Acessibilidade / Reportar erro

The Comparative Photosynthetic Responses of Pinus caribaea var. caribaea and Pinus tropicalis, from Western Cuba

Abstract

This study aimed to evaluate the photosynthetic responses of Pinus caribaea Morelet var. caribaea Barret & Golfari and Pinus tropicalis Morelet in the ecological conditions of Pinar del Río, Cuba. Data were collected in March 2015 using an open system IRGA-porometer LI-6400. The response of both species was measured by increasing concentrations of carbon dioxide and photosynthetically active radiation. Results indicated that under the same environmental conditions, P. caribaea var. caribaea is more productive than P. tropicalis, since P. caribaea var. caribaea, showed higher values of net CO2 assimilation and reaching the CO2 compensation point at 77 μmol mol-1, against the 113 μmol mol-1 registered by P. tropicalis. The species P. caribaea var. caribaea reached light saturation at lower values than P. tropicalis, and showed greater efficiency for the carboxylation of Rubisco. The results indicated that both species perform C3 photosynthetic mechanism.

Keywords:
CO2 compensation point; photosynthesis; Pinus; net assimilation rate; photosynthetic active radiation

1. INTRODUCTION AND OBJECTIVES

Primary processes such as gas exchange and water relations primarily determine plant development (Taiz & Zeiger, 2006Taiz L, Zeiger E. Fisiología vegetal. Los Angeles: Universidad de California; 2006. v. 2.), and therefore, studying the influence of the environment is important for understanding plant habitats and niches (Bertrand et al., 2017Bertrand C, Devin S, Mouneyrac C, Giambérini L. Eco-physiological responses to salinity changes across the freshwater-marine continuum on two euryhaline bivalves: Corbicula fluminea and Scrobicularia plana. Ecological Indicators 2017; 74: 334-342. 10.1016/j.ecolind.2016.11.029
https://doi.org/10.1016/j.ecolind.2016.1...
).

The evolution of ecology and eco-physiology as integrative sciences of the biology of organisms, and relationships with both its physical habitat and their co-inhabitants are experimental sciences that generate basic knowledge; therefore, they participate in the process of planning and forecasting production (Kimball et al., 2016Kimball S, Funk JL, Sandquist DR, Ehleringer JR. Ecophysiological considerations for restoration. In: Kimball S, Funk JL, Sandquist DR, Ehleringer JR, editors. Foundations of restoration ecology. Washington, DC: Island Press; 2016. p. 153-181. 10.5822/978-1-61091-698-1_6
https://doi.org/10.5822/978-1-61091-698-...
). Ecological principles can generate new paradigms and deliver management recommendations for production systems, which are more suited to each particular habitat; besides, they are more environmentally friendly (Diaz, 2001Diaz M. Ecología experimental y ecofisiología: bases para el uso sostenible de los recursos naturales de las zonas áridas neo-tropicales. Interciencia 2001; 26: 472-478.).

These perspectives allow us to determine which attributes are large-scale eco-physiological parameters in order to ensure pertinent management and better planned use of forest resources, on the basis of scientifically sound and well-understood mechanisms of acclimation and adaptation of the plant development.

Physiological techniques have enabled incorporating information related to the functional features of the state of the plants (Pelegrín et al., 2005Pelegrín EG, Vallejo VR, Rubio E, Domenech RT, Miranda EC, Carmona AV et al. El papel de la ecofisiología en la restauración forestal de ecosistemas mediterráneos. Investigación Agraria: Sistemas y Recursos Forestales 2005; 14(3): 446-461.; Singh & Nangoy, 2016Singh S, Nangoy RC. Method and apparatus for fast gas exchange, fast gas switching, and programmable gas delivery. United States patent US 9305810. 2016.). Gas exchange is one of the most frequently used eco-physiological variables (Koussoroplis et al., 2017Koussoroplis AM, Pincebourde S, Wacker A. Understanding and predicting physiological performance of organisms in fluctuating and multifactorial environments. Ecological Monographs 2017; 87(2): 178-197. 10.1002/ecm.1247
https://doi.org/10.1002/ecm.1247...
; Vallejo et al., 2003Vallejo VR, Cortina J, Vilagrosa A, Seva JP, Alloza JA. Problemas y perspectivas de la utilizacion de lenosas autoctonas en la restauracion forestal. In: Rey-Benayas JM, Espigares T, Nicolau JM, editors. Restauracion de ecosistemas mediterraneos. Madrid: Universidad de Alcalá; 2003. p. 11-42.). Thus, the assessment of this variable has become more complex and opened up a wide spectrum for the interpretation of the plants’ response, ranging from purely morphological traits to addressing the function of a species (Vilagrosa et al., 2005Vilagrosa AJ, Cortina E, Rubio R, Trubat E, Chirino E, Pelegrín EG et al. El papel de la edcofisiología en la restauración forestal de ecosistemas mediterráneos. Investigación Agraria: Sistemas y Recursos Forestales 2005; 14(3): 446-461.).

Pine forests are relevant given their position, due to their physiognomic range, the diversity of their uses and a high economic and ecological value (Torngern et al., 2017Torngern P, Oren R, Oishi AC, Uebelherr JM, Palmroth S, Tarvainen L et al. Ecophysiological variation of transpiration of pine forests: synthesis of new and published results. Ecological Applications 2017; 27: 118-133. 10.1002/eap.1423
https://doi.org/10.1002/eap.1423...
). In Western Cuba, forests are composed only by two endemic pine species, of which little is known about their ecophysiology. Also, there is a lack of specific studies on the photosynthetic response to allow the understanding of the levels of productivity. Therefore, the study of the environment-species relationships in the ecological conditions of Pinar del Río deserves special attention. This research aimed to evaluate and compare the photosynthetic response of P. caribaea and P. tropicalis in the same ecological conditions.

2. MATERIALS AND METHODS

2.1 Geographical location and sample selection

The trial was conducted in an experimental area of the Pinar del Río Botanical Garden, located at 22°20’45” N, 84°00’40” W, at an altitude of 196 masl. The site has clayey soil, with little organic matter content, gravel, and has low natural fertility; annual rainfall of 1,600 mm and an average temperature of 24.2 °(Frías, 2013Frías TM, Pérez-Díaz N, Castillo-Martínez IC. Evaluación de plantas de Eucalyptus grandis Hill Ex Maiden a los 60 meses de plantadas obtenidas en contenedores con diferentes sustratos y riego de endurecimiento. Revista Cubana de Ciencias Forestales 2013; 1(1): 74-83.; García et al., 2013García Y, Bonilla M, Padilla G, Ares AE. Ecología, silvicultura y conservación de los pinares de la región occidental de Cuba (Pinus caribaea var. caribaea y Pinus tropicalis Morelet). Alicante: Publicaciones Universidad de Alicante; 2013.). We selected five P. caribaea var. caribaea and P. tropicalis, considering their health status, phenotype, development and exposure to light.

2.2. Gas exchange measurements

The gas exchange measurements were performed using the portable photosynthesis device called the IRGA-porometer LI-6400 (Licor, Inc.; Lincoln, NE, USA). Specific measurements of the photosynthetically active radiation (PAR) were conducted in March 2015.

2.3. Photosynthetic kinetics

Photosynthetic kinetics was recorded with five replications in response to different PAR intensities and several levels of intracellular CO2 concentration (Ci) (Tezara et al., 2003Tezara W, Martínez D, Rengifo E, Herrera ANA. Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Annals of Botany 2003; 92(6): 757-765. 10.1093/aob/mcg199
https://doi.org/10.1093/aob/mcg199...
; Tezara et al., 2014Tezara W, Coronel I, Hererra A, Dzib G, Canul-Puc K, Calvo-Irabién LM et al. Photosynthetic capacity and terpene production in populations of Lippia graveolens (Mexican oregano) growing wild and in a common garden in the Yucatán peninsula. Industrial Crops and Products 2014; 57: 1-9. 10.1016/j.indcrop.2014.03.012
https://doi.org/10.1016/j.indcrop.2014.0...
; Warren et al., 2011Warren JM, Iversen CM, Garten CT Jr, Norby RJ, Childs J, Brice D et al. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments. Tree Physiology 2011; 32(6): 799-813. 10.1093/treephys/tpr129
https://doi.org/10.1093/treephys/tpr129...
).

The kinetics in response to Ci was recorded between 11 a.m. and 1 p.m., maintaining the value of the incident radiation on the pine needles (800 μmol m-2s-1). The fit of the curves (Equation 1) was performed using temperature (32 °C) of the chamber assimilation constant, and varying the levels of CO2 Ci from 0 to 600 μmol mol-1, with relative humidity of 23 ± 2% (Tezara et al., 1998Tezara W, Fernández MD, Donoso C, Herrera A. Seasonal changes in photosynthesis and stomatal conductance of five plant species from a semiarid ecosystem. Photosynthetica 1998; 35(3): 399-410. 10.1023/A:1006916419260
https://doi.org/10.1023/A:1006916419260...
).

A = b + d × e K × C i . (1)

where b: CO2-saturated photosynthetic capacity; (Asat) and (b + d) = y ± intercept (Tezara et al., 1998Tezara W, Fernández MD, Donoso C, Herrera A. Seasonal changes in photosynthesis and stomatal conductance of five plant species from a semiarid ecosystem. Photosynthetica 1998; 35(3): 399-410. 10.1023/A:1006916419260
https://doi.org/10.1023/A:1006916419260...
). Carboxylation efficiency (CE) was calculated from the initial slope of the curve.

The kinetics in response to the PAR was carried out from 1 p.m. to 3 p.m., maintaining the concentration of CO2 (400 μmol mol-1) and the temperature of the assimilation chamber (32 °C) constant, varying the humidity of 19 ± 2%, at PAR levels ranging from 0 to 2,000 μmol m-2 s-1, every 2.5 minutes for each PAR level.

Photosynthetic kinetics was recorded with five replications in response to different PAR intensities, and various levels of intracellular Ci, using ideas from Prado & Moraes (1997Prado CDA, Moraes JAV. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions. Photosynthetica 1997; 33(1): 103-112. 10.1023/A:1022183423630
https://doi.org/10.1023/A:1022183423630...
) for fitting the curves.

For kinetics measures, the portable photosynthesis device LI-6400 (Licor, Inc.; Lincoln, NE, USA) was used, because it allows one to control the temperature of the assimilation chamber, the incident radiation on the pine needles using a programmable lamp (6400-02B LED Light source), and the CO2 concentration with a dosing attachment of this gas (6400-01 CO2 Mixer). It also allows one to fix the maximum acceptable variation coefficient for each recorded value; in this case such maximum was set at 2%.

The averages and standard deviation were plotted using the data obtained on the kinetics of assimilation (A) in response to Ci and PAR from the five repetitions. Ci kinetics were determined in three physiological parameters: compensation point, CO2 saturation point, and the efficiency of the Rubisco enzyme (CE) were estimated based on the initial slope of the kinetics obtained (Farquhar & Sharkey, 1982Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 1982; 33: 317-345. 10.1146/annurev.pp.33.060182.001533). On the PAR kinetics, the compensation points and light saturation were determined.

Stomatal conductance and perspiration were monitored for five days, throughout the day in both species, recording values at 8 a.m., 10 a.m., 12 p.m., 2 p.m. and 4 p.m., with IRGA-porometer.

Statistical significance of photosynthetic parameter was assessed through one-way of variance (ANOVA) at p < 0.05, using the SPSS software ver. 22.0.

3. RESULTS AND DISCUSSION

3.1. Kinetics and photosynthetic parameters

The kinetics of assimilation (A) in P. caribaea and P. tropicalis were plotted against intercellular Ci (Figure 1). Such kinetics revealed that with a constant 800 μmol m-2 s-1 PAR, the saturation point (Γ) of photosynthesis occurred at 473 μmol mol-1 Ci for P. caribaea var. caribaea, and at 417 μmol mol-1 CO2 for P. tropicalis. Assimilation was higher in P. caribaea var. caribaea with 11.39 μmol mol-1 CO2 m-2 s-1, while in P. tropicalis it was 7.36 μmol mol-1.

Figure 1
Curves of net photosynthetic rate (A) to intercellular CO2 concentration (Ci) of (a) P. caribaea var. caribaea and (b) P. tropicalis.

The PAR compensation point (Γ), which represents the CO2 concentration, and photosynthesis equals respiration, was 77 μmol mol-1 for P. caribaea var. caribaea; and even higher in P. tropicalis, with values close to 113 μmol mol-1 (Figure 2). These values correspond to plants with C3 metabolism according Begon et al. (1988Begon M, Harper JL, Townsend CR. Ecología: individuos, poblaciones y comunidades. Barcelona: Omega; 1988.), and indicate that P. caribaea var. caribaea showed higher photosynthetic efficiency under the same ecological conditions for both species, such as soil nutrient content, light and water availability, and topography.

Figure 2
CO2 compensation point for (a) P. caribaea var. caribaea and (b) P. tropicalis.

Carboxylation efficiency for both species (equivalent to the slope of the line drawn with the points recorded from 0 to 200 μmol of CO2 per mole) was 0.046 μmol per mole of CO2 air for P. caribaea var. caribaea, indicating that Rubisco is more efficient in the capture of CO2 in comparison to P. tropicalis which showed an efficiency of 0.038 μmol mol-1.

In response to PAR, the kinetics of A depending on the light (PAR) is shown in Figure 3. In this case, a constant concentration of CO2 of 400 μmol mol-1, P. caribaea var. caribaea reached photo-saturation with 1,509 μmol m-2s-1, with a rate of A of CO2 close to 6 μmol m-2s-1. The light compensation point occurred at 37 μmol m-2s-1 with an A zero, since this is when photosynthesis matches respiration. Similar results were obtained by Ingwers et al. (2016Ingwers MW, Urban J, McGuire MA, Bhuiyan RA, Teskey RO. Physiological attributes of three- and four-needle fascicles of loblolly pine (Pinus taeda L.). Trees 2016; 30: 1923-1933. 10.1007/s00468-016-1421-6
https://doi.org/10.1007/s00468-016-1421-...
) in a study of physiological attributes of three and four needle fascicles of Pinus taeda (loblolly pine), where they obtained an assimilation of 4 μmol m-2s-1.

Figure 3
Curves of assimilation of CO2 (A) to photosynthetically active radiation (PAR) of P. caribaea var. caribaea (Pc) and P. tropicalis (Pt) (a), and Light compensation point for P. caribaea var. caribaea and P. tropicalis (b).

In P. tropicalis, the light saturation reached 1,605 m-2s-1, with a rate of an A of CO2 close to 9 μmol m-2s-1, and the light compensation point occurred at 31 μmol m-2s-1. These results also indicate that P. caribaea var. caribaea under these ecological conditions photo-saturates at slightly lower values than P. tropicalis. García et al. (2013García Y, Bonilla M, Padilla G, Ares AE. Ecología, silvicultura y conservación de los pinares de la región occidental de Cuba (Pinus caribaea var. caribaea y Pinus tropicalis Morelet). Alicante: Publicaciones Universidad de Alicante; 2013.) gave requirements concerning light, in which P. tropicalis presents a more heliophilous character than P. caribaea var. caribaea. In the case of Pinus strobus, Fréchette et al. (2016Fréchette E, Chang CYY, Ensminger I. Photoperiod and temperature constraints on the relationship between the photochemical reflectance index and the light use efficiency of photosynthesis in Pinus strobus. Tree Physiology 2016; 36: 311-324. 10.1093/treephys/tpv143
https://doi.org/10.1093/treephys/tpv143...
) observed that, under different light conditions, it reached values of assimilation close to 9 CO2 μmol m-2s-1 and compensation point values between 20 and 45 μmol m-2s-1. On the other hand, Busch et al. (2007Busch F, Hüner NPA, Ensminger I. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer jack pine. Plant Physiology 2007; 143: 1242-1251. 10.1104/pp.106.092312
https://doi.org/10.1104/pp.106.092312...
) obtained values of assimilation lower than 3 CO2 μmol m-2s-1 for Pinus banksiana (Jack pine).

Table 1 shows the ANOVA analysis of the two variables of pine species: assimilation (A), saturation point (Γ) and carboxylation efficiency (CE). The results indicated that they have significant (sig.) difference in the photosynthetic parameters (p < 0.005).

Table 1
ANOVA for photosynthetic parameters.

The results above are in agreement with the behavior of the transpiration rates and stomatal conductance reached by both pine species (Figure 4). As observed, P. caribaea recorded values are higher than P. tropicalis. It is known that both stomatal conductance and transpiration are indicators of stomatal opening, which favors the entry of CO2 into the cellular interior and consequently manifests itself in greater photosynthetic activity (Anev et al., 2016Anev S, Ivanova A, Tzvetkova N, Panayotov M, Yurukov S. Stomatal control on photosynthesis in drought-treated subalpine pine saplings. 2. Genetics and Plant Physiology 2016; 6(1-2), 43-53.; Azcón-Bieto & Talón, 2008; García et al., 2014García JNG, Fischer G, Melgarejo LM. Relación entre la densidad estomática, la transpiración y las condiciones ambientales en Feijoa (Acca sellowiana [o. Berg] Burret). Revista UDCA Actualidad & Divulgación Científica 2014; 17(1): 115-121.; Hogan et al., 1995Hogan KP, Smith AP, Samaniego M. Gas exchange in six tropical semi-deciduous forest canopy tree species during the wet and dry seasons. Biotropica 1995; 27(3): 324-333. 10.2307/2388918
https://doi.org/10.2307/2388918...
). This indicates that P. caribaea reaches higher rates of CO2 fixation and is more productive.

Figure 4
Measures of stomatal conductance for P. caribaea var. caribaea (Pc) and P. tropicalis (Pt) (a). Transpiration for P. caribaea var. caribaea (Pc) and P. tropicalis (Pt) (b).

Many studies based on experiments under greenhouse conditions reveal that changes in stomatal conductance were the main cause of decreased photosynthesis. Different studies (Flexas & Medrano, 2002Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 2002; 89(2): 183-189. 10.1093/aob/mcf027
https://doi.org/10.1093/aob/mcf027...
; Galmés et al., 2011Galmés J, Conesa MÀ, Ochogavía JM, Perdomo JA, Francis DM, Ribas-Carbó M et al. Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell & Environment 2011; 34(2): 245. 10.1111/j.1365-3040.2010.02239.x
https://doi.org/10.1111/j.1365-3040.2010...
; Saibo et al., 2009Saibo NJ, Lourenço T, Oliveira MM. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany 2009; 103(4): 609-623. 10.1093/aob/mcn227
https://doi.org/10.1093/aob/mcn227...
) led to the conclusion that a reduced rate of photosynthesis had a strong correlation with conductance as shown in potted grape wine plants. This strong relation led to the assumption that the down regulation of photosynthesis depends more on the availability of CO2 in the chloroplast than on leaf water content or water potential.

Riikonen et al. (2016Riikonen J, Kettunen N, Gritsevich M, Hakala T, Särkkä L, Tahvonen R. Growth and development of Norway spruce and Scots pine seedlings under different light spectra. Environmental and Experimental Botany 2016; 121: 112-120. 10.1016/j.envexpbot.2015.06.006
https://doi.org/10.1016/j.envexpbot.2015...
) found that, for Picea abies and Pinus sylvestris, the assimilation values were lower than 4 μmol m-2s-1 and stomatal conductance less than 0.10 mol m-2s-1.

Conifers of western Cuba, although sharing the same habitat, respond in different ways to the ecological conditions of Pinar del Río. P. caribaea var. caribaea is more productive with higher values of CO2 assimilation, reaching its CO2 compensation point and light saturation at lower values than P. tropicalis and has greater efficiency at the carboxylation of Rubisco. These results can be attributed to the anatomical features of their needles and fundamentally to the difference in the number of stomata per unit area, where a greater amount has been reported for P. caribaea var. caribaea (García et al., 2013García Y, Bonilla M, Padilla G, Ares AE. Ecología, silvicultura y conservación de los pinares de la región occidental de Cuba (Pinus caribaea var. caribaea y Pinus tropicalis Morelet). Alicante: Publicaciones Universidad de Alicante; 2013.; Pérez del Valle et al., 2016Pérez del Valle L, Geada López G, Armas Armas I, Piloto Casado JA. Variación anatómica de acículas de Pinus caribaea var. caribaea Barrett y Golfari en seis localidades de Pinar del Río. Revista Forestal Baracoa 2016; 35: 1-8.). The species P. caribaea var. caribaea presents more needles per fascicle than P. tropicalis, which could explain its higher productivity. Ingwers et al. (2016Ingwers MW, Urban J, McGuire MA, Bhuiyan RA, Teskey RO. Physiological attributes of three- and four-needle fascicles of loblolly pine (Pinus taeda L.). Trees 2016; 30: 1923-1933. 10.1007/s00468-016-1421-6
https://doi.org/10.1007/s00468-016-1421-...
) reported higher assimilation of CO2 when Pinus taeda presented four needles per fascicle.

This study shows that both species perform a C3 photosynthetic mechanism. The obtained results contribute to the scientific basis for the prudent and planned management of pine species, which will contribute to optimize forest production. The gas exchange processes under the controlled environmental conditions of Pinar del Río allow a better understanding of the differences between the species, which provides key information for the foresters who are dedicated to the establishment of mixed masses of P. caribaea species and P. tropicalis. This will allow decisions to independently establish these species in a way that optimizes their growth, survival, development and production.

4. CONCLUSIONS

The species P. caribaea var. caribaea presented greater photosynthetic efficiency than P. tropicalis in the same ecological conditions, expressed through measures of assimilation of CO2, light compensation point, stomatal conductance and transpiration. The differences found can be attributed to the anatomical characteristics of their needles and fundamentally to the difference in the number of stomata per unit area, which infers a more productive character. These results provide valuable information for the management of the two pine species that are established as a mixture in the western zone of Cuba.

ACKNOWLEDGEMENTS

The authors thank the Universidad Estatal Amazónica for the financial support.

REFERENCES

  • Anev S, Ivanova A, Tzvetkova N, Panayotov M, Yurukov S. Stomatal control on photosynthesis in drought-treated subalpine pine saplings. 2. Genetics and Plant Physiology 2016; 6(1-2), 43-53.
  • Azcón-Bieto J, Talón M. Fundamentos de fisiología vegetal. Madrid: McGraw-Hill; 2008.
  • Begon M, Harper JL, Townsend CR. Ecología: individuos, poblaciones y comunidades. Barcelona: Omega; 1988.
  • Bertrand C, Devin S, Mouneyrac C, Giambérini L. Eco-physiological responses to salinity changes across the freshwater-marine continuum on two euryhaline bivalves: Corbicula fluminea and Scrobicularia plana. Ecological Indicators 2017; 74: 334-342. 10.1016/j.ecolind.2016.11.029
    » https://doi.org/10.1016/j.ecolind.2016.11.029
  • Busch F, Hüner NPA, Ensminger I. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer jack pine. Plant Physiology 2007; 143: 1242-1251. 10.1104/pp.106.092312
    » https://doi.org/10.1104/pp.106.092312
  • Diaz M. Ecología experimental y ecofisiología: bases para el uso sostenible de los recursos naturales de las zonas áridas neo-tropicales. Interciencia 2001; 26: 472-478.
  • Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 1982; 33: 317-345. 10.1146/annurev.pp.33.060182.001533
  • Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 2002; 89(2): 183-189. 10.1093/aob/mcf027
    » https://doi.org/10.1093/aob/mcf027
  • Fréchette E, Chang CYY, Ensminger I. Photoperiod and temperature constraints on the relationship between the photochemical reflectance index and the light use efficiency of photosynthesis in Pinus strobus. Tree Physiology 2016; 36: 311-324. 10.1093/treephys/tpv143
    » https://doi.org/10.1093/treephys/tpv143
  • Frías TM, Pérez-Díaz N, Castillo-Martínez IC. Evaluación de plantas de Eucalyptus grandis Hill Ex Maiden a los 60 meses de plantadas obtenidas en contenedores con diferentes sustratos y riego de endurecimiento. Revista Cubana de Ciencias Forestales 2013; 1(1): 74-83.
  • Galmés J, Conesa MÀ, Ochogavía JM, Perdomo JA, Francis DM, Ribas-Carbó M et al. Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell & Environment 2011; 34(2): 245. 10.1111/j.1365-3040.2010.02239.x
    » https://doi.org/10.1111/j.1365-3040.2010.02239.x
  • García JNG, Fischer G, Melgarejo LM. Relación entre la densidad estomática, la transpiración y las condiciones ambientales en Feijoa (Acca sellowiana [o. Berg] Burret). Revista UDCA Actualidad & Divulgación Científica 2014; 17(1): 115-121.
  • García Y, Bonilla M, Padilla G, Ares AE. Ecología, silvicultura y conservación de los pinares de la región occidental de Cuba (Pinus caribaea var. caribaea y Pinus tropicalis Morelet). Alicante: Publicaciones Universidad de Alicante; 2013.
  • Hogan KP, Smith AP, Samaniego M. Gas exchange in six tropical semi-deciduous forest canopy tree species during the wet and dry seasons. Biotropica 1995; 27(3): 324-333. 10.2307/2388918
    » https://doi.org/10.2307/2388918
  • Ingwers MW, Urban J, McGuire MA, Bhuiyan RA, Teskey RO. Physiological attributes of three- and four-needle fascicles of loblolly pine (Pinus taeda L.). Trees 2016; 30: 1923-1933. 10.1007/s00468-016-1421-6
    » https://doi.org/10.1007/s00468-016-1421-6
  • Kimball S, Funk JL, Sandquist DR, Ehleringer JR. Ecophysiological considerations for restoration. In: Kimball S, Funk JL, Sandquist DR, Ehleringer JR, editors. Foundations of restoration ecology. Washington, DC: Island Press; 2016. p. 153-181. 10.5822/978-1-61091-698-1_6
    » https://doi.org/10.5822/978-1-61091-698-1_6
  • Koussoroplis AM, Pincebourde S, Wacker A. Understanding and predicting physiological performance of organisms in fluctuating and multifactorial environments. Ecological Monographs 2017; 87(2): 178-197. 10.1002/ecm.1247
    » https://doi.org/10.1002/ecm.1247
  • Pelegrín EG, Vallejo VR, Rubio E, Domenech RT, Miranda EC, Carmona AV et al. El papel de la ecofisiología en la restauración forestal de ecosistemas mediterráneos. Investigación Agraria: Sistemas y Recursos Forestales 2005; 14(3): 446-461.
  • Pérez del Valle L, Geada López G, Armas Armas I, Piloto Casado JA. Variación anatómica de acículas de Pinus caribaea var. caribaea Barrett y Golfari en seis localidades de Pinar del Río. Revista Forestal Baracoa 2016; 35: 1-8.
  • Perez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernández, JE, Sebastiani L et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany 2014; 65(12): 3143-3156. 10.1093/jxb/eru160
    » https://doi.org/10.1093/jxb/eru160
  • Prado CDA, Moraes JAV. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions. Photosynthetica 1997; 33(1): 103-112. 10.1023/A:1022183423630
    » https://doi.org/10.1023/A:1022183423630
  • Riikonen J, Kettunen N, Gritsevich M, Hakala T, Särkkä L, Tahvonen R. Growth and development of Norway spruce and Scots pine seedlings under different light spectra. Environmental and Experimental Botany 2016; 121: 112-120. 10.1016/j.envexpbot.2015.06.006
    » https://doi.org/10.1016/j.envexpbot.2015.06.006
  • Saibo NJ, Lourenço T, Oliveira MM. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany 2009; 103(4): 609-623. 10.1093/aob/mcn227
    » https://doi.org/10.1093/aob/mcn227
  • Singh S, Nangoy RC. Method and apparatus for fast gas exchange, fast gas switching, and programmable gas delivery. United States patent US 9305810. 2016.
  • Taiz L, Zeiger E. Fisiología vegetal. Los Angeles: Universidad de California; 2006. v. 2.
  • Tezara W, Coronel I, Hererra A, Dzib G, Canul-Puc K, Calvo-Irabién LM et al. Photosynthetic capacity and terpene production in populations of Lippia graveolens (Mexican oregano) growing wild and in a common garden in the Yucatán peninsula. Industrial Crops and Products 2014; 57: 1-9. 10.1016/j.indcrop.2014.03.012
    » https://doi.org/10.1016/j.indcrop.2014.03.012
  • Tezara W, Fernández MD, Donoso C, Herrera A. Seasonal changes in photosynthesis and stomatal conductance of five plant species from a semiarid ecosystem. Photosynthetica 1998; 35(3): 399-410. 10.1023/A:1006916419260
    » https://doi.org/10.1023/A:1006916419260
  • Tezara W, Martínez D, Rengifo E, Herrera ANA. Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Annals of Botany 2003; 92(6): 757-765. 10.1093/aob/mcg199
    » https://doi.org/10.1093/aob/mcg199
  • Torngern P, Oren R, Oishi AC, Uebelherr JM, Palmroth S, Tarvainen L et al. Ecophysiological variation of transpiration of pine forests: synthesis of new and published results. Ecological Applications 2017; 27: 118-133. 10.1002/eap.1423
    » https://doi.org/10.1002/eap.1423
  • Vallejo VR, Cortina J, Vilagrosa A, Seva JP, Alloza JA. Problemas y perspectivas de la utilizacion de lenosas autoctonas en la restauracion forestal. In: Rey-Benayas JM, Espigares T, Nicolau JM, editors. Restauracion de ecosistemas mediterraneos. Madrid: Universidad de Alcalá; 2003. p. 11-42.
  • Vilagrosa AJ, Cortina E, Rubio R, Trubat E, Chirino E, Pelegrín EG et al. El papel de la edcofisiología en la restauración forestal de ecosistemas mediterráneos. Investigación Agraria: Sistemas y Recursos Forestales 2005; 14(3): 446-461.
  • Warren JM, Iversen CM, Garten CT Jr, Norby RJ, Childs J, Brice D et al. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments. Tree Physiology 2011; 32(6): 799-813. 10.1093/treephys/tpr129
    » https://doi.org/10.1093/treephys/tpr129
  • Yang Y, Li C. Photosynthesis and growth adaptation of Pterocarya stenoptera and Pinus elliottii seedlings to submergence and drought. Photosynthetica 2016; 54(1): 120-129. 10.1007/s11099-015-0171-9
    » https://doi.org/10.1007/s11099-015-0171-9
  • 1
    Associate editor: João Latorraca

Publication Dates

  • Publication in this collection
    21 Feb 2020
  • Date of issue
    2020

History

  • Received
    30 Mar 2017
  • Accepted
    31 July 2018
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro Rodovia BR 465 Km 7, CEP 23897-000, Tel.: (21) 2682 0558 | (21) 3787-4033 - Seropédica - RJ - Brazil
E-mail: floram@ufrrj.br