Acessibilidade / Reportar erro

Could leaf morphoanatomy characters help in the delimitation of Dyckia selloa complex?

ABSTRACT

Among species of the genus Dyckia Schult. & Schult. f. there are 13 endemic species of the Brazilian states of Rio Grande do Sul and Santa Catarina informally treated as the Dyckia selloa complex. This study employed standard plant anatomy techniques to investigate variation in leaf morphology of species belonging to the genus Dyckia with a focus of establishing characters that help delimit the Dyckia selloa complex. The results allowed the survey of morphological and anatomical characters important for the characterization of species. Such characters include color of spines, the presence of water-storage parenchyma and mechanical hypodermis on both leaf surfaces, and the presence of tetracytic stomata on only the abaxial surface. Analyses support the current delimitation of the complex and recommend the investigation of reproductive and/or vegetative organs to better understand the relationships among these species of Dyckia.

Keywords:
Plant morphology; plant anatomy; leaf anatomy; species complex

Introduction

The genus Dyckia Schult. & Schult. f. (Bromeliaceae) comprises 179 species (Gouda et al. 2023Gouda EJ, Butcher D, Dijkgraaf L. 2023. Encyclopaedia of Bromeliads. Version 5. http://bromeliad.nl/encyclopedia/. 14 Jan. 2023.
http://bromeliad.nl/encyclopedia/...
, cont. updated) occurring in Argentina, Bolivia, Paraguay, Uruguay and in almost all regions of Brazil (Smith & Downs 1974Smith LB, Downs RJ. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica. Monograph No. 14. New York, Hafner Press.; Büneker et al. 2021Büneker HM, Guarçoni EAE, Santos-Silva F, Forzza RC. 2021 Dyckia In: BFG - The Brazil Flora Group. Coleção Flora do Brasil 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro , p. 725-1050.), occurring mainly on rocky outcrops, slopes and/or cliffs, and often on nutrient-poor soils with scarce water supply and high sun exposure (Smith & Downs 1974Smith LB, Downs RJ. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica. Monograph No. 14. New York, Hafner Press.; Reitz 1983Reitz R. 1983. Bromeliáceas e a Malária - Bromélia endêmica. In: Reitz R. Flora ilustratada catarinense. Itajaí, Herbário Barbosa Rodrigues.; Givnish et al. 2007Givnish TJ, Millam KC, Berry PE, Systma KJ. 2007. Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23: 3-26.). A total of 130 accepted species occurs in Brazil, of which 121 are endemic (Büneker et al. 2020Büneker HM, Guarçoni EAE, Santos-Silva F, Forzza RC. 2020. Dyckia In: Flora do Brasil. 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB6046. 6 Mar. 2023
http://floradobrasil.jbrj.gov.br/reflora...
, cont. updated). Dyckia species are terrestrial and rupicolous plants, they have rhizomes strong and functional (Strehl & Beheregaray 2006Strehl T, Beheregaray LB. 2006. Morfologia de sementes do Gênero Dyckia subfamília Pitcairnioideae (Bromeliaceae). Pesquisas Botânicas 57: 103-120. ). The leaves are rigid, thick and leathery, with convex sides and fleshy mesophyll, arranged in an imbricate rosette phyllotaxy (Reitz 1983Reitz R. 1983. Bromeliáceas e a Malária - Bromélia endêmica. In: Reitz R. Flora ilustratada catarinense. Itajaí, Herbário Barbosa Rodrigues.). The inflorescences are racemose, ranging from simple to paniculate (Reitz 1983Reitz R. 1983. Bromeliáceas e a Malária - Bromélia endêmica. In: Reitz R. Flora ilustratada catarinense. Itajaí, Herbário Barbosa Rodrigues.). The flowers can be red, orange or yellow and are trimerous with a superior ovary (Reitz 1983Reitz R. 1983. Bromeliáceas e a Malária - Bromélia endêmica. In: Reitz R. Flora ilustratada catarinense. Itajaí, Herbário Barbosa Rodrigues.). The fruit is capsular with biscidal dehiscence (Fagundes & Mariath 2010Fagundes NF, Mariath JEA. 2010. Morphoanatomy and ontogeny of fruit in Bromeliaceae species. Acta Botanica Brasilica 24: 765-779. ).

The circumscription of Dyckia has been the subject of several morphological and taxonomic studies in recent years, with several authors using informal categories to group species with morphological similarities (e.g., Dyckia macedoi complex and Dyckia saxatilis complex by Guarçoni (2015Guarçoni EAE. 2015. Estudos taxonômicos e de anatomia foliar em espécies de Dyckia Schult. & Schult. f. (Bromeliaceae, Pitcairnioideae) PhD Thesis, Universidade Federal de Viçosa, Brazil.), Dyckia ferruginea complex and Dyckia selloa complex by Büneker et al. (2021)Büneker HM, Guarçoni EAE, Santos-Silva F, Forzza RC. 2021 Dyckia In: BFG - The Brazil Flora Group. Coleção Flora do Brasil 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro , p. 725-1050.). Among these species complexes, the Dyckia selloa complex is particularly interesting for being endemic to the Brazilian states of Rio Grande do Sul and Santa Catarina (Büneker et al. 2021Büneker HM, Guarçoni EAE, Santos-Silva F, Forzza RC. 2021 Dyckia In: BFG - The Brazil Flora Group. Coleção Flora do Brasil 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro , p. 725-1050.) and for having been delimited based on in an unique combination of the morphological characteristics for the genus. According Büneker & Mariath (2022)Büneker HM, Mariath JEA. 2022. Dyckia pseudodelicata, a new species of the D. selloa complex (Bromeliaceae, Pitcairnioideae) from Rio Grande do Sul, Brazil. Phytotaxa 550: 59-70. the Dyckia selloa complex which was previously treated as the genus Prionophyllum by Koch (1873Koch K. 1873. Index seminum in horto botanico berolinensi anno 1873 collectorum. Appendix quarta ad indicem seminum horti botanici Berolinenensis anni 1873. Berlin.) and Mez (1896Mez C. 1896. Bromeliaceae. In: De Candolle C. (ed.) Monographiae Phanerogamarum. Paris, Sumptibus Masson., 1935Mez C. 1935 Bromeliaceae. In: Engler A (ed.). Das Pflanzenreich, regni vegetabilis conspectus. Vol 4. Leipzig, W. Engelmann .), Dyckia subg. Prionophyllum by Baker (1889Baker JG. 1889. Handbook of the Bromeliaceae. London, George Bell and Sons.), the Prionophyllum group by Leme et al. (2012Leme EMC, Ribeiro OBC, Miranda ZJG. 2012. New species of Dyckia (Bromeliaceae) from Brazil. Phytotaxa 67: 9-37.) and Krapp & Eggli (2019Krapp F, Eggli U. 2019. Dyckia, Bromeliaceae. In: Eggli U, Nyffeler R (eds.). Illustrated Handbook of Succulent Plants: Monocotyledons. 2nd. edn. Springer, Berlin. p. 1-71.), or the D. maritima complex by Strehl & Beheregaray (2006Strehl T, Beheregaray LB. 2006. Morfologia de sementes do Gênero Dyckia subfamília Pitcairnioideae (Bromeliaceae). Pesquisas Botânicas 57: 103-120. ) and Büneker et al. (2015)Büneker HM, Pontes RC, Witeck-Neto L. 2015. Taxonomic study of Dyckia maritima complex (Bromeliaceae, Pitcairnioideae): Preliminary results. In: Benko-Iseppon AM, Alves A, Louzada R (eds.). An overview and abstracts of the First World Congress on Bromeliaceae Evolution. Rodriguésia 66: A1-A66. . According to these authors the Dyckia selloa complex currently consists of 13 species: D. agudensis Irgang & Sobral, D. alba S.Winkl., D. delicata Larocca & Sobral, D. hebdingii L.B.Sm., D. maritima Baker, D. myriostachya Baker, D. nigrospinulata Strehl, D. pseudodelicata Büneker & Mariath, D. retardata S.Winkl., D. retroflexa S.Winkl., D. rigida Strehl, D. selloa (K.Koch) Baker, and D. tomentosa Mez. Büneker & Mariath (2022) Büneker HM, Mariath JEA. 2022. Dyckia pseudodelicata, a new species of the D. selloa complex (Bromeliaceae, Pitcairnioideae) from Rio Grande do Sul, Brazil. Phytotaxa 550: 59-70.emphasize that the group is clearly distinguished from other species of the genus based on morphology, they say the main distinguishing characters are: inflorescences usually composed of first to third order (vs. simple or compound to first order), with numerous first order branches (usually more than 10 vs. less than 10 branches), generally small and inconspicuous floral bracts, numerous flowers (more than 100 vs. less than 80) with non-unguiculate (vs. usually unguiculate) petals, stigma during anthesis usually with erect to suberect (vs. twisted) stigmatic lobes, pauciovulate ovary locules (less than 18 vs. more than 30 ovules) and oblanceoloid (vs. flattened) seeds with a little developed wing. Circumscription attempts (Krapp et al. 2014Krapp F, Pinangé DS, Benko-Iseppon AM, Leme EMC, Weising K. 2014. Phylogeny and evolution of Dyckia (Bromeliaceae) inferred from chloroplast and nuclear sequences. Plant Systematic Evolution 300: 1591-1614.; Schütz et al. 2016Schütz N, Krapp F, Wagner N, Weising K. 2016. Phylogenetics of Pitcairnioideae s.s. (Bromeliaceae): evidence from nuclear and plastid DNA sequence data. Botanical Journal of the Linnean Society 181: 323-342.; Pinangé et al. 2016Pinangé DSB, Krapp F, Zizka G, Silvestro D, Leme EMC, Weising K, Benko-Iseppon AM. 2016. Molecular phylogenetics, historical biogeography and character evolution in Dyckia (Bromeliaceae, Pitcairnioideae). Botanical Journal of the Linnean Society 183: 39-56. ; Gomes-da-Silva et al. 2019Gomes-da-Silva J, Santos-Silva F, Forzza RC. 2019. Does nomenclatural stability justify para/polyphyletic taxa? A phylogenetic classification in the xeric clade Pitcairnioideae (Bromeliaceae). Systematics and Biodiversity 17: 467-490.) and the existence of species complexes within Dyckia evidence the scarcity of morphological characters available for robust delimitations and, thus, the need for studies that complement available information to provide efficient data for taxonomic decisions and circumscriptions.

Morphological and anatomical studies within Bromeliaceae frequently address morphological comparisons between species and ecological adaptations to xeric environments (Tomlinson 1969Tomlinson PB. 1969. III - Commelinales - Zingiberales. In: Metcalfe CR (ed.). Anatomy of the Monocotyledons. Oxford, Clarendon Press. p. 1-446.; Smith & Downs 1974Smith LB, Downs RJ. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica. Monograph No. 14. New York, Hafner Press.; Benzing 2000Benzing DH. 2000. Bromeliaceae: Profile of an adaptive radiation. Cambridge, Cambridge University Press.). In addition to these, some studies have involved morphoanatomical aspects with the aim of helping to delimit taxa (e.g. Santos-Silva 2015Santos-Silva F. 2015. Delimitação específica dos táxons reófitos de Dyckia (Pitcairnioideae, Bromeliaceae). PhD Thesis, Escola Nacional de Botânica Tropical, Brazil.; Carvalho et al. 2016Carvalho JDT, Oliveira JMS, Freitas CC, Martins MS. 2016 Stamen morphoanatomy of Dyckia Schult.f. (Bromeliaceae, Pitcairnioideae) species: New data for taxonomic use. Acta Botanica Brasilica 30: 389-400.; 2017Carvalho JDT, Essi L, Oliveira JMS. 2017. Flower and floral trichome morphology of species of Dyckia Schult. f. (Bromeliaceae, Pitcairnioideae), and their importance to species characterization and genus taxonomy. Acta Botanica Brasilica 31: 19-28.; Guarçoni et al. 2014Guarçoni EAE, Azevedo AA, Costa AF. 2014. Dyckia sulcata (Bromeliaceae), a new species from Minas Gerais, Brazil, with notes on leaf anatomy. Phytotaxa 188: 169-175.; 2017Guarçoni EAE, Azevedo AA, Costa AF. 2017. The restablishment of Dyckia oligantha and D. nana (Bromeliaceae, Pitcairnioideae), belonging to the D. macedoi complex. Phytotaxa 306: 49-65.; Büneker & Mariath 2022Büneker HM, Mariath JEA. 2022. Dyckia pseudodelicata, a new species of the D. selloa complex (Bromeliaceae, Pitcairnioideae) from Rio Grande do Sul, Brazil. Phytotaxa 550: 59-70.). Also of significance are studies that have sought to identify characters of taxonomic value and ecological significance, such as that of Silva & Scatena (2011)Silva IV, Scatena VL. 2011. Anatomia de escapos de espécies de Bromeliaceae da Amazônia, Mato Grosso, Brasil. Hoehnea 38: 51-59., who compared leaf anatomy within the subfamily Tillandsioideae and concluded that, as they are epiphytic, some of the xeromorphic characteristics may represent ancestral adaptations during speciation. Recently, leaf anatomy data have revealed xeromorphic synapomorphies for the genera Deuterocohnia Mez, Dyckia and Encholirium Mart. ex Schult. & Schult. f., mainly the presence of mechanical hypodermis and water-storage parenchyma, which would be related to the occupation and diversification of these genera in the dry region of South America (Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.). As highlighted, leaf anatomical studies within Dyckia can provide data that help to solve taxonomic problems and reveal adaptations that have contributed to the diversification of the group.

Considering that most studies carried out within the Pitcairnioideae and, more specifically, within the genus Dyckia, have focused on the taxonomy and phylogeny of the group (Krapp et al.2014Krapp F, Pinangé DS, Benko-Iseppon AM, Leme EMC, Weising K. 2014. Phylogeny and evolution of Dyckia (Bromeliaceae) inferred from chloroplast and nuclear sequences. Plant Systematic Evolution 300: 1591-1614.; Schütz et al. 2016Schütz N, Krapp F, Wagner N, Weising K. 2016. Phylogenetics of Pitcairnioideae s.s. (Bromeliaceae): evidence from nuclear and plastid DNA sequence data. Botanical Journal of the Linnean Society 181: 323-342.; Pinangé et al. 2016Pinangé DSB, Krapp F, Zizka G, Silvestro D, Leme EMC, Weising K, Benko-Iseppon AM. 2016. Molecular phylogenetics, historical biogeography and character evolution in Dyckia (Bromeliaceae, Pitcairnioideae). Botanical Journal of the Linnean Society 183: 39-56. ; Gomes-da-Silva et al. 2019Gomes-da-Silva J, Santos-Silva F, Forzza RC. 2019. Does nomenclatural stability justify para/polyphyletic taxa? A phylogenetic classification in the xeric clade Pitcairnioideae (Bromeliaceae). Systematics and Biodiversity 17: 467-490.), the investigation of morphoanatomical characters is necessary. This is especially true regarding the analysis of vegetative characters related to leaf anatomy, which can provide data helpful in the delimitation of the Dyckia selloa complex and the species it comprises. Thus, the present study aimed to investigate the leaf morphology of species of Dyckia, with a focus on establishing characters that help delimit the Dyckia selloa complex. More specifically, the aims were to: (1) analyze leaf external and internal morphology; (2) to test which characters are important for species delimitation, and based on this, (3) to check whether the data obtained can be useful for delimiting the Dyckia selloa complex.

Material and methods

Botanical Material

Five to ten individuals from throughout the geographic distribution of each species were collected for morphological and anatomical analyses. Voucher material for each analyzed species is registered in the Herbário do Instituto de Biociências (ICN) - Universidade Federal do Rio Grande do Sul (UFRGS). The following species were included: D. alba, D. agudensis, D. delicata, D. domfelicianensis Strehl (treated as a synonym of D. hebdingii by Büneker et al. 2020Büneker HM, Guarçoni EAE, Santos-Silva F, Forzza RC. 2020. Dyckia In: Flora do Brasil. 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB6046. 6 Mar. 2023
http://floradobrasil.jbrj.gov.br/reflora...
), D. hebdingii, D. polyclada L.B.Sm. sensu Strehl (1998)Strehl T. 1998. Flora Fanerogâmica da Reserva Biológica do Ibicui Mirim, Santa Maria, Rio Grande do Sul. Bromeliaceae. Iheringia, Série Botânica 51: 17-37. (treated as a synonym of D. tomentosa by Büneker et al. 2021Büneker HM, Guarçoni EAE, Santos-Silva F, Forzza RC. 2021 Dyckia In: BFG - The Brazil Flora Group. Coleção Flora do Brasil 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro , p. 725-1050.), D. selloa, D. tomentosa, D. aff. maritima, D. myriostachya, D. nigrospinulata, D. retroflexa and D. rigida (Table 1). The related species D. choristaminea Mez and Bromelia antiacantha Bertol. were used as outgroup taxa for comparisons. The collected individuals for each of the species were included in the Living Collection (LC) of the Laboratório de Anatomia Vegetal - UFRGS.

Table 1
Morphological and anatomical species sampled, with voucher information, number of registration in the Living Collection (LC) (LAVeg-UFRGS) and geographical origin (country: state: city).

Light Microscopy

Fresh leaves were collected from the leaf node right before the inflorescence for observation under light microscopy and stereomicroscopy. Leaves were sectioned transversally, at the median region, and immersed in a fixative solution containing 1% glutaraldehyde and 4% formaldehyde (McDowell & Trump 1976McDowell EM, Trump BF. 1976. Histologic fixatives suitable for diagnostic light and electron microscopy. Archives of Pathology & Laboratory Medicine 100: 405-414.) in a 0.1M sodium phosphate buffer solution pH 7.2 and kept under vacuum for 24 hours. The material was subsequently dehydrated in an ascending ethanol series (Johansen 1940Johansen DA. 1940. Plant microtechinique. New York, MacGraw-Hill.), and after subjected to an alcohol:chloroform series (3:1, 1:1, 3:1), and embedded in hydroxyethylmethacrylate resin (Gerrits & Smid 1983Gerrits PO, Smid L. 1983. A new less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial section. Journal of Microscopy 132: 81-85.). Sections were made using a Leica 2265 rotary microtome, equipped with a high-profile disposable blade, to obtain 3-5 µm in thick sections. The material was stained with 0.1% Toluidine Blue O in 0.1M sodium phosphate buffer pH 4.4 (Feder & O'Brien 1968Feder N, O'Brien TP. 1968. Plant microtechnique: some principles and new methods. American Journal of Botany 55: 123-142.). Images were recorded using a Leica DMR HC microscope equipped with a Zeiss a Zeiss AxioCam digital camera and the free software Carl Zeiss ZEN LITE 2012.

Histochemistry

Fresh leaves were free hand transversally sectioned at the median region of the leaf and used for the histochemical characterization of the cell wall composition as well as the presence of the compounds being stored in the tissues. A Lucifer yellow CH (LYCH) apoplastic tracer (Oparka & Read 1994Oparka KJ, Read N. 1994. The use of fluorescent probes for studies of living plant cells. In: Harris N, Oparka KJ (eds.) Plant Cell Biology: A Practical Approach. Oxford, Oxford University Press. p. 27-50. ) was used to confirm the presence of water-storage parenchyma; Ruthenium red (Jensen 1962Jensen WA. 1962. Botanical histochemistry, principles and practice. San Francisco, W. H. Freeman.) for pectic acids; acidified phloroglucinol generic test (Johansen 1940Johansen DA. 1940. Plant microtechinique. New York, MacGraw-Hill.) for lignins; Mäule test (Jensen 1962Jensen WA. 1962. Botanical histochemistry, principles and practice. San Francisco, W. H. Freeman.) for syringyl lignin; chlorosulfite test (Jensen 1962Jensen WA. 1962. Botanical histochemistry, principles and practice. San Francisco, W. H. Freeman.) for guaiacyl lignin - coniferilic acid; Sudan black B (Johansen 1940Johansen DA. 1940. Plant microtechinique. New York, MacGraw-Hill.) for lipids; and phenol (Johansen 1940Johansen DA. 1940. Plant microtechinique. New York, MacGraw-Hill.) for silica identification (Table S1 Table S1 Histochemical tests used for the identification of cellular compounds in leaf anatomy of Dyckia species. ).

Scanning Electron Microscopy (SEM)

For SEM analysis, fixed leaves were washed with 0.1M sodium phosphate buffer pH 7.2 and immersed in a 2.2-dimethoxypropane (DMP) solution. The samples were critical point dried (BAL-TEC CPD 030) (Gerstberger & Leins 1978Gerstberger P, Leins P. 1978. Rasterelektronenmikroskopische Untersuchungen an Blütenknospen von Physalis philadelphica (Solanaceae). Berichte der Deutschen Botanischen Gesellschaft 91: 381-387.), placed onto stubs and covered with a 10-15nm gold film using a BAL-TEC SPD 050 equipment. The material was analyzed with a JEOL JSM 6060 scanning electron microscope, under 10kV, at the Centro de Microscopia e Microanálise of UFRGS.

Morphological Characters and Multivariate Analysis

Morphological and morphometric data were obtained from morphological observations and measurements performed on fresh and processed material using a caliper and/or stereomicroscope and/or microscope. Characters and character states were defined by reviewing an extensive list of bibliographic references of Bromeliaceae (Eames & Macdaniels 1947Eames AJ, MacDaniels LH. 1947. An Introduction to Plant Anatomy. London, MacGraw-Hill Books Company.; Uphof & Hummel 1962Uphof JC, Hummel K. 1962. Plant Hairs. Gebrueder Borntraeber. Berlin, Nikolassee.; Tomlinson 1969Tomlinson PB. 1969. III - Commelinales - Zingiberales. In: Metcalfe CR (ed.). Anatomy of the Monocotyledons. Oxford, Clarendon Press. p. 1-446.; Smith & Downs 1974Smith LB, Downs RJ. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica. Monograph No. 14. New York, Hafner Press.; Reitz 1983Reitz R. 1983. Bromeliáceas e a Malária - Bromélia endêmica. In: Reitz R. Flora ilustratada catarinense. Itajaí, Herbário Barbosa Rodrigues.; Strehl 1983Strehl T. 1983. Forma, distribuição e flexibilidade dos tricomas foliares usados na filogenia de Bromeliaceae. Iheringia, Série Botânica 31: 105-119.; Benzing 2000Benzing DH. 2000. Bromeliaceae: Profile of an adaptive radiation. Cambridge, Cambridge University Press.; Arruda & Costa 2003Arruda R, Costa A. 2003. Foliar anatomy of five Vriesea sect. Xiphion (Bromeliaceae) species. Selbyana 24: 180-189.; Forzza 2005Forzza RC. 2005. Revisão Taxonômica de Encholirium Mart. ex Schult. & Schult. f. (Piticairnioideae - Bromeliaceae). Boletim de Botânica 23: 1-49. ; Scatena & Segecin 2005Scatena VL, Segecin S. 2005. Anatomia de Tillandsia L. (Bromeliaceae) dos Campos Gerais, Paraná, Brasil. Revista Brasileira de Botânica 28: 635-649.; Souza et al. 2005Souza GM, Estelita MEM, Wanderley MDGL. 2005. Anatomia foliar de espécies brasileiras de Aechmea subg. Chevaliera (Gaudich. ex Beer) Baker, Bromelioideae-Bromeliaceae. Revista Brasileira de Botânica 28: 603-613.; Strehl & Beheregaray 2006Strehl T, Beheregaray LB. 2006. Morfologia de sementes do Gênero Dyckia subfamília Pitcairnioideae (Bromeliaceae). Pesquisas Botânicas 57: 103-120. ; Horres et al. 2007Horres R, Schulte K, Weising K, Zizka G. 2007. Systematics of Bromelioideae (Bromeliaceae) - Evidence from molecular and anatomical studies. Aliso 23: 27-43. ; Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521. and Krahl et al. 2013Krahl A, Holanda ASS, Krahl DRP, Corrêa MM, Oliveira RLC, Valsko JJ. 2013. Anatomia foliar de Ananas lucidus Mill. (Bromeliaceae). Natureza Online 11: 161-165.), which resulted in a matrix with 35 characters, of which 14 were quantitative and 21 qualitative (Table 2).

Table 2
Mean ± standard deviation values for each morphological and anatomical character used in Dyckia species analyses and states for each categorical character.

The resulting matrices were submitted to statistical tests using Pasw Statistics 18, SPSSPasw Statistics 18, SPSS Inc. Chicago. Illinois. USA. 2009. Statistics P.A.S.W 2009 PASW statistics 18 (Release 18.0. 0) [computer software]. Quarry Bay, Hong Kong: IBM. (SPSS Inc., Chicago IL, USA). Simple descriptive statistics (mean, standard deviation, median, coefficient of variation and standard error) were calculated for each quantitative character. Quantitative character states, as well as mean and standard deviation values, are shown in Table 2. Characters were also evaluated for normality and homoscedasticity, while the significance of interspecific variability was estimated for each character using ANOVA (normalized morphometric characters) and the Kruskal-Wallis’s test for the non-normalized morphological characteristics (Table S2 Table S2 Analysis of variance in morphological characters among Dyckia species using one-way ANOVA (1) and Kruskal-Wallis test (2). ). Characters were removed from the matrix when significant variability was not detected (p>0.05).

Two multivariate approaches were employed to identify morphological discontinuities among taxa and to detect characters that could contribute to the delimitation of the Dyckia selloa complex.

The first approach consisted of a Principal Coordinate Analysis (PCoA) of all analyzed characters, both quantitative and qualitative. In this analysis, the characters were discretized into categories and standardized by the Normatization Method - Object Principal. On a second approach, the quantitative characters were subsequently submitted to Discriminant Analysis (DA) to discriminate groups/species of Dyckia. For this analysis, species were defined by probabilities, estimated from the size of the established groups (case-wise test), through the covariance matrix and Fisher's linear predictive model. Thus, the functions that best discriminate the sampled groups were obtained (Table S3 Table S3 Discrimination measures for the first and second dimension (D1 and D2) of Principal Coordinates Analysis (PCoA) and structure matrix with correlation coefficients for the first two discriminant functions (DF1 and DF2) of discriminant analyses (DA) performed on two taxonomic subsets of morphological characters. ).

Results

Morphological and anatomical characters

The analyzed species possess rosette phyllotaxis with succulent, rigid, lanceolate leaf blades ranging from erect to revolute. Aspects of leaf morphology can be seen Figures 1, 2 and Fig. 3, including details of external morphology, morphology in transverse section, and details of spines and epidermis trichomes (Table 2).

Figure 1
External and internal morphology of species of Dyckia: A-D - D. agudensis; E-H - D. alba; I-L - D. delicata; M-P - D. domfelicianensis; Q-T - D. hebdingii; U-X - D. aff. maritima; Y-B' - D. myriostachya. Evidencing in A, E, I, M, Q, U and Y - the general appearance of the plants; in B, F, J, N, R, V and Z - leaf shape in transverse section under stereomicroscopy without staining; in C, K, O, S, W and - detail of adaxial leaf side showing spines and trichomes; in G - detail of abaxial leaf side showing spines and trichomes; and in D, H, L, P, T, X and - detail of the adaxial leaf side and trichome arrangement. (cl = chlorenchyma; sp = spine; wp = water-storage parenchyma; ap = armed parenchyma; t = trichome), ** mechanical hypodermis in adaxial side, * mechanical hypodermis in abaxial side. Scale bar: C, F, G, J, K, N, O, P, S, V, W, Z and A' = 1 mm; B, D, H, L, T, R, X and B' = 0.5 mm; E, I = 2 cm; M, Q, U = 4 cm; and Y= 1 cm.

Figure 2
External and internal morphology of species of Dyckia and Bromelia A-D - D. nigrospinulata; E-H - D. polyclada; I-L - D. retroflexa; M-P - D. rigida; Q-T - D. selloa; U-X - D. tomentosa; Y-B´ - D. choristaminea; C´-F´ - Bromelia antiacantha. Evidencing in A, E, I, M, Q, U, Y and - the general appearance of plants; in B, F, J, N, R, V, Z and - a leaf shape in transverse section under stereomicroscopy without staining; in G, O, S, and - detail of adaxial leaf side showing spines and trichomes; in C, K. W and - detail of abaxial leaf side showing spines and trichomes; in H, P and - detail of the adaxial leaf side and trichome arrangement; and in D, L, T, X and - detail of the abaxial leaf side and trichome arrangement. (cl = chlorenchyma; sp = spine; wp = water-storage parenchyma; ap = armed parenchyma; t = trichomes. Scale bar: A, E, I, M, Q, U, Y and C´ = 2 cm; B, C, D, F, G, J, K, N, O, P, S, V, W, A´, D´, E´ and F´ = 1 mm; H, L, R, T, Z, X and B´= 0.5 mm.

Figure 3
Leaf anatomy of studied species in transverse section. A - Stereomicroscopy transverse section of vascularized spine in D. agudensis. B-C - Detail of abaxial side: showing positive reaction of lignin detection in the hypodermis (acidified phloroglucinol test) in D. nigrospinulata, with indications of intercostal zone (iz) and costal zone (cz) (B); and negative reaction (Maüle's test) for syringyl lignin in D. alba (C). D-H - Transverse section stained with Toluidine Blue O: detail of the stomata and trichomes and silica bodies (D-F) on abaxial side; detail of trichomes and hypodermis on adaxial side (G); and detail of the vascular bundle and raphides (H); D - D. alba; E - D. hebdingii; F-H - D. delicata. I-J - details of the hypodermis in the adaxial side with chlorine-sulfite test in D. rigida (I) and Ruthenium Red in D. domfelicianensis (J). K-P - SEM images: K - details of hypodermis of adaxial side and water-storage parenchyma in D. agudensis; L - idioblast and raphide in D. agudensis; M - trichomes and stomata in intercostal area of abaxial side in D. nigrospinulata; O - trichomes in intercostal area of adaxial side in D. agudensis; N - trichomes in intercostal area of adaxial side in D. selloa; P - trichomes in intercostal area of abaxial side inB. antiacantha; Q - Toluidine Blue staining in transverse section of D. aff. maritima, highlighting the mechanical hypodermis of the abaxial side with asterisc; R - Water-storage and armed parenchyma cells autoflorescence in D. hebdingii; S - Test with LYCH apoplastic tracer florescence showing positive results for water-storage parenchyma in D. hebdingii, with black asterisk for water identification; T - Intermediated armed parenchyma cells staining with toluidine blue in D. aff. maritima; U - Lobed-shaped parenchyma cells with toluidine blue in D. selloa; V - Star-shaped parenchyma with phloroglucinol test in B. antiacantha (* white = indicates thickening of mechanical hypodermis; **black= apoplastic tracer; nvf = non-vascular fibers; hy = hypodermis; ap = armed parenchyma; ph = phloem; id = idioblast; ra = raphides; sb = silica bodies; sp = spine; st = stomata; t = trichomes; vb = vascular bundle; wp = water-storage parenchyma; x = xylem; iz intercostal zone; cz = costal zone; lap= lobe-shaped armed parenchyma; sap= star-shaped armed parenchyma; iap= intermediate armed parenchyma). Scale bar: A = 1 mm; B, C, I, J, M, O and U = 50 μm; D, E, F, G, H and L = 20 μm; K, N, P, R, S and T = 100 μm; Q = 200 μm.

Leaf length exhibited great variation among the analyzed species, with D. rigida having the longest at 1002 mm ± 184.9 (mean ± SD) (Fig. 2M) and D. choristaminea the shortest at 99 mm ± 23.55 (Fig. 2Y). Analysis of the leaf in transversal section allowed the identification of different shapes, these shapes could be elliptical (Figs. 1F, 2Z), narrow elliptical (Figs. 1N, 1V, 1Z, 2B, 2F, 2J, 2R, 2V), short obovate (1J, 1R) or linear (2N, 2D'). Leaf blade color was found to vary from green to grayish-green and whitish and the blades were covered with peltate scales on both sides (Fig. 1K). The leaf margins possess grayish-green (Fig. 1K, 2G, 2S, 2W), brown (Fig. 1G, 1S, 2K, 2O, 2A') or black spines (Fig. 1C, 1O, 1W, 1A', 2C, 2E', 3A), that are often rigid, with the exception of D. delicata, which develops flexible spines (Fig. 1K). Undulations are present on the abaxial leaf surface in transverse section, forming a costal zone and, consequently, establishing intercostal zones (Fig. 3B-F). Costal zone possesses only ordinary epidermal cells whereas the intercostal zone has also specialized cells: trichomes and stomata located together and aligned (Figs. 3D-F and 3E). The leaves are hypostomatic with tetracytic stomatal complexes situated above the level of other epidermal cells and guard cells with equivalent periclinal thickening (Figs. 3D-F). The adaxial leaf surface is generally flat or slightly undulating, causing the formation of depressions in which there is a reduced number of layers of mechanical hypodermis and the insertion of peltate trichomes (Fig. 3G). All analyzed species have unistratified epidermis on both surfaces, with thickening of the anticlinal and inner periclinal walls of the cells, reduced lumen and the presence of silica bodies (Fig. 3D, Table S1 Table S1 Histochemical tests used for the identification of cellular compounds in leaf anatomy of Dyckia species. ).

A mechanical hypodermis is evident in the mesophyll of both leaf sides (Fig. 1B,1I and 3K and 3J), which is where the greatest mean thickness occurs in D. agudensis (10.23 μm ± 2. and the least in B. antiacantha (3.4 μm ± 0.98). This hypodermis presents pits and differentiates strata in all species analyzed, and these strata were firstly observed with the phloroglucinol test (Fig. 3B). Specific histochemical tests permitted the identification of the presence of different cell wall thickening (Table S1 Table S1 Histochemical tests used for the identification of cellular compounds in leaf anatomy of Dyckia species. ). The outermost cells of the hypodermis possess cell walls with coniferilic acid-type (guaiacil) lignin compounds (Fig. 3I). The innermost cells of this hypodermis have cell walls with pectic thickening (Fig. 3J). In transverse section, water-storage parenchyma is present below the mechanical hypodermis of the adaxial side where it occupies on average two thirds of the leaf mesophyll (see histochemical test in Table S1 Table S1 Histochemical tests used for the identification of cellular compounds in leaf anatomy of Dyckia species. ). The thickness of this parenchyma varies among species, with it being the greatest in D. alba (34 μm ± 6.9) (Fig. 1F) and the thinnest in the outgroup taxon B. antiacantha (4.2 μm ± 9.0) (Fig. 2D'). Differences were observed in the shape of the cells of the water-storage parenchyma, which resulted in its classification into two strata. The 1st stratum appears from two to three layers of cells closest to the mechanical hypodermis of the adaxial side and is formed by isodiametric cells. This stratum was thickest in D. alba (4.3 μm ± 0.43) (Fig. 1F) and thinnest in D. delicata (1.05 μm ± 0.42) (Fig. 1J). The cells that make up the 2nd stratum of this tissue extend to the vascular bundles and are anticlinally-elongated, with the greatest thickness in D. alba (32 μm ± 7.2) (Fig. 1F) and the least in B. antiacantha (6.0 µm ± 9.0) (Fig. 2D´).

Water-storage, proved with apoplastic tracer (Fig. 3R-S), and armed parenchyma cells are present in the region of the mesophyll between the vascular bundles up to the abaxial side (e.g. Fig. 3Q). The greatest and least thickness of both tissues in this region are for D. polyclada (11.2 μm ± 2.4) (Fig. 2R) and B. antiacantha (3.6 μm ± 0.9) (Fig. 2D'), respectively. In these species, the cells of the water-storage parenchyma are polygonal, which may or may not be anticlinally-elongatedand extending to the costal region of the abaxial side (Fig. 3Q). The armed cells of the armed parenchyma may have short or long cells extending to the intercostal area of the abaxial face of the epidermis. The types of the armed parenchyma cells are star-shaped armed parenchyma (Fig. 3V), lobe-shaped armed parenchyma (Fig. 3U), and intermediate armed parenchyma (Fig. 3T).

In transverse section, the chlorenchyma cells possess an isodiametric shape, with the greatest mean thickness of this tissue being for D. polyclada (17.8 μm ± 4.1) (Fig. 2R) and least for B. antiacantha (6.7 μm ± 1.5) (Fig. 2D´) and are distributed among the vascular bundles in the center of the leaf blade, yet still containing idioblasts with raphides (Figs. 3H, 3L). Chlorenchyma reaches part of the water-storage parenchyma in the species D. agudensis, D. choristaminea, D. delicata, D. hebdingii; D. aff. maritima, D. myriostachya, D. polyclada, D. retroflexa, D. rigida, D. selloa (e.g. Fig. 2R), and accompanies the bundles in D. alba, D. domfelicianensis, D. nigrospinulata and D. tomentosa, and B. antiacantha (e.g. Fig. 2D´). Bromelia antiacantha was the only species to present non-vascular fibers (Fig. 3V) located at the chlorenchyma tissue.

Among the analyzed species, D. rigida (Fig. 2N) was found to have the greatest number of vascular bundles in transverse section with 83 units while D. choristaminea (Fig. 2Z) was found to have the least with 23 units. These vascular bundles, inserted within the chlorenchyma of the mesophyll, are distributed in a linear plane through the mesophyll and are formed by collateral bundles (Fig. 3H) with one or two caps of fibers, depending on the caliber.

Multivariate analyses

Principal Coordinates Analysis (PCoA)

The results of the PCoA demonstrated that the morphological variation observed for the analyzed species could be adequately summarized using the first two dimensions (Fig. 4). The species formed a large grouping, except for the outgroup taxa D. choristaminea and B. antiacantha, which were discriminated from the species of the D. selloa complex. The first dimension (D1) represented 34.5% of the total variance (Cronbach's alpha=0.925) and the second dimension (D2) 20.1% (Cronbach's alpha=0.835), for a total of 54.6% of the total observed variation.

Figure 4
Two-dimensional scatter plots obtained from morphological character analyses: on the left, graph of principal coordinates analysis (PCoA); on the right, discriminant analyses (DAs). The proportions of morphological variation captured by each of the two main dimensions of PCoA (D1 and D2) and the two discriminant functions (DF1 and DF2) are shown in the two scatter plots s, left and right, respectively. Colored circles indicate the analyzed species described in Table 1.

The values obtained for D1 and D2 showed that 21 of the 35 characters used in the analysis have high discrimination values (discrimination measures: DM > 0.7) in at least one of the first two dimensions, with the DM of seven characters being greater than 0.7 in both dimensions (Table S3 Table S3 Discrimination measures for the first and second dimension (D1 and D2) of Principal Coordinates Analysis (PCoA) and structure matrix with correlation coefficients for the first two discriminant functions (DF1 and DF2) of discriminant analyses (DA) performed on two taxonomic subsets of morphological characters. ). The qualitative characters that contributed the most to both D1 and D2 were spine color, non-vascular fibers, leaf shape in transverse section, chlorenchyma projections, shape of armed parenchyma cells in abaxial side and external leaf blade morphology. The analysis revealed ten morphometric characters with high discrimination values including leaf length and width, leaf height in transversal section, proportion of total chlorenchyma length x width, total length of water-storage parenchyma, length of 2nd stratum of water-storage parenchyma, total height of chlorenchyma, length of armed parenchyma cells, height of vascular bundle, and abaxial water-storage parenchyma and number of bundles in transverse section. The set of analyzed characters had high discrimination values capable of delimiting species from the outgroup taxa D. choristaminea and B. antiacantha.

Discriminant Analysis (DA)

Discriminant analysis performed with the set of 14 quantitative characters showed that 92.6% of the total variation can be explained by the first two discriminant functions, Discriminant Function 1 (DF1=75.0%) and Discriminant Function 2 (DF2=17.6%), as shown in the ordering Table S3 Table S3 Discrimination measures for the first and second dimension (D1 and D2) of Principal Coordinates Analysis (PCoA) and structure matrix with correlation coefficients for the first two discriminant functions (DF1 and DF2) of discriminant analyses (DA) performed on two taxonomic subsets of morphological characters. . The DA scatter plot revealed the separation of the outgroup taxon B. antiacantha accompanied by D. rigida of the D. selloa complex (Fig. 4). Despite this subtle separation, the other analyzed species were grouped in the D. selloa complex, including the outgroup taxon D. choristaminea.

The two discriminant functions were strongly correlated (canonical correlation: DF1 = 0.951; DF2 = 0.889) and highly significant (DF1 to DF2: Wilks' Lambda = 4.55× 10-54; DF2 to DF1: Wilks' Lambda = 6.87 × 10-79). Based on the correlation coefficients obtained between each character and the discriminant functions, the highest absolute correlations were detected for four variables: DF1, leaf length and for DF2, leaf width, proportion of total chlorenchyma parenchyma length x width and armed parenchyma cells (Table S3 Table S3 Discrimination measures for the first and second dimension (D1 and D2) of Principal Coordinates Analysis (PCoA) and structure matrix with correlation coefficients for the first two discriminant functions (DF1 and DF2) of discriminant analyses (DA) performed on two taxonomic subsets of morphological characters. ). Although the set of characters has a high discriminant value, which enabled the separation of B. antiacantha and D. rigida from the other species of Dyckia sampled, the species from the D. selloa complex were grouped with the other outgroup taxon D. choristaminea.

Discussion

Morphological and anatomical characters

The analyses carried out here found morphological characteristics that are shared between species of the D. selloa complex and other species of Bromeliaceae, such as: spine color, presence of trichomes on both sides of the leaf, lignified mechanical hypodermis, layers of water storage parenchyma, cells morphology in armed parenchyma cells, and chlorenchyma disposition in the mesophyll (Tomlinson 1969Tomlinson PB. 1969. III - Commelinales - Zingiberales. In: Metcalfe CR (ed.). Anatomy of the Monocotyledons. Oxford, Clarendon Press. p. 1-446.; Smith & Downs 1974Smith LB, Downs RJ. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica. Monograph No. 14. New York, Hafner Press.; Reitz 1983Reitz R. 1983. Bromeliáceas e a Malária - Bromélia endêmica. In: Reitz R. Flora ilustratada catarinense. Itajaí, Herbário Barbosa Rodrigues.; Benzing 2000Benzing DH. 2000. Bromeliaceae: Profile of an adaptive radiation. Cambridge, Cambridge University Press.; Proença & Sajo 2007Proença SL, Sajo MDG. 2007. Anatomia foliar de bromélias ocorrentes em áreas de cerrado do Estado de São Paulo, Brasil. Acta Botanica Brasilica 21: 451-466.; Voltolini et al. 2009Voltolini CH, Reis A, Santos M. 2009. Leaf morphoanatomy of the rheophyte Dyckia distachya Hassler (Bromeliaceae). Plant Biology 4849: 335-343.; Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.; Krapp et al. 2014Krapp F, Pinangé DS, Benko-Iseppon AM, Leme EMC, Weising K. 2014. Phylogeny and evolution of Dyckia (Bromeliaceae) inferred from chloroplast and nuclear sequences. Plant Systematic Evolution 300: 1591-1614.; Pinangé et al. 2016Pinangé DSB, Krapp F, Zizka G, Silvestro D, Leme EMC, Weising K, Benko-Iseppon AM. 2016. Molecular phylogenetics, historical biogeography and character evolution in Dyckia (Bromeliaceae, Pitcairnioideae). Botanical Journal of the Linnean Society 183: 39-56. ; Schütz et al. 2016Schütz N, Krapp F, Wagner N, Weising K. 2016. Phylogenetics of Pitcairnioideae s.s. (Bromeliaceae): evidence from nuclear and plastid DNA sequence data. Botanical Journal of the Linnean Society 181: 323-342.). Dyckia possesses leaf anatomical characteristics common to other genera of the xeric clade of Pitcairnioideae, such as the presence of mechanical hypodermis and water-storage parenchyma on both sides (Givnish et al. 2007Givnish TJ, Millam KC, Berry PE, Systma KJ. 2007. Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23: 3-26.; 2011Givnish TJ, Barfuss MHJ, van Ee B, et al. 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight-locus plastid phylogeny. American Journal Botany 98: 872-895.; Gomes-da-Silva et al. 2017Gomes-da-Silva J, Amorim AM, Forzza RC. 2017. Distribution of the xeric clade species of Pitcairnioideae (Bromeliaceae) in South America: a perspective based on areas of endemism. Journal of Biogeography 44: 1994-2006.).

Species of the D. selloa complex exhibit great plasticity in external leaf morphology, ranging from lanceolate to revolute with intermediate morphologies. In Dyckia, rosettes do not form cisterns, which makes for a larger contact surface to acquire water and nutrients from the xeric environment of these species (Smith & Downs 1974Smith LB, Downs RJ. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica. Monograph No. 14. New York, Hafner Press.; Reitz 1983Reitz R. 1983. Bromeliáceas e a Malária - Bromélia endêmica. In: Reitz R. Flora ilustratada catarinense. Itajaí, Herbário Barbosa Rodrigues.; Benzing 2000Benzing DH. 2000. Bromeliaceae: Profile of an adaptive radiation. Cambridge, Cambridge University Press.; Proença & Sajo 2007Proença SL, Sajo MDG. 2007. Anatomia foliar de bromélias ocorrentes em áreas de cerrado do Estado de São Paulo, Brasil. Acta Botanica Brasilica 21: 451-466.; Dettke & Milanez-Gutierre 2008Dettke GA, Milanez-Gutierre MA. 2008. Anatomia vegetativa de Bromelia antiacantha Bertol. (Bromeliaceae, Bromelioideae). Balduinia 13: 1-14.; Voltolini et al. 2009Voltolini CH, Reis A, Santos M. 2009. Leaf morphoanatomy of the rheophyte Dyckia distachya Hassler (Bromeliaceae). Plant Biology 4849: 335-343.; Aoyama et al. 2012Aoyama EM, Indriunas A, Monteiro MM. 2012. Anatomical aspects of leaf variegation - a review. Plant Sciences 2: 41-43.). The absence of cistern in Dyckia indicates a variation related to environmental conditions compared to other xeric members of Bromeliaceae.

Analysis of leaf morphology and anatomy showed the occurrence of spines in Dyckia through visualization of the continuous vascular system (Tomlinson 1969Tomlinson PB. 1969. III - Commelinales - Zingiberales. In: Metcalfe CR (ed.). Anatomy of the Monocotyledons. Oxford, Clarendon Press. p. 1-446.; Reitz 1983Reitz R. 1983. Bromeliáceas e a Malária - Bromélia endêmica. In: Reitz R. Flora ilustratada catarinense. Itajaí, Herbário Barbosa Rodrigues.; Benzing 2000Benzing DH. 2000. Bromeliaceae: Profile of an adaptive radiation. Cambridge, Cambridge University Press.). Aculeae and spines are similar, pointed elements on the surface of plant organs. However, an aculea is an exclusively epidermal structure, while a spine can result from the modification of a branch, leaf, stipule, or root. Such structures are vascularized and firmly attached to the plant body (Ferri et al. 1978Ferri MG, Menezes NL, Monteiro-Scanavacca WR. 1978. Glossário ilustrado de Botânica. São Paulo, Editora da Universidade de São Paulo.). Spines are normally found on leaf margins within Bromelioideae and Pitcairnioideae and are rigid and organized along the entire leaf margin (Tomlinson 1969Tomlinson PB. 1969. III - Commelinales - Zingiberales. In: Metcalfe CR (ed.). Anatomy of the Monocotyledons. Oxford, Clarendon Press. p. 1-446.). Although rare, aculeus have been recorded in Bromeliaceae, on the leaves of Aechmea calyculata Baker (Favretto & Geuster 2017Favretto MA, Geuster CJ. 2017. Orquídeas e Bromélias do oeste de Santa Catarina. Campos Novos, SC, Mario Arthur Fravretto Editor.). Species of the D. selloa complex have extraordinarily strong spines with a horny, black-brown constitution and the apex of the leaf blade can end in a spine, in agreement with Reitz (1983)Reitz R. 1983. Bromeliáceas e a Malária - Bromélia endêmica. In: Reitz R. Flora ilustratada catarinense. Itajaí, Herbário Barbosa Rodrigues.. As for their color, spines in Dyckia are usually white or the same color as the leaf (Smith & Downs 1974Smith LB, Downs RJ. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica. Monograph No. 14. New York, Hafner Press.; Reitz 1983Reitz R. 1983. Bromeliáceas e a Malária - Bromélia endêmica. In: Reitz R. Flora ilustratada catarinense. Itajaí, Herbário Barbosa Rodrigues.). The extensive sampling in this study showed variation in the color of these structures, enabling the separation of the D. selloa complex into two groups: one containing D. agudensis, D. aff. maritima, D. myriostachya, D. nigrospinulata, and D. rigida, which have black spines; and one containing D. alba, D. delicata, D. domfelicianensis, D. hebdingii, D. polyclada, D. retroflexa, D. selloa and D. tomentosa, which have brown spines. Many terrestrial bromeliad species invest in spines as a mechanical defense against herbivores (Benzing 2000Benzing DH. 2000. Bromeliaceae: Profile of an adaptive radiation. Cambridge, Cambridge University Press.). This is an important feature to be included not only in analyses for the circumscription of the D. selloa complex itself, but in analyses of other taxonomic studies as well.

Another interesting character is the position of stomata. The present results show that stomata in Dyckia are located above the level of the epidermis. This character has already been used to separate the genera of Pitcairnioideae into two clades, a xeric clade and a mesic clade (Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.). The present results indicate that the D. selloa complex should be positioned within the xeric clade of Pitcairnioideae. In addition, the epidermis of the analyzed species of the D. selloa complex has numerous trichomes, aligned on both sides and sharing intercostal space with stomata on the abaxial side, a result already presented for other species in the family (Tomlinson 1969Tomlinson PB. 1969. III - Commelinales - Zingiberales. In: Metcalfe CR (ed.). Anatomy of the Monocotyledons. Oxford, Clarendon Press. p. 1-446.; Krauss 1948Krauss BH. 1948. Anatomy of the Vegetative Organs of the Pineapple, Ananas comosus (L.) Merr Merr. I. Introduction, Organography, the Stem, and the Lateral Branch or Axillary Buds. Botanical Gazette 110: 159-217.; Smith & Downs 1974Smith LB, Downs RJ. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica. Monograph No. 14. New York, Hafner Press.; Benzing 2000Benzing DH. 2000. Bromeliaceae: Profile of an adaptive radiation. Cambridge, Cambridge University Press.). Some authors claim that the main function of trichomes in Dyckia would not be absorption, as they are present in terrestrial species, in addition to not having a water storage tank in the center of the rosettes and raise the hypothesis that the trichomes are used as an efficient strategy for light refraction and water economy and reserve (Smith & Downs 1974Smith LB, Downs RJ. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica. Monograph No. 14. New York, Hafner Press.; Aoyama & Sajo 2003Aoyama EM, Sajo MG. 2003. Estrutura foliar de Aechmea Ruiz & Pav. subgênero Lamprococcus (Beer) Baker e espécies relacionadas. Revista Brasileira de Botânica 26: 461-473.; Scatena & Segecin 2005Scatena VL, Segecin S. 2005. Anatomia de Tillandsia L. (Bromeliaceae) dos Campos Gerais, Paraná, Brasil. Revista Brasileira de Botânica 28: 635-649.; Proença & Sajo 2007Proença SL, Sajo MDG. 2007. Anatomia foliar de bromélias ocorrentes em áreas de cerrado do Estado de São Paulo, Brasil. Acta Botanica Brasilica 21: 451-466.). Some authors consider trichomes to act in the retention of absorbed water and its distribution to other cells of the epidermis, thereby improving absorption, reducing transpiration, and providing mechanical protection (Tomlinson 1969Tomlinson PB. 1969. III - Commelinales - Zingiberales. In: Metcalfe CR (ed.). Anatomy of the Monocotyledons. Oxford, Clarendon Press. p. 1-446.; Aoyama & Sajo 2003Aoyama EM, Sajo MG. 2003. Estrutura foliar de Aechmea Ruiz & Pav. subgênero Lamprococcus (Beer) Baker e espécies relacionadas. Revista Brasileira de Botânica 26: 461-473.; Scatena & Segecin 2005Scatena VL, Segecin S. 2005. Anatomia de Tillandsia L. (Bromeliaceae) dos Campos Gerais, Paraná, Brasil. Revista Brasileira de Botânica 28: 635-649.; Proença & Sajo 2007Proença SL, Sajo MDG. 2007. Anatomia foliar de bromélias ocorrentes em áreas de cerrado do Estado de São Paulo, Brasil. Acta Botanica Brasilica 21: 451-466.).

Species of the D. selloa complex possess, in the mesophyll, a mechanical hypodermis with differentiated strata and with variation in the deposition of pectins and lignins in the thickening of the wall of these cells. Pectin permeates the entire mechanical hypodermis on both sides of the epidermis while the two layers just below the epidermis possess greater lignin deposition. The pectic composition of the walls of the hypodermis can highlight a hydrophilic behavior for water retention and the presence of communications in the anticlinal walls (micropores), as reported for D. brevifolia Baker by Lobo (2007Lobo GM. 2007. Morfoanatomia da reófita Dyckia brevifolia Baker (Bromeliaceae). MSc Thesis, Universidade Fedeeral de Santa Catarina, Brazil. ), indicating a probable water transport function. Thus, the presence of pectic layers in the inner part of the mechanical hypodermis of the studied species suggests that they function in the aid of water absorption and in leaf turgor maintenance, in addition to preventing leaf blade dehydration, as these plants survive in a xeric environment (Lyshede 1978Lyshede OB. 1978. Studies on outer epidermal cell walls with microchannels in a xerophytic species. The New Phytologist 80: 421-426.; Lobo 2007Lobo GM. 2007. Morfoanatomia da reófita Dyckia brevifolia Baker (Bromeliaceae). MSc Thesis, Universidade Fedeeral de Santa Catarina, Brazil. ). On the other hand, the identification of a secondary thickening rich in coniferyl lignin characterizes this hypodermis as a sclerenchymatous tissue present on both sides of the leaves of the analyzed Dyckia species. This lignification is associated with the rigidity of the walls close to the epidermis and can provide protection and maintenance of leaf structure to prevent dehydration of individuals exposed to intense solar radiation and protection against herbivory (Krauss 1948Krauss BH. 1948. Anatomy of the Vegetative Organs of the Pineapple, Ananas comosus (L.) Merr Merr. I. Introduction, Organography, the Stem, and the Lateral Branch or Axillary Buds. Botanical Gazette 110: 159-217.; Lobo 2007Lobo GM. 2007. Morfoanatomia da reófita Dyckia brevifolia Baker (Bromeliaceae). MSc Thesis, Universidade Fedeeral de Santa Catarina, Brazil. ). In addition, mechanical hypodermis can serve as a taxonomic character since this character was previously identified in Encholirium and Dyckia, distinguishing these from the remaining genera of the subfamily (Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.; Guarçoni 2015Guarçoni EAE. 2015. Estudos taxonômicos e de anatomia foliar em espécies de Dyckia Schult. & Schult. f. (Bromeliaceae, Pitcairnioideae) PhD Thesis, Universidade Federal de Viçosa, Brazil.). More comprehensive analyzes of this character, in this complex of the genus Dyckia could be used as discriminators for groups of species.

The occurrence of succulent leaves by species from xeric environments is one of the adaptations to resist water stress due to lack of water and is related to the presence of water storage tissue (Tomlinson 1969Tomlinson PB. 1969. III - Commelinales - Zingiberales. In: Metcalfe CR (ed.). Anatomy of the Monocotyledons. Oxford, Clarendon Press. p. 1-446.). Within Bromeliaceae, this tissue is distributed in the form of a water-storage parenchyma, with water reserve cells that may or may not contain chloroplasts, mucilage, and large vacuoles (Fahn & Cutler 1992Fahn A, Cutler DF. 1992. Xerophytes. Berlin, Gebrüder Borntraeger.). In Dyckia, this water-storage parenchyma may be present facing either the adaxial side or the abaxial leaf side, between the set of cells of the armed parenchyma cells, as also observed for leaves of species of the genus Encholirium (Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.). In other genera of the subfamily, this tissue is only present near the adaxial side (Pita 1997Pita PB. 1997. Estudos anatômicos dos órgãos vegetativos de Dyckia Schultz f. e Encholirium Mart ex Schultz f. (Bromeliaceae) da Serra do Cipó - MG. MSc Thesis, Universidade de São Paulo, São Paulo, Brazil. ; Vailati 2009Vailati MG. 2009. Morfoanatomia de três espécies de Bromeliaceae de restingas do Estado de Santa Catarina. MSc Thesis, Universidade Federal de Santa Catarina, Brazil. ; Voltolini et al. 2009Voltolini CH, Reis A, Santos M. 2009. Leaf morphoanatomy of the rheophyte Dyckia distachya Hassler (Bromeliaceae). Plant Biology 4849: 335-343.; Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.). The species of Dyckia analyzed here have a well-defined proportion of water-storage parenchyma to armed parenchyma cells, while chlorenchyma differs in its disposition, being able to follow bundles or reach part of the water-storage parenchyma of the adaxial side. The presence of armed parenchyma cells has already been reported in other species of Bromeliaceae, along with differences in the sizes of intercellular spaces (e.g., Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.). The observation of this characteristic also in D. brevifolia and D. distachya (Lobo 2007Lobo GM. 2007. Morfoanatomia da reófita Dyckia brevifolia Baker (Bromeliaceae). MSc Thesis, Universidade Fedeeral de Santa Catarina, Brazil. ; Voltolini et al. 2009Voltolini CH, Reis A, Santos M. 2009. Leaf morphoanatomy of the rheophyte Dyckia distachya Hassler (Bromeliaceae). Plant Biology 4849: 335-343.), indicates that armed parenchyma cells could enlarge intercellular spaces, favoring the accumulation of CO2. This tissue disposition is strategic in the species of the present study, as the diffusion of CO2 into intercellular spaces contributes to the absorption of photosynthetic carbon in thick and hypostomatic leaves (Parkhurst 1994Parkhurst DF. 1994. Diffusion of CO2 and other gases inside leaves. New Phytologist 126: 449-479.).

Some authors have identified water-storage parenchyma facing the abaxial leaf side in D. dystachya and D. encholirioides, located between the layers of armed parenchyma cells (Pita 1997Pita PB. 1997. Estudos anatômicos dos órgãos vegetativos de Dyckia Schultz f. e Encholirium Mart ex Schultz f. (Bromeliaceae) da Serra do Cipó - MG. MSc Thesis, Universidade de São Paulo, São Paulo, Brazil. ; Voltolini et al. 2009Voltolini CH, Reis A, Santos M. 2009. Leaf morphoanatomy of the rheophyte Dyckia distachya Hassler (Bromeliaceae). Plant Biology 4849: 335-343.; Vailati 2009Vailati MG. 2009. Morfoanatomia de três espécies de Bromeliaceae de restingas do Estado de Santa Catarina. MSc Thesis, Universidade Federal de Santa Catarina, Brazil. ). Although Lobo (2007Lobo GM. 2007. Morfoanatomia da reófita Dyckia brevifolia Baker (Bromeliaceae). MSc Thesis, Universidade Fedeeral de Santa Catarina, Brazil. ) reported that for D. brevifolia, water-storage parenchyma is present only near the adaxial side, other studies have shown that species of Dyckia and Encholirium have this parenchyma on both leaf sides (Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.), which was confirmed here for the species of the D. selloa complex. Water-storage parenchyma is present in some species of the genera Pitcairnia, Fosterella and Deuterocohnia, and in most species, this parenchyma only occurs on the adaxial side (Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.). Allied to this, the literature reports that species of Dyckia possess only armed parenchyma cells with cellular projections with short arms (Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.), while the present study was able to identify the occurrence of both short and long arms.

The presence of raphides in the chlorenchyma of species of the D. selloa complex is a common feature to both vegetative and reprodutive organs of the family (Tomlinson 1969Tomlinson PB. 1969. III - Commelinales - Zingiberales. In: Metcalfe CR (ed.). Anatomy of the Monocotyledons. Oxford, Clarendon Press. p. 1-446.; Aoyama & Sajo 2003Aoyama EM, Sajo MG. 2003. Estrutura foliar de Aechmea Ruiz & Pav. subgênero Lamprococcus (Beer) Baker e espécies relacionadas. Revista Brasileira de Botânica 26: 461-473.; Scatena & Segecin 2005Scatena VL, Segecin S. 2005. Anatomia de Tillandsia L. (Bromeliaceae) dos Campos Gerais, Paraná, Brasil. Revista Brasileira de Botânica 28: 635-649.; Souza et al. 2005Souza GM, Estelita MEM, Wanderley MDGL. 2005. Anatomia foliar de espécies brasileiras de Aechmea subg. Chevaliera (Gaudich. ex Beer) Baker, Bromelioideae-Bromeliaceae. Revista Brasileira de Botânica 28: 603-613.; Lobo 2007Lobo GM. 2007. Morfoanatomia da reófita Dyckia brevifolia Baker (Bromeliaceae). MSc Thesis, Universidade Fedeeral de Santa Catarina, Brazil. ; Proença & Sajo 2007Proença SL, Sajo MDG. 2007. Anatomia foliar de bromélias ocorrentes em áreas de cerrado do Estado de São Paulo, Brasil. Acta Botanica Brasilica 21: 451-466.; Dettke & Milanez-Gutierre 2008Dettke GA, Milanez-Gutierre MA. 2008. Anatomia vegetativa de Bromelia antiacantha Bertol. (Bromeliaceae, Bromelioideae). Balduinia 13: 1-14.; Vailati 2009Vailati MG. 2009. Morfoanatomia de três espécies de Bromeliaceae de restingas do Estado de Santa Catarina. MSc Thesis, Universidade Federal de Santa Catarina, Brazil. ; Voltolini et al. 2009Voltolini CH, Reis A, Santos M. 2009. Leaf morphoanatomy of the rheophyte Dyckia distachya Hassler (Bromeliaceae). Plant Biology 4849: 335-343.; Silva & Scatena 2011Silva IV, Scatena VL. 2011. Anatomia de escapos de espécies de Bromeliaceae da Amazônia, Mato Grosso, Brasil. Hoehnea 38: 51-59.; Krahl et al. 2013Krahl A, Holanda ASS, Krahl DRP, Corrêa MM, Oliveira RLC, Valsko JJ. 2013. Anatomia foliar de Ananas lucidus Mill. (Bromeliaceae). Natureza Online 11: 161-165.; Guarçoni 2015Guarçoni EAE. 2015. Estudos taxonômicos e de anatomia foliar em espécies de Dyckia Schult. & Schult. f. (Bromeliaceae, Pitcairnioideae) PhD Thesis, Universidade Federal de Viçosa, Brazil.). The presence of these calcium oxalate structures can make plants less palatable to predators and thus prevent herbivory (Mauseth 1988Mauseth JD. 1988. Plant Anatomy. Menlo Park, CA, Benjamim Cunmings Publishing.). Despite the presence of raphids being used in these taxonomic studies, our analysis did not show that it is an important character to discriminate species.

The vascular bundles of the D. selloa complex species are collateral and with one or two caps of fibers, as reported for other Dyckia species (Santos-Silva et al. 2013Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.). This character may also be useful in characterizing groups of species, especially considering the number of layers of these caps. All Dyckia species do not present non-vascular fiber bundles when compared to B. antiacantha which has non-vascular fiber bundles, constituting a possible character for future taxonomic analysis.

Multivariate analysis and delimitation of the Dyckia selloa complex

The scatter plot obtained from the first two PCoA axes, incorporating all analyzed species, clearly shows that the D. selloa complex is morphologically distinct from the other taxa. The selected outgroup taxa, B. antiacantha and D. choristaminea, were discriminated from the other species by the first two axes of PCoA, with the characters most contributing to this delimitation being leaf length and spine color. The scatter plot also shows the proximity of D. choristaminea to the sampled species of the D. selloa complex, especially D. hebdingi and D. delicata, resulting from shared characteristics related to spine color (such as brown spines), upturned leaves and trichomes on both leaf sides. Dyckia aff. maritima, D. nigrospinulata, D. myriostachya and D. rigida group closely on the scatter plot, possibly because they share characters related to black spine color and leaf length.

The scatter plot of the first two discriminant functions clearly shows that the D. selloa complex groups with the outgroup taxon D. choristaminea. On the other hand, B. antiacantha and D. rigida appear discriminated from the other species in the right portion of the scatter plot, mainly by DF1, which is based mainly on characters such as leaf length and proportion of water-storage parenchyma. Despite the high values of discrimination and correlations obtained, the discriminant function analysis was not able to delimit the D. selloa complex using morphometric data.

From data observed in this work, combined with the incongruence between the multivariate analyses in the delimitation of species belonging to the D. selloa complex, in addition to the distinct seminal rudiment data obtained in Breitsameter (2017)Breitsameter CJ. 2017. Caracterização morfoanatômica do rudimento seminal de espécies do Complexo Dyckia maritima (Bromeliaceae: Pitcairnioideae). MSc Thesis, Universidade Federal do Rio Grande do Sul, Brazil., we suggest maintaining the D. selloa complex based on morphological qualitative data, with the possibility of dividing the species into two groups. The first group would consist basically of the same species group treated like D. maritima complex sensu stricto (except for D. agudensis and D. retroflexa) of Büneker et al. (2015)Büneker HM, Pontes RC, Witeck-Neto L. 2015. Taxonomic study of Dyckia maritima complex (Bromeliaceae, Pitcairnioideae): Preliminary results. In: Benko-Iseppon AM, Alves A, Louzada R (eds.). An overview and abstracts of the First World Congress on Bromeliaceae Evolution. Rodriguésia 66: A1-A66. , consisting of species morphologically similar to D. maritima that have as main feature the black leaf spines. This first group we observe is formed by the species D. agudensis, D. aff. maritima, D. myriostachya, D. nigrospinulata and D. rigida. The second group would be composed of the species D. alba, D. domfelicianensis, D. selloa, D. retroflexa, D. polyclada and D. tomentosa, for which a new name could be created to contrast to with D. maritima complex sensu stricto, as established before, showing that there are at least two species groups within the D. selloa complex. The fact that the species D. delicata and D. hebdingii share very similar leaf morphoanatomical characteristics with the outgroup taxon D. choristaminea, show their distinctions between the other species of the complex.

Choosing the optimal methodological approach is essential for identifying the boundaries between sets of species and inferring the number of species in a complex (Rieseberg & Burke 2001Rieseberg LH, Burke JM. 2001. The biological reality of species: gene flow, selection, and collective evolution. Taxon 50: 47-67.; Sites & Marshall 2003Sites Jr JW, Marshall JC. 2003. Delimiting species. Systematic Biology 18: 462-470. ; De Queiroz 2007De Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology 56: 879-86.). Morphological characters are the original tools used by taxonomists to identify and discriminate species (Cronquist 1981Cronquist A. 1981. An Integrated System of Classification of Flowering Plants. New York, Columbia University Press.; Dahlgren et al. 1985Dahlgren RMT, Clifford HT, Yeo PF. 1985. The Families of the Monocotyledons: Structure, Evolution, and Taxonomy. Berlin, Springer.). However, many studies focus on few characteristics, with no attention to morphological variation in a morphometric and multivariate context. The past few decades have seen researchers develop several methods for recognizing new species or testing species hypotheses (Wiens 2007Wiens JJ. 2007. Species Delimitation: New Approaches for Discovering Diversity. Systematic Biology 56: 875-878.; Naciri & Linder 2015Naciri Y, Linder HP. 2015. Species delimitation and relationships: The dance of the seven veils. Taxon 64: 3-16.). However, these tools for species delimitation often involve expensive molecular and computational methods that are demanding of specialized work. In this sense, the morphological and anatomical approaches applied in the present study, mainly based on qualitative characters, proved to be robust for delimiting the D. selloa complex.

The analyses carried out here indicate that characters related to leaf morphology and anatomy can be useful for delimiting species or groups of species, but they should be applied with caution in taxonomic decisions involving the genus Dyckia. Characters related to the armed parenchyma cells shape and spine color proved to be important for the D. selloa complex, and so we indicate their importance for future studies. There also remains a need to include different technical approaches - including reproductive structures and palynology - that make analyses more sensitive and enable the delimitation of species complexes in Dyckia.

Acknowledgements

We would like to thank CNPq (Proc. 303840/2019-6), PROPESQ UFRGS (Projeto 20314), Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarship at modality of doctorate for Henrique Mallmann Büneker (Process 88887.648979/2021-00) and modality of Post-doctoral internship for Tamara Pastori (Process 88887.364124/2019-00) and the Laboratório de Anatomia Vegetal da UFRGS (LAVeg-UFRGS) for all the support and infrastructure granted. We acknowledge Erik Wild for the English translation and proofreading reading. We would also like to thank all the employees and owners of where we collected the plants.

References

  • Aoyama EM, Sajo MG. 2003. Estrutura foliar de Aechmea Ruiz & Pav. subgênero Lamprococcus (Beer) Baker e espécies relacionadas. Revista Brasileira de Botânica 26: 461-473.
  • Aoyama EM, Indriunas A, Monteiro MM. 2012. Anatomical aspects of leaf variegation - a review. Plant Sciences 2: 41-43.
  • Arruda R, Costa A. 2003. Foliar anatomy of five Vriesea sect. Xiphion (Bromeliaceae) species. Selbyana 24: 180-189.
  • Baker JG. 1889. Handbook of the Bromeliaceae. London, George Bell and Sons.
  • Benzing DH. 2000. Bromeliaceae: Profile of an adaptive radiation. Cambridge, Cambridge University Press.
  • Breitsameter CJ. 2017. Caracterização morfoanatômica do rudimento seminal de espécies do Complexo Dyckia maritima (Bromeliaceae: Pitcairnioideae). MSc Thesis, Universidade Federal do Rio Grande do Sul, Brazil.
  • Büneker HM, Pontes RC, Witeck-Neto L. 2015. Taxonomic study of Dyckia maritima complex (Bromeliaceae, Pitcairnioideae): Preliminary results. In: Benko-Iseppon AM, Alves A, Louzada R (eds.). An overview and abstracts of the First World Congress on Bromeliaceae Evolution. Rodriguésia 66: A1-A66.
  • Büneker HM, Guarçoni EAE, Santos-Silva F, Forzza RC. 2020. Dyckia In: Flora do Brasil. 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB6046 6 Mar. 2023
    » http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB6046
  • Büneker HM, Mariath JEA. 2022. Dyckia pseudodelicata, a new species of the D. selloa complex (Bromeliaceae, Pitcairnioideae) from Rio Grande do Sul, Brazil. Phytotaxa 550: 59-70.
  • Büneker HM, Guarçoni EAE, Santos-Silva F, Forzza RC. 2021 Dyckia In: BFG - The Brazil Flora Group. Coleção Flora do Brasil 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro , p. 725-1050.
  • Carvalho JDT, Oliveira JMS, Freitas CC, Martins MS. 2016 Stamen morphoanatomy of Dyckia Schult.f. (Bromeliaceae, Pitcairnioideae) species: New data for taxonomic use. Acta Botanica Brasilica 30: 389-400.
  • Carvalho JDT, Essi L, Oliveira JMS. 2017. Flower and floral trichome morphology of species of Dyckia Schult. f. (Bromeliaceae, Pitcairnioideae), and their importance to species characterization and genus taxonomy. Acta Botanica Brasilica 31: 19-28.
  • Cronquist A. 1981. An Integrated System of Classification of Flowering Plants. New York, Columbia University Press.
  • Dahlgren RMT, Clifford HT, Yeo PF. 1985. The Families of the Monocotyledons: Structure, Evolution, and Taxonomy. Berlin, Springer.
  • De Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology 56: 879-86.
  • Dettke GA, Milanez-Gutierre MA. 2008. Anatomia vegetativa de Bromelia antiacantha Bertol. (Bromeliaceae, Bromelioideae). Balduinia 13: 1-14.
  • Eames AJ, MacDaniels LH. 1947. An Introduction to Plant Anatomy. London, MacGraw-Hill Books Company.
  • Fagundes NF, Mariath JEA. 2010. Morphoanatomy and ontogeny of fruit in Bromeliaceae species. Acta Botanica Brasilica 24: 765-779.
  • Fahn A, Cutler DF. 1992. Xerophytes. Berlin, Gebrüder Borntraeger.
  • Favretto MA, Geuster CJ. 2017. Orquídeas e Bromélias do oeste de Santa Catarina. Campos Novos, SC, Mario Arthur Fravretto Editor.
  • Feder N, O'Brien TP. 1968. Plant microtechnique: some principles and new methods. American Journal of Botany 55: 123-142.
  • Ferri MG, Menezes NL, Monteiro-Scanavacca WR. 1978. Glossário ilustrado de Botânica. São Paulo, Editora da Universidade de São Paulo.
  • Forzza RC. 2005. Revisão Taxonômica de Encholirium Mart. ex Schult. & Schult. f. (Piticairnioideae - Bromeliaceae). Boletim de Botânica 23: 1-49.
  • Gerrits PO, Smid L. 1983. A new less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial section. Journal of Microscopy 132: 81-85.
  • Gerstberger P, Leins P. 1978. Rasterelektronenmikroskopische Untersuchungen an Blütenknospen von Physalis philadelphica (Solanaceae). Berichte der Deutschen Botanischen Gesellschaft 91: 381-387.
  • Givnish TJ, Millam KC, Berry PE, Systma KJ. 2007. Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23: 3-26.
  • Givnish TJ, Barfuss MHJ, van Ee B, et al 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight-locus plastid phylogeny. American Journal Botany 98: 872-895.
  • Gomes-da-Silva J, Amorim AM, Forzza RC. 2017. Distribution of the xeric clade species of Pitcairnioideae (Bromeliaceae) in South America: a perspective based on areas of endemism. Journal of Biogeography 44: 1994-2006.
  • Gomes-da-Silva J, Santos-Silva F, Forzza RC. 2019. Does nomenclatural stability justify para/polyphyletic taxa? A phylogenetic classification in the xeric clade Pitcairnioideae (Bromeliaceae). Systematics and Biodiversity 17: 467-490.
  • Gouda EJ, Butcher D, Dijkgraaf L. 2023. Encyclopaedia of Bromeliads. Version 5. http://bromeliad.nl/encyclopedia/ 14 Jan. 2023.
    » http://bromeliad.nl/encyclopedia/
  • Guarçoni EAE. 2015. Estudos taxonômicos e de anatomia foliar em espécies de Dyckia Schult. & Schult. f. (Bromeliaceae, Pitcairnioideae) PhD Thesis, Universidade Federal de Viçosa, Brazil.
  • Guarçoni EAE, Azevedo AA, Costa AF. 2014. Dyckia sulcata (Bromeliaceae), a new species from Minas Gerais, Brazil, with notes on leaf anatomy. Phytotaxa 188: 169-175.
  • Guarçoni EAE, Azevedo AA, Costa AF. 2017. The restablishment of Dyckia oligantha and D. nana (Bromeliaceae, Pitcairnioideae), belonging to the D. macedoi complex. Phytotaxa 306: 49-65.
  • Horres R, Schulte K, Weising K, Zizka G. 2007. Systematics of Bromelioideae (Bromeliaceae) - Evidence from molecular and anatomical studies. Aliso 23: 27-43.
  • Jensen WA. 1962. Botanical histochemistry, principles and practice. San Francisco, W. H. Freeman.
  • Johansen DA. 1940. Plant microtechinique. New York, MacGraw-Hill.
  • Koch K. 1873. Index seminum in horto botanico berolinensi anno 1873 collectorum. Appendix quarta ad indicem seminum horti botanici Berolinenensis anni 1873. Berlin.
  • Krahl A, Holanda ASS, Krahl DRP, Corrêa MM, Oliveira RLC, Valsko JJ. 2013. Anatomia foliar de Ananas lucidus Mill. (Bromeliaceae). Natureza Online 11: 161-165.
  • Krapp F, Pinangé DS, Benko-Iseppon AM, Leme EMC, Weising K. 2014. Phylogeny and evolution of Dyckia (Bromeliaceae) inferred from chloroplast and nuclear sequences. Plant Systematic Evolution 300: 1591-1614.
  • Krapp F, Eggli U. 2019. Dyckia, Bromeliaceae. In: Eggli U, Nyffeler R (eds.). Illustrated Handbook of Succulent Plants: Monocotyledons. 2nd. edn. Springer, Berlin. p. 1-71.
  • Krauss BH. 1948. Anatomy of the Vegetative Organs of the Pineapple, Ananas comosus (L.) Merr Merr. I. Introduction, Organography, the Stem, and the Lateral Branch or Axillary Buds. Botanical Gazette 110: 159-217.
  • Leme EMC, Ribeiro OBC, Miranda ZJG. 2012. New species of Dyckia (Bromeliaceae) from Brazil. Phytotaxa 67: 9-37.
  • Lobo GM. 2007. Morfoanatomia da reófita Dyckia brevifolia Baker (Bromeliaceae). MSc Thesis, Universidade Fedeeral de Santa Catarina, Brazil.
  • Lyshede OB. 1978. Studies on outer epidermal cell walls with microchannels in a xerophytic species. The New Phytologist 80: 421-426.
  • Mauseth JD. 1988. Plant Anatomy. Menlo Park, CA, Benjamim Cunmings Publishing.
  • McDowell EM, Trump BF. 1976. Histologic fixatives suitable for diagnostic light and electron microscopy. Archives of Pathology & Laboratory Medicine 100: 405-414.
  • Mez C. 1896. Bromeliaceae. In: De Candolle C. (ed.) Monographiae Phanerogamarum. Paris, Sumptibus Masson.
  • Mez C. 1935 Bromeliaceae. In: Engler A (ed.). Das Pflanzenreich, regni vegetabilis conspectus. Vol 4. Leipzig, W. Engelmann .
  • Naciri Y, Linder HP. 2015. Species delimitation and relationships: The dance of the seven veils. Taxon 64: 3-16.
  • Oparka KJ, Read N. 1994. The use of fluorescent probes for studies of living plant cells. In: Harris N, Oparka KJ (eds.) Plant Cell Biology: A Practical Approach. Oxford, Oxford University Press. p. 27-50.
  • Pasw Statistics 18, SPSS Inc. Chicago. Illinois. USA. 2009. Statistics P.A.S.W 2009 PASW statistics 18 (Release 18.0. 0) [computer software]. Quarry Bay, Hong Kong: IBM.
  • Parkhurst DF. 1994. Diffusion of CO2 and other gases inside leaves. New Phytologist 126: 449-479.
  • Pinangé DSB, Krapp F, Zizka G, Silvestro D, Leme EMC, Weising K, Benko-Iseppon AM. 2016. Molecular phylogenetics, historical biogeography and character evolution in Dyckia (Bromeliaceae, Pitcairnioideae). Botanical Journal of the Linnean Society 183: 39-56.
  • Pita PB. 1997. Estudos anatômicos dos órgãos vegetativos de Dyckia Schultz f. e Encholirium Mart ex Schultz f. (Bromeliaceae) da Serra do Cipó - MG. MSc Thesis, Universidade de São Paulo, São Paulo, Brazil.
  • Proença SL, Sajo MDG. 2007. Anatomia foliar de bromélias ocorrentes em áreas de cerrado do Estado de São Paulo, Brasil. Acta Botanica Brasilica 21: 451-466.
  • Reitz R. 1983. Bromeliáceas e a Malária - Bromélia endêmica. In: Reitz R. Flora ilustratada catarinense. Itajaí, Herbário Barbosa Rodrigues.
  • Rieseberg LH, Burke JM. 2001. The biological reality of species: gene flow, selection, and collective evolution. Taxon 50: 47-67.
  • Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC. 2013. Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora - Morphology, Distribution, Functional Ecology of Plants 208: 508-521.
  • Santos-Silva F. 2015. Delimitação específica dos táxons reófitos de Dyckia (Pitcairnioideae, Bromeliaceae). PhD Thesis, Escola Nacional de Botânica Tropical, Brazil.
  • Scatena VL, Segecin S. 2005. Anatomia de Tillandsia L. (Bromeliaceae) dos Campos Gerais, Paraná, Brasil. Revista Brasileira de Botânica 28: 635-649.
  • Schütz N, Krapp F, Wagner N, Weising K. 2016. Phylogenetics of Pitcairnioideae s.s. (Bromeliaceae): evidence from nuclear and plastid DNA sequence data. Botanical Journal of the Linnean Society 181: 323-342.
  • Silva IV, Scatena VL. 2011. Anatomia de escapos de espécies de Bromeliaceae da Amazônia, Mato Grosso, Brasil. Hoehnea 38: 51-59.
  • Sites Jr JW, Marshall JC. 2003. Delimiting species. Systematic Biology 18: 462-470.
  • Smith LB, Downs RJ. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica. Monograph No. 14. New York, Hafner Press.
  • Souza GM, Estelita MEM, Wanderley MDGL. 2005. Anatomia foliar de espécies brasileiras de Aechmea subg. Chevaliera (Gaudich. ex Beer) Baker, Bromelioideae-Bromeliaceae. Revista Brasileira de Botânica 28: 603-613.
  • Strehl T. 1983. Forma, distribuição e flexibilidade dos tricomas foliares usados na filogenia de Bromeliaceae. Iheringia, Série Botânica 31: 105-119.
  • Strehl T, Beheregaray LB. 2006. Morfologia de sementes do Gênero Dyckia subfamília Pitcairnioideae (Bromeliaceae). Pesquisas Botânicas 57: 103-120.
  • Strehl T. 1998. Flora Fanerogâmica da Reserva Biológica do Ibicui Mirim, Santa Maria, Rio Grande do Sul. Bromeliaceae. Iheringia, Série Botânica 51: 17-37.
  • Tomlinson PB. 1969. III - Commelinales - Zingiberales. In: Metcalfe CR (ed.). Anatomy of the Monocotyledons. Oxford, Clarendon Press. p. 1-446.
  • Uphof JC, Hummel K. 1962. Plant Hairs. Gebrueder Borntraeber. Berlin, Nikolassee.
  • Vailati MG. 2009. Morfoanatomia de três espécies de Bromeliaceae de restingas do Estado de Santa Catarina. MSc Thesis, Universidade Federal de Santa Catarina, Brazil.
  • Voltolini CH, Reis A, Santos M. 2009. Leaf morphoanatomy of the rheophyte Dyckia distachya Hassler (Bromeliaceae). Plant Biology 4849: 335-343.
  • Wiens JJ. 2007. Species Delimitation: New Approaches for Discovering Diversity. Systematic Biology 56: 875-878.

Publication Dates

  • Publication in this collection
    07 Aug 2023
  • Date of issue
    2023

History

  • Received
    30 Mar 2022
  • Accepted
    08 May 2023
Sociedade Botânica do Brasil SCLN 307 - Bloco B - Sala 218 - Ed. Constrol Center Asa Norte CEP: 70746-520 Brasília/DF. - Alta Floresta - MT - Brazil
E-mail: acta@botanica.org.br