kg-1 (30 kg ha-1 of N + 30 kg ha-1 of P2O5) to 36.1 g kg-1 (120 kg ha-1 of N + 60 kg ha-1 of P2O5). Thus, it can be considered that the critical leaf N content of 28.2 g kg-1 is lower than that described by Malavolta et al. (1997) as adequate for sunflower, which ranges from 33 to 35 g kg-1.

The lack of response of leaf N content to the increase in N and P2O5 doses can be explained by the effect of dilution of leaf N content due to the greater plant growth in response to the increase in the applied doses of N and P2O5 (Figures 1 and 2). Ribeirinho et al. (2012), applying 10 kg ha-1 of N, observed leaf N contents in sunflower plants of the order of 36.84 g kg-1, higher than those observed in the present study.

As expected, leaf P contents increased as a function of the P2O5 doses, but decreased with the increment in N doses, possibly due to the dilution effect (Figure 3A). Therefore, maximum leaf P content (3.1 g kg-1) was estimated in the combination between the highest P2O5 dose (120 kg ha-1) and lowest N dose (30 kg ha-1) (Y = 2.89 – 0.003993**N + 0.002631**P, R2 = 0.60).

Figure 3 Response surfaces for sunflower leaf P content (A) and soil P content (B), as a function of N and P2O5 doses applied to the soil 

Leaf P contents in the present study, even the maximum estimated P content (3.1 g kg-1), were below the P range from 4.0 to 7.0 g kg-1 considered as ideal by Malavolta et al. (1997) for sunflower. However, Deibert & Utter (1989) indicated P contents between 2.2 and 5.2 g kg-1 as adequate for sunflower leaves in early flowering. Available P content in the soil sharply increased with the increment in the P2O5 dose applied to the soil, with a slight reduction as N dose increased (Y = 3.19 – 0.01531*N + 0.1337**P, R2 = 0.81 - Figure 3B).

Both 1000-grain weight and grain yield increased with the increment in the N and P2O5 doses (Figure 4). It is estimated that the highest 1000-grain weight is obtained with the application of maximum doses (120 kg ha-1) of N and P2O5, since the plant response to these nutrients was linear (Y = 53.66 + 0.03711**N + 0.04864**P; R2 = 0.78 - Figure 4A). Silva et al. (2011) observed increments of approximately 9.5% in 1000-grain weight with the application of 70 kg ha-1 of phosphate fertilizer, compared with the control, evidencing the importance of P in the production and quality of sunflower seeds. Maia Filho et al. (2013) found 1000-grain weight varying from 18 to 30.70 g with N and P fertilization at doses of 40 and 70 kg ha-1, respectively, which are much lower than those observed in the present study, 63.94 g.

Figure 4 Response surfaces for 1000-grain weight (A) and yield (B) of sunflower as a function of N and P2O5 doses applied to the soil 

Grain yield reached 3,026 kg ha-1, with application of 120 kg ha-1 of N and 117 kg ha-1 of P2O5, Y = 2010.2 + 3.6115**N + 9.9484**P – 0.04245*P2 R2 = 0.83 (Figure 4B). This yield is above that observed by Nascimento et al. (2013), 2,210 kg ha-1, who cultivated sunflower fertilized with 20 kg ha-1 of N and 70 kg ha-1 of P2O5. As for the other variables analyzed in the plant (Figures 1 and 2), the magnitude of the positive effects of N and P2O5 doses on grain yield was not very high. However, that does not mean the sunflower crop does not respond to N and P fertilizations. Actually, the responses were small because the doses varied from 30 to 120 kg ha-1, without an absolute control with no fertilization. If the doses varied from 0 to 120 kg ha-1, the magnitudes of the responses would probably be higher, especially for the interval from 0 to 30 kg ha-1 of N and P2O5, due to the very low contents of available P and organic matter in the soil of the experimental area. In the study of Eltz et al. (2010), P2O5 doses between 40 and 80 kg ha-1 were sufficient to reach sunflower grain yield of 2,000 kg ha-1, whereas Ivanoff et al. (2010) observed yield of 1,639 kg ha-1 with N fertilization of 60 kg ha-1, split into 30% at planting and 70% as top-dressing.

In Minas Gerais, the recommendation of phosphate fertilization varies from 30 to 70 kg ha-1 of P2O5 according to soil P content, and 60 kg ha-1 of N should be split into 1/3 at planting and 2/3 as top-dressing (CFSEMG, 1999).

These N and P2O5 doses recommended for the sunflower crop corresponded to approximately half the doses estimated for the highest yields (Figure 2B). Attributing the value of 30 kg ha-1 for N and P2O5 doses in the production function (Figure 4B) leads to grain yield of 2,378 kg ha-1 (Table 1), which corresponds to 78% of the maximum production. Therefore, the reduction in N and P2O5 doses from 120 to 30 kg ha-1 would reduce grain yield by 648 kg ha-1, but on the other hand there would be an increment of R$ 176.00 in net revenue (Table 1).

Table 1 Gross revenue, expenditure with fertilizers and net revenue of the sunflower crop as a function of N and P2O5 doses applied to alkaline soil at the Apodi Plateau, RN, Brazil 

N dose P2O5 dose Estimated yield1 Gross revenue Expenditure with fertilizers Net revenue
kg ha-1 R$
30 30 2,378 1,070 155 914
30 60 2,562 1,153 231 921
30 90 2,670 1,201 306 894
30 120 2,701 1,215 382 832
60 30 2,487 1,119 235 883
60 60 2,670 1,201 311 890
60 90 2,778 1,250 387 863
60 120 2,809 1,264 462 801
90 30 2,595 1,167 315 852
90 60 2,779 1,250 391 859
90 90 2,886 1,299 467 831
90 120 2,917 1,312 542 770
120 30 2,703 1,216 396 820
120 60 2,887 1,299 471 827
120 90 2,995 1,347 547 800
120 120 3,026 1,361 622 738

1 Yield estimated by the multiple linear regression model

When doses of 30 kg ha-1 of N and 30 kg ha-1 of P2O5 were substituted in the regression equations presented in Figure 3, the estimated critical contents of P in the plant and in the soil were 2.84 g kg-1 and 6.75 mg dm-3, respectively. These values can be used in the nutritional diagnosis of sunflower in areas with alkaline soils, and guide the recommendations of phosphate fertilization based on soil analysis.

Other field studies are necessary, including in different classes of soils that occur in the region, to adjust the recommendations of fertilization for the crop and the identification of critical contents of N and P in the plant and in the soil. Despite that, the obtained results indicate that the recommendation of fertilization with doses of 30 kg ha-1 of N + 30 kg ha-1 of P2O5 can be adopted for sunflower cultivation in the Apodi Plateau region.


  1. The doses of 30 kg ha-1 of N + 30 kg ha-1 of P2O5 are economically viable for the production of sunflower grains in alkaline Haplic Cambisol at the Apodi Plateau.

  2. Critical levels for the crop are 28.2 g kg-1 for leaf N content, 2.84 g kg-1 for leaf P content, and 6.75 mg dm-3 for available P content in the soil extracted by Mehlich-1.

Literature Cited

Alves, L. S.; Torres Junior, C. V.; Fernandes, M. S.; Santos, A. M. dos; Souza, S. R. de. Soluble fractions and kinetics parameters of nitrate and ammonium uptake in sunflower (“Neon” Hybrid). Revista Ciência Agronômica, v.47, p.13-21, 2016. ]

Bezerra, F. M. L.; Freitas, C. A. de S.; Silva, A. R. A. da; Mota, S. de B.; Aquino, B. F. de. Irrigation with domestic treated sewage and nitrogen fertilizing in sunflower cultivation. Engenharia Agrícola, v.34, p.1186-1200, 2014. ]

Biscaro, G. A.; Machado, J. R.; Tosta, M. da S.; Mendonça, V.; Soratto, R. P.; Carvalho, L. A. de. Adubação nitrogenada em cobertura no girassol irrigado nas condições de Cassilândia-MS. Ciência e Agrotecnologia, v.32, p.1366-1373, 2008. ]

Campos, V. B.; Chaves, L. H. G.; Guerra, H. O. C. Adubação com NPK e irrigação do girassol em Luvissolo: Comportamento vegetativo. Revista Ambiente & Água, v.10, p.221-233, 2015. ]

CFSEMG - Comissão de Fertilidade do Solo do Estado de Minas Gerais. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais. 5.ap. Viçosa: CFSEMG, 1999. 359p. [ Links ]

CONAB - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos. v.4 - Safra 2015/16 - Quarto levantamento, Brasília, DF: Conab, 2016. 154p. Disponível em: < http: / />. Acesso em: 15 Jan. 2017. [ Links ]

Deibert, E. J.; Utter, R. A. Sunflower growth and nutrient uptake: Response to tillage system, hybrid maturity and weed control method. Soil Science Society of America Journal, v.53, p.133-138, 1989. ]

Eltz, F. L. F.; Villalba, E. H.; Lovato, T. Adubação fosfatada para girassol sob sistema plantio direto no Paraguai. Bragantia, v.69, p.899-904, 2010. ]

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo. Rio de Janeiro: Embrapa Solos, 1997. 212p. [ Links ]

Freitas, C. A. S. de; Silva, A. R. A. da; Bezerra, F. M. L.; Andrade, R. R. de; Mota, F. S. B.; Aquino, B. F. de. Crescimento da cultura do girassol irrigado com diferentes tipos de água e adubação nitrogenada. Revista Brasileira de Engenharia Agrícola e Ambiental, v.16, p.1031-1039, 2012. ]

Ivanoff, M. E. A.; Uchôa, S. C. P.; Alves, J. M. A.; Smiderle, O. J.; Sediyama, T. Formas de aplicação de nitrogênio em trêscultivares de girassol na savana de Roraima. Revista Ciência Agronômica, v.41, p.319-325, 2010. ]

Leite, R. M. V. B. de C.; Castro, C. de; Brighenti, A. M.; Oliveira, F. A. de; Carvalho, C. G. P. de; Oliveira, A. C. B. de. Indicações para o cultivo de girassol nos estados do Rio Grande do Sul, Paraná, Mato Grosso do Sul, Mato Grosso, Goiás e Roraima. Londrina: Embrapa Soja, 2007. 4p. Comunicado Técnico, 78 [ Links ]

Lemos, M. do S. da S.; Curi, N.; Marques, J. J. G. de S. e M.; Ernesto Sobrinho, F. Evaluation of characteristics of Cambisols derived from limestone in low tablelands in northeastern Brazil: Implications for management. Revista Pesquisa Agropecuária Brasileira, v.32, p.825-834, 1997. [ Links ]

Maia Filho, F. das C. F.; Mesquita, E. F. de; Guerra, H. O. C.; Moura, M. F.; Chaves, L. H. G. Effect of cattle manure on sunflower production and water use in two types of soil. Revista Ceres, v.60, p.397-405, 2013. ]

Malavolta, E.; Vitti, G. C.; Oliveira, S. A. Avaliação do estado nutricional das plantas. 2.ed. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato, 1997. 319p. [ Links ]

Mota, J. C. A.; Assis Júnior, R. N.; Amaro Filho, J.; Romero, R. E.; Mota, F. O. B.; Libardi, P. L. Atributos mineralógicos de três solos explorados com a cultura do melão na Chapada do Apodi – RN. Revista Brasileira de Ciência do Solo, v.31, p.445-454, 2007. ]

Nascimento, A. L.; Sampaio, R. A.; Fernandes, L. A.; Zuba Junior, G. R.; Carneiro, J. P.; Rodrigues, M. N.; Albuquerque, H. C. de. Yield and nutrition of sunflower fertilized with sewage sludge stabilized by different processes. Revista Ceres, v.60, p.683-689, 2013. ]

Oliveira, F. H. T. de; Arruda, J. A. de; Silva, I. de F. da; Alves, J. do C. Amostragem para avaliação da fertilidade do solo em função do instrumento de coleta das amostras e de tipos de preparo do solo. Revista Brasileira de Ciência do Solo, v.31, p.973-983, 2007. ]

Ribeirinho, V. S.; Melo, W. J. de; Silva, D. H. da; Figueiredo, L. A.; Melo, G. M. P. de. Fertilidade do solo, estado nutricional e produtividade de girassol, em função da aplicação de lodo de esgoto. Pesquisa Agropecuária Tropical, v.42, p.166-173, 2012. ]

SBCS – Sociedade Brasileira de Ciência do Solo. Comissão de Química e Fertilidade do Solo - RS/SC. Manual de adubação e de calagem para os Estados do Rio Grande do Sul e de Santa Catarina. Porto Alegre: SBCS-NRS, 2004. 400p. [ Links ]

Schwerz, F.; Caron, B. O.; Elli, E. F.; Oliveira, D. M. de; Monteiro, G. C.; Souza, V. Q. de. Avaliação do efeito de doses e fontes de nitrogênio sobre variáveis morfológicas, interceptação de radiação e produtividade do girassol. Revista Ceres, v.63, p.380-386, 2016. ]

Silva, H. P. da; Brandão Júnior, D. da S.; Neves, J. M. G.; Sampaio, R. A.; Duarte, R. F.; Oliveira, A. S. Qualidade de sementes de Helianthus annuus L. em função da adubação fosfatada e da localização na inflorescência. Ciência Rural, v.41, p.1160-1165, 2011. ]

Tedesco, M. J.; Gianello, C.; Bissani, C. A.; Bohnen, H.; Volkweiss, S. J. Análises de solo, plantas e outros materiais. 2.ed. Porto Alegre: Universidade Federal do Rio Grande do Sul, 1997. 174p. Boletim Técnico, 5 [ Links ]

Tomich, T. R.; Rodrigues, J. A. S.; Gonçalves, L. C.; Tomich, R. G. P.; Carvalho, A. U. Potencial forrageiro de cultivares de girassol produzidos na safrinha para ensilagem. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.55, p.756-762, 2003. ]

Received: May 18, 2017; Accepted: September 05, 2017 (Corresponding author)

Creative Commons License This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.