Acessibilidade / Reportar erro

Species-specific response of phytoplankton to zooplankton grazing in tropical eutrophic reservoirs

Resposta espécie-específica do fitoplâncton ao pastejo do zooplâncton em reservatórios eutróficos tropicais

Abstract:

Aim

To test the hypothesis that zooplankton changes the structure of phytoplankton in tropical reservoirs by reducing the biomass of algal species susceptible to herbivory.

Methods

We experimentally evaluated the species-specific responses of phytoplankton to zooplankton within eutrophic reservoirs with different phytoplankton community structure in northeastern of Brazil. Water samples were collected from the subsurface in coastal regions of the Apipucos and Mundaú reservoirs in January/2012 and November/2014, respectively, and transported to the laboratory. The experiments were performed in Erlenmeyer flasks (1 liter) filled with water from the sample sites and were maintained for five days in the laboratory conditions. Two treatments were maintained (1) with phytoplankton and the presence of the native zooplankton and (2) without native zooplankton.

Results

Zooplankton proved to be an important factor, modifying the structure of the phytoplankton community, especially in the Apipucos reservoir. In this reservoir, we observed a significant reduction of biomass in diatom Cyclotella meneghiniana, and the chlorophyte Chlamydomonas sp., and an increase in the biomass of Raphidiopsis raciborskii. In the Mundaú reservoir, we observed a significant reduction of C. meneghiniana and R. raciborskii, while cyanobacteria Microcystis aeruginosa increased their biomasses in the presence of zooplankton.

Conclusions

These results show the importance of the microalgae community structure in phytoplankton-zooplankton interactions for food webs in tropical environments, as well as support the role of zooplankton in fostering cyanobacterial growth and maintain algal blooms.

Keywords:
cyanobacterial blooms; Thermocyclops; top-down control; food webs

Resumo:

Objetivo

Testar a hipótese de que o zooplâncton altera a estrutura do fitoplâncton em reservatórios tropicais, reduzindo a biomassa de espécies de algas susceptíveis a herbivoria.

Métodos

Avaliamos experimentalmente as respostas espécie-específicas do fitoplâncton ao zooplâncton em reservatórios eutróficos com diferentes estruturas da comunidade fitoplanctônica no nordeste do Brasil. Amostras de água foram coletadas da subsuperfície nas regiões costeiras dos reservatórios Apipucos e Mundaú em janeiro/2012 e novembro/2014, respectivamente, e transportadas para o laboratório. Os experimentos foram realizados em frascos Erlenmeyer (1 litro) cheios de água dos locais das amostras e mantidos por cinco dias nas condições laboratoriais. Dois tratamentos foram mantidos (1) com fitoplâncton e presença do zooplâncton nativo e (2) sem zooplâncton nativo.

Resultados

O zooplâncton provou ser um fator importante, modificando a estrutura da comunidade fitoplanctônica, principalmente no reservatório de Apipucos. Neste reservatório, observamos uma redução significativa na biomassa de Cyclotella meneghiniana e Chlamydomonas sp., e um incremento na biomassa de Raphidiopsis raciborskii. No reservatório Mundaú, observamos uma redução significativa de C. meneghiniana e R. raciborskii, enquanto a cianobactéria Microcystis aeruginosa aumentou sua biomassa na presença de zooplâncton.

Conclusões

Estes resultados mostram a importância da estrutura da comunidade de microalgas nas interações fitoplancton-zooplâncton para as cadeias alimentares em ambientes tropicais, bem como, apoiam o papel do zooplâncton na promoção do crescimento de cianobactérias e na manutenção da proliferação de algas.

Palavras-chave:
florações de cianobactérias; Thermocyclops; controle top-down; teia alimentar

1. Introduction

In freshwater aquatic ecosystems, the intensity of phytoplankton-zooplankton interactions is driven by environmental trophic state. In eutrophic reservoirs, especially those located in tropical and subtropical areas, the zooplankton exerts a weak influence on the structure of the phytoplankton community, due to the frequent dominance of unpalatable algae for grazing (Ger et al., 2014GER, K.A., HANSSON, L.A. and LÜRLING, M. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshwater Biology, 2014, 59(9), 1783-1798. http://dx.doi.org/10.1111/fwb.12393.
http://dx.doi.org/10.1111/fwb.12393...
) and small zooplankton organisms that are considered inefficient in controlling of algae biomass (Zhang et al., 2013ZHANG, J., XIE, P., TAO, M., GUO, L., CHEN, J., LI, L., ZHANG, X.Z. and ZHANG, L. The impact of fish predation and cyanobacteria on zooplankton size structure in 96 subtropical lakes. PLoS One, 2013, 8(10), e76378. http://dx.doi.org/10.1371/journal.pone.0076378. PMid:24124552.
http://dx.doi.org/10.1371/journal.pone.0...
).

The phytoplankton group with advantages in eutrophic reservoirs is cyanobacteria, which often forms intense blooms with a dominance of species belonging to genera such as, Anabaena, Raphidiopsis (Cylindrospermopsis), Dolichospermum, Microcystis, and Planktothrix (Paerl et al., 2001PAERL, H.W., FULTON, R.S. 3rd., MOISANDER, P.H. and DYBLE, J. Harmful Freshwater Algal Blooms, with an emphasis on Cyanobacteria. TheScientificWorldJournal, 2001, 1, 76-113. http://dx.doi.org/10.1100/tsw.2001.16. PMid:12805693.
http://dx.doi.org/10.1100/tsw.2001.16...
). Haney (1987)HANEY, J. Field studies on zooplankton-cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research, 1987, 21(3), 467-475. http://dx.doi.org/10.1080/00288330.1987.9516242.
http://dx.doi.org/10.1080/00288330.1987....
describes two important relationships between the cyanobacteria and zooplankton communities in aquatic freshwater ecosystems: (1) direct relation, when the zooplankton reduces the cyanobacteria biomass through grazing or increases the phytoplankton biomass through nutrient release in excreta; (2) indirect relation, when the zooplankton provides a competitive advantage for cyanobacteria by consuming other algae species.

The direct relationship between zooplankton grazing on cyanobacteria can be accompanied by deleterious effects for zooplankton, however, such effects are associated with toxin-producing strains (Wilson et al., 2006WILSON, A.E., SARNELLE, O. and TILLMANNS, A.R. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta-analyses of laboratory experiments. Limnology and Oceanography, 2006, 51(4), 1915-1924. http://dx.doi.org/10.4319/lo.2006.51.4.1915.
http://dx.doi.org/10.4319/lo.2006.51.4.1...
). In addition to toxins, cyanobacteria have morphological characteristics that can clog feeding apparatus (Gliwicz & Lampert, 1990GLIWICZ, Z.M. and LAMPERT, W. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology, 1990, 71(2), 691-702. http://dx.doi.org/10.2307/1940323.
http://dx.doi.org/10.2307/1940323...
), and are deficient in nutrients that are essential for zooplankton growth (Müller-Navarra et al., 2000MÜLLER-NAVARRA, D.C., BRETT, M.T., LISTON, A.M. and GOLDMAN, C.R. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 2000, 403(6765), 74-77. http://dx.doi.org/10.1038/47469. PMid:10638754.
http://dx.doi.org/10.1038/47469...
). Furthermore, other species feature low susceptibility to grazing, such as many chrysophytes, that have a siliceous exoskeleton which makes ingestion by zooplankton difficult, i.e. the genus Dinobryon (Colina et al., 2016COLINA, M., CALLIARI, D., CARBALLO, C. and KRUK, C. A trait-based approach to summarize zooplankton–phytoplankton interactions in fresh waters. Hydrobiologia, 2016, 767(1), 221-233. http://dx.doi.org/10.1007/s10750-015-2503-y.
http://dx.doi.org/10.1007/s10750-015-250...
).

The phytoplankton-zooplankton interaction is even more complex when considering other common eukaryotic algae species, besides cyanobacteria, in eutrophic water bodies. In this respect, chlorophytes also stand out since many species are considered less “palatable” due to their long spines and/or processes. Lürling & van Donk (2000)LÜRLING, M. and VAN DONK, E. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos, 2000, 88(1), 111-118. http://dx.doi.org/10.1034/j.1600-0706.2000.880113.x.
http://dx.doi.org/10.1034/j.1600-0706.20...
and Lürling (2003)LÜRLING, M. Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annales de Limnologie-International Journal of Limnology, 2003, 39(2), 85-101. http://dx.doi.org/10.1051/limn/2003014.
http://dx.doi.org/10.1051/limn/2003014...
showed that species of the genera Scenedesmus and Desmodesmus can inhibit predation by increasing the number of cells in the colony.

The zooplankton community in tropical reservoirs is mainly composed of rotifers and crustaceans, the latter represented by copepods and cladocerans (Sipaúba-Tavares et al., 1994SIPAÚBA-TAVARES, L.H., BACHION, M.A. and ROCHA, O. Estudo do crescimento populacional de três espécies zooplanctônicas em laboratório e o uso de plâncton na alimentação de alevinos de Oreochromis niloticus (tilápia) e Astyanax scabripinus paranae (lambari). Revista Unimar, 1994, 16(3), 189-201.; Almeida et al., 2009ALMEIDA, V.L.S., DANTAS, Ê.W., MELO-JÚNIOR, M., BITTENCOURT-OLIVEIRA, M.C. and MOURA, A.N. Zooplanktonic community of six reservoirs in northeast Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2009, 69(1), 57-65. http://dx.doi.org/10.1590/S1519-69842009000100007. PMid:19347146.
http://dx.doi.org/10.1590/S1519-69842009...
; Almeida et al., 2012ALMEIDA, V.L.S., MELÃO, M.G.G. and MOURA, A.N. Plankton diversity and limnological characterization in two shallow tropical urban reservoirs of Pernambuco State, Brazil. Anais da Academia Brasileira de Ciências, 2012, 84(2), 537-550. http://dx.doi.org/10.1590/S0001-37652012005000027. PMid:22534751.
http://dx.doi.org/10.1590/S0001-37652012...
). Studies show that the eutrophication process can directly influence the structure of the zooplankton community in reservoirs, causing significant effects on body size and biomass of zooplankton (Pinto-Coelho et al., 2005PINTO-COELHO, R.M., BEZERRA-NETO, J.F. and MORAIS-JR, C.A. Effects of eutrophication on size and biomass of crustacean zooplankton in a tropical reservoir. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2005, 65(2), 325-338. http://dx.doi.org/10.1590/S1519-69842005000200017. PMid:16097736.
http://dx.doi.org/10.1590/S1519-69842005...
). According to Jeppesen et al. (2011)JEPPESEN, E., NÕGES, P., DAVIDSON, T.A., HABERMAN, J., NÕGES, T., BLANK, K., LAURIDSEN, T.L., SØNDERGAARD, M., SAYER, C., LAUGASTE, R., JOHANSSON, L.S., BJERRING, R. and AMSINCK, S.L. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 2011, 676(1), 279-297. http://dx.doi.org/10.1007/s10750-011-0831-0.
http://dx.doi.org/10.1007/s10750-011-083...
, increased eutrophication positively affects zooplankton biomass, but negatively affects species richness and size, with large cladocerans being replaced by Cyclopoid copepods and rotifer.

The low number of Cladocera in the tropics has been justified by the strong top-down control by fish in the water bodies of this region (Hansson et al., 2007HANSSON, L.A., GUSTAFSSON, S., RENGEFORS, K. and BOMARK, L. Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biology, 2007, 52(7), 1290-1301. http://dx.doi.org/10.1111/j.1365-2427.2007.01765.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
; Iglesias et al., 2008IGLESIAS, C., MAZZEO, N., GOYENOLA, G., FOSALBA, C., DE MELLO, F., GARCIA, S. and JEPPESEN, E. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous-planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology, 2008, 53(9), 1797-1807. http://dx.doi.org/10.1111/j.1365-2427.2008.02007.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
). Since Cladocera has a significantly higher average body size as compared to the representatives of the other zooplankton groups, they are easily seen by fish and were more strongly affected by predation compared to rotifers, for example (Scasso et al., 2001SCASSO, F., MAZZEO, N., GORGA, J., KRUK, C., LACEROT, G., CLEMENTE, J., FABIÁN, D. and BONILLA, S. Limnological changes in a sub-tropical shallow hypertrophic lake during its restoration two years of a whole-lake experiment. Aquatic Conservation, 2001, 11(1), 31-44. http://dx.doi.org/10.1002/aqc.420.
http://dx.doi.org/10.1002/aqc.420...
; Silveira et al., 2010SILVEIRA, R.M.L., PAIVA, L.L.A.R. and CAMARGO, J.C. Top-down control in a tropical shallow lake of Northern Pantanal, Brazil. Acta Limnologica Brasiliensia, 2010, 22(4), 455-465. http://dx.doi.org/10.4322/actalb.2011.009.
http://dx.doi.org/10.4322/actalb.2011.00...
). Studies indicate that the occurrence of cyanobacterial blooms in the water bodies may also contribute to the reduction of Cladocera biomass, since, in general, these organisms are not very selective about the type of food they consume as compared to other zooplankton groups, and are most affected when exposed to cyanobacteria (Hansson et al., 2007HANSSON, L.A., GUSTAFSSON, S., RENGEFORS, K. and BOMARK, L. Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biology, 2007, 52(7), 1290-1301. http://dx.doi.org/10.1111/j.1365-2427.2007.01765.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
; Ger et al., 2014GER, K.A., HANSSON, L.A. and LÜRLING, M. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshwater Biology, 2014, 59(9), 1783-1798. http://dx.doi.org/10.1111/fwb.12393.
http://dx.doi.org/10.1111/fwb.12393...
).

Zooplankton groups have different grazing mode and food types, thus, changes in the zooplankton community have direct effects on the phytoplankton. Rotifers fill the ecological niche of small filter feeders, which, in general, consume small phytoplankton organisms and bacteria (Melo Júnior et al., 2007MELO JÚNIOR, M.D., ALMEIDA, V.L.S., PARANAGUÁ, M.N. and MOURA, A.N. Crustáceos planctônicos de um reservatório oligotrófico do Nordeste do Brasil. Revista Brasileira de Zoociências, 2007, 9(1), 19-30.). Cladocerans are also filter feeders; however, due to their large size about rotifers, they consume prey with a wider range of sizes (Hill et al., 2016HILL, M., CHADD, R.P., MORRIS, N., SWAINE, J.D. and WOOD, P.J. Aquatic macroinvertebrate biodiversity associated with artificial agricultural drainage ditches. Hydrobiologia, 2016, 776(1), 249-260. http://dx.doi.org/10.1007/s10750-016-2757-z.
http://dx.doi.org/10.1007/s10750-016-275...
). Copepods select and manipulate their prey and can feed on larger algae (Reynolds, 2006REYNOLDS, C.S. Ecology of phytoplankton. Cambridge: Cambridge University Press, 2006. http://dx.doi.org/10.1017/CBO9780511542145.
http://dx.doi.org/10.1017/CBO97805115421...
; Hill et al., 2016HILL, M., CHADD, R.P., MORRIS, N., SWAINE, J.D. and WOOD, P.J. Aquatic macroinvertebrate biodiversity associated with artificial agricultural drainage ditches. Hydrobiologia, 2016, 776(1), 249-260. http://dx.doi.org/10.1007/s10750-016-2757-z.
http://dx.doi.org/10.1007/s10750-016-275...
).

Although phytoplankton-zooplankton interactions have been widely discussed by many researchers in recent decades (Yang et al., 2006YANG, Z., KONG, F., SHI, X. and CAO, H. Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia, 2006, 563(1), 225-230. http://dx.doi.org/10.1007/s10750-005-0008-9.
http://dx.doi.org/10.1007/s10750-005-000...
; Urrutia‐Cordero et al., 2015URRUTIA‐CORDERO, P., EKVALL, M.K. and HANSSON, L. Responses of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? Freshwater Biology, 2015, 60(5), 960-972. http://dx.doi.org/10.1111/fwb.12555.
http://dx.doi.org/10.1111/fwb.12555...
; Li et al., 2020LI, Y., MENG, J., ZHANG, C., JI, S., KONG, Q., WANG, R. and LIU, J. Bottom-up and top-down effects on phytoplankton communities in two freshwater lakes. PLoS One, 2020, 15(4), e0231357. http://dx.doi.org/10.1371/journal.pone.0231357. PMid:32271852.
http://dx.doi.org/10.1371/journal.pone.0...
), few studies have evaluated the species-specific response of phytoplankton to zooplankton in natural communities. Furthermore, most studies have focused on eutrophic reservoirs with cyanobacterial blooms, while few studies have explored this interaction in other water bodies where cyanobacteria do not dominate, where other algal groups with defense mechanisms against herbivores dominate (i.e., Diniz et al., 2019DINIZ, A.S., SEVERIANO, J.S., MELO JÚNIOR, M., DANTAS, Ê.W. and MOURA, A.N. Phytoplankton–zooplankton relationships based on phytoplankton functional groups in two tropical reservoirs. Marine and Freshwater Research, 2019, 70(5), 721-733. http://dx.doi.org/10.1071/MF18049.
http://dx.doi.org/10.1071/MF18049...
).

In this study, we evaluated the species-specific response of phytoplankton to zooplankton grazing pressure using the native communities of two tropical reservoirs (the Apipucos and Mundaú reservoirs) in northeastern Brazil. These water bodies were eutrophic and presented different phytoplankton community structures. In the Apipucos reservoir, the community consisted of many taxa (about 50) (Almeida et al., 2012ALMEIDA, V.L.S., MELÃO, M.G.G. and MOURA, A.N. Plankton diversity and limnological characterization in two shallow tropical urban reservoirs of Pernambuco State, Brazil. Anais da Academia Brasileira de Ciências, 2012, 84(2), 537-550. http://dx.doi.org/10.1590/S0001-37652012005000027. PMid:22534751.
http://dx.doi.org/10.1590/S0001-37652012...
), with quantitative dominance of diatoms and Chlorophyceae. Meanwhile, in the Mundaú reservoir, the number of taxa was around 15 and with a dominance of the cyanobacteria species Raphidiopsis (Cylindrospermopsis) raciborskii (Woloszynska) Aguilera, Berrendero Gómez, Kastovsky, Echenique & Salerno (Dantas et al., 2008DANTAS, Ê.W., MOURA, A.N., BITTENCOURT-OLIVEIRA, M.C., ARRUDA NETO, J.D.T. and CAVALCANTI, A.D.C. Temporal variation of the phytoplankton community at short sampling intervals in the Mundaú reservoir, Northeastern Brazil. Acta Botanica Brasílica, 2008, 22(4), 970-982. http://dx.doi.org/10.1590/S0102-33062008000400008.
http://dx.doi.org/10.1590/S0102-33062008...
; Bittencourt-Oliveira et al., 2011BITTENCOURT-OLIVEIRA, M.C., MOURA, A.N., HEREMAN, T.C. and DANTAS, Ê.W. Increase in straight and coiled Cylindrospermopsis raciborskii (Cyanobacteria) Populations under Conditions of Thermal De-Stratification in a Shallow Tropical Reservoir. Journal of Water Resource and Protection, 2011, 3(4), 245-252. http://dx.doi.org/10.4236/jwarp.2011.34031.
http://dx.doi.org/10.4236/jwarp.2011.340...
). Therefore, this study aimed to test the hypothesis that zooplankton changes the structure of phytoplankton in tropical reservoirs by reducing the biomass of algal species susceptible to herbivory, such as chlorophytes, diatoms, and flagellates, and these effects are more expressive in reservoirs with a high diversity of phytoplankton.

2. Materials and Methods

2.1. Study sites and field procedures

Apipucos (8°01’14”S, 34°56’00”W) and Mundaú (08º56’47”S, 36º29’33”W) reservoirs are located in the State of Pernambuco, northeastern Brazil. Apipucos reservoir has a total area of 2.9 km2, a volume of 556,375 m3, and a mean depth of 2.5 m (Neumann-Leitão et al., 1989NEUMANN-LEITÃO, S., NOGUEIRA-PARANHOS, J.D. and SOUZA, F.B.V.A. Zooplâncton do açude de Apipucos, Recife - PE (Brasil). Arquivos de Biologia e Tecnologia, 1989, 32(4), 803-821.; Almeida et al., 2012ALMEIDA, V.L.S., MELÃO, M.G.G. and MOURA, A.N. Plankton diversity and limnological characterization in two shallow tropical urban reservoirs of Pernambuco State, Brazil. Anais da Academia Brasileira de Ciências, 2012, 84(2), 537-550. http://dx.doi.org/10.1590/S0001-37652012005000027. PMid:22534751.
http://dx.doi.org/10.1590/S0001-37652012...
). This reservoir was built for flood containment and recreation. Recently, due to the intense urbanization of surrounding areas, this water body has received domestic and industrial sewage (Silva et al., 2009SILVA, V.L., FIGUEIREDO, A.C. and CORRÊA, M.M. Qualidade da água do Açude de Apipucos. In: K. BURGOS and E. ARANTES, eds. Açude de Apipucos: história e ecologia. Recife: CEPE, 2009, pp. 77-84.), being classified as hypereutrophic (Oliveira et al., 2014OLIVEIRA, F.H., ARA, A.L., MOREIRA, C.H., LIRA, O.O., PADILHA, M.R. and SHINOHARA, N.K. Seasonal changes of water quality in a tropical shallow and eutrophic reservoir in the metropolitan region of Recife (Pernambuco-Brazil). Anais da Academia Brasileira de Ciências, 2014, 86(4), 1863-1872. http://dx.doi.org/10.1590/0001-3765201420140128. PMid:25590722.
http://dx.doi.org/10.1590/0001-376520142...
). Eichhornia crassipes (Mart.) Solms is the most common macrophyte that forms large floats at the water surface, especially in the coastal region (Pereira & Nascimento, 2009PEREIRA, S.M.B. and NASCIMENTO, P.R.F. Macrófitas Aquáticas. In: K. BURGOS and E. ARANTES, eds. Açude de Apipucos: história e ecologia. Recife: Companhia Editora de Pernambuco, 2009, pp.1-176.; Almeida et al., 2012ALMEIDA, V.L.S., MELÃO, M.G.G. and MOURA, A.N. Plankton diversity and limnological characterization in two shallow tropical urban reservoirs of Pernambuco State, Brazil. Anais da Academia Brasileira de Ciências, 2012, 84(2), 537-550. http://dx.doi.org/10.1590/S0001-37652012005000027. PMid:22534751.
http://dx.doi.org/10.1590/S0001-37652012...
).

Mundaú reservoir has an area of 4 km2, a volume of 1,900,000 m3, and 11 m mean depth (Lira et al., 2014LIRA, G.A.S.T., MOURA, A.N., VILAR, M.C.P., CORDEIRO-ARAÚJO, M.K. and BITTENCOURT-OLIVEIRA, M.C. Vertical and temporal variation in phytoplankton assemblages correlated with environmental conditions in the Mundaú reservoir, semi-arid northeastern Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2014, 74(3, Suppl 1), S093-S102. http://dx.doi.org/10.1590/1519-6984.27612. PMid:25627370.
http://dx.doi.org/10.1590/1519-6984.2761...
). This reservoir was classified as eutrophic (Moura et al., 2007MOURA, A.N., BITTENCOURT-OLIVEIRA, M.C., DANTAS, Ê.W. and ARRUDA NETO, J.D.D.T. Phytoplanktonic associations: a tool to understanding dominance events in a tropical Brazilian reservoir. Acta Botanica Brasílica, 2007, 21(3), 641-648. http://dx.doi.org/10.1590/S0102-33062007000300011.
http://dx.doi.org/10.1590/S0102-33062007...
), and built for public water supply to the population in Garanhuns City, however, currently receives urban drainage (SHR, 2000SECRETARIA DOS RECURSOS HÍDRICOS – SRH. Plano Estadual de Recursos Hídricos do Estado de Pernambuco - Documento Síntese [online]. Recife: SRH, 2000. [viewed 27 Nov. 2019]. Available from: https://www.srh.ce.gov.br/
https://www.srh.ce.gov.br/...
). The occurrence of macrophytes is not expressive, but some inexpressive individuals of Nymphaea spp. have been observed (Lira et al., 2014LIRA, G.A.S.T., MOURA, A.N., VILAR, M.C.P., CORDEIRO-ARAÚJO, M.K. and BITTENCOURT-OLIVEIRA, M.C. Vertical and temporal variation in phytoplankton assemblages correlated with environmental conditions in the Mundaú reservoir, semi-arid northeastern Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2014, 74(3, Suppl 1), S093-S102. http://dx.doi.org/10.1590/1519-6984.27612. PMid:25627370.
http://dx.doi.org/10.1590/1519-6984.2761...
).

Water samples were collected from the subsurface in coastal regions of the Apipucos and Mundaú reservoirs in January/2012 and November/2014, respectively. Samples were conditioned in plastic bottles and transported to the laboratory at natural temperature conditions (about 27°C). After the reservoirs waters has been collected and transported to the laboratory, grazing assays were carried out. Therefore, the phytoplanktonic and zooplanktonic communities of the initial conditions of the experiments were the same as the natural communities of the reservoirs.

2.2. Experimental design

The phytoplankton community of the Apipucos and Mundaú reservoirs was maintained under two conditions, with (n=3) and without zooplankton (n=3). For this, samples were filtered with plankton net (68 µm mesh) for treatments without zooplankton and placed in three Erlenmeyer flasks (1 liter) maintained closed for five days in laboratory conditions: temperature of 25±1ºC, artificial lighting with 20-W fluorescent lamps (80 ± 2 µmol.photons m-2 s-1), a 12-h photoperiod, and constant aeration using an aquarium aerator. In the other three flasks, we put the native zooplankton organisms directly collected from Apipucos reservoir water which were acclimatized in laboratory conditions for 12 hours as described above. The same procedure was done for samples from the Mundaú reservoir.

2.2. Phytoplankton and zooplankton analysis

For quantitative studies of phytoplankton and zooplankton in the experiments, samples were collected from all treatments at the beginning (Day 1; TInitial) and the end (Day 5; TFinal) of the experiment. Aliquots of 10 mL to counting of phytoplankton of each treatment were sampled and preserved using a solution of acetic Lugol at 1%. The biomass (mg.L-1) was estimated using the density (ind.mL-1) data (Utermöhl, 1958UTERMÖHL, H. Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung für theoretische und angewandte Limnologie Mitteilungen, 1958, 9(1), 1-38.) and mean cell biovolume of each taxon (Hillebrand et al., 1999HILLEBRAND, H., DÜRSELEN, C., KIRSCHTEL, D., POLLINGHER, U. and ZOHARY, T. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 1999, 35(2), 403-424. http://dx.doi.org/10.1046/j.1529-8817.1999.3520403.x.
http://dx.doi.org/10.1046/j.1529-8817.19...
). Zooplankton samples were preserved using formalin solution at 4% and the analyses were carried out under an optical microscope with a Sedgwick-Rafter counting chamber of 1 mL. The biomass (mg.L-1) was estimated by mean biovolume of taxa, according to Ruttner-Kolisko (1977)RUTTNER-KOLISKO, A. Suggestions for biomass calculation of planktonic rotifers. Archiv für Hydrobiologie, 1977, 8, 71-77. for rotifers, and Pinto-Coelho (2004)PINTO-COELHO, R.M. Métodos de coleta, preservação, contagem e determinação de biomassa em zooplâncton de águas epicontinentais. In: C.E.M. BICUDO and D.C. BICUDO, eds. Amostragem em limnologia. São Carlos: RiMa, 2004, pp. 149-166. for microcrustaceans.

The standard error of the mean biomasses (± SEM) of phytoplankton and zooplankton was calculated. The dominance of phytoplankton and zooplankton taxa at the beginning of the experiment was determined according to Lobo & Leighton (1986)LOBO, E. and LEIGHTON, G. Estructuras comunitarias de las fitocenosis planctónicas de los sistemas de desembocaduras de rios y esteros de la zona central. Revista de Biología Marina y Oceanografía, 1986, 22(1), 1-29., the taxa with biomass higher than 50% of total biomass were considered dominant.

2.3. Statistical analysis

The taxonomic diversity of phytoplankton in the Apipucos and Mundáu reservoirs at TInitial and in the zooplankton treatment at the end of the experiment was analyzed based on species abundance, using the Shannon diversity index (H’) (Shannon, 1948SHANNON, C.E. A mathematical theory of communication. The Bell System Technical Journal, 1948, 27(3), 379-423. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x.
http://dx.doi.org/10.1002/j.1538-7305.19...
) and the Pielou equitability index (J’) (Pielou, 1966PIELOU, E.C. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 1966, 13, 131-144. http://dx.doi.org/10.1016/0022-5193(66)90013-0.
http://dx.doi.org/10.1016/0022-5193(66)9...
). The Pielou J’ index ranges from 0 to 1, indicating homogeneity or highest heterogeneity, respectively. To assess the significant differences in total phytoplankton biomass and biomass of species in the TInitial and treatments with and without zooplankton, we performed an ANOVA one-way and Kruskal-Wallis test for parametric and non-parametric residues, respectively. Tukey’s post hoc test was applied to discriminate the significant differences in biomasses of phytoplankton species between TInitial and treatments with and without zooplankton at TFinal. Normality and homoscedasticity of residues was previously determined using the Kolmogorov-Smirnov and Bartlett tests, respectively. The statistical analyses were performed with a 5% significance level using the R software (R Core Team, 2016R CORE TEAM. R: A Language and Environment for Statistical Computing [online]. Vienna, Austria: R Foundation for Statistical Computing, 2016. [viewed 27 Nov. 2019]. Available from: http://www.R-project.org/
http://www.R-project.org/...
). In the results, we included phytoplankton taxa that presented biomass greater than 1% in the tested treatments.

3. Results

Higher diversity was observed at TInitial in the Apipucos reservoir (H’ = 3.78 bits, J’ = 1.00) compared to the Mundaú reservoir (H’ = 2.40 bits, J’ = 1.00). At the end of the experiment, it was verified that zooplankton negatively affected phytoplankton diversity in Apipucos (H’ = 3.76 bits, J’ = 1.00), while the opposite was observed in Mundáu (H’ = 2.49 bits, J’ = 1.00). At the beginning of the experiment, the zooplankton biomass was similar to that observed during samplings from the reservoirs, with an abundance of 152.27 (±11.97) mg.L-1 and 1003.90 (±155.89) mg.L-1 for Apipucos and Mundaú, respectively.

3.1. Apipucos reservoir

At the beginning of the experiment (TInitial), the zooplankton community was composed of 10 taxa belonging to Rotifera (82%), Cladocera (9%), and Copepoda (9%, adults and nauplii). The total biomass was 152.27 ± 34.74 mg.L-1, with dominance of Thermocyclops (51.54 ± 3.81 mg.L-1) and nauplii (74.32 ± 4.89 mg.L-1) (Figure 1a). At the end of the experiment (TFinal), total biomass was 107.13 ± 34.74 mg.L-1. We observed an increase in Brachionus biomass and a reduction in Thermocyclops and nauplii biomass (Figure 1a).

Figure 1
Zooplankton biomass (a), total phytoplankton biomass (b), and relative biomass of phytoplankton classes (c) in experiments at Apipucos reservoir. TInitial = Begin of experiment; TFinal = End of experiment. Bars represent standard errors of the mean (±SEM). In Figure b, columns with the same letter do not differ significantly (p < 0.05). Cyano = Cyanophyceae, Chloro = Chlorophyceae, Bacilla = Bacillariophyceae, Eugle = Euglenophyceae, Crypto = Cryptophyceae.

Forty-eight phytoplankton taxa were identified at TInitial belonging to Cyanophyceae (15%), Bacillariophyceae (8%), Chlorophyceae (60%), Euglenophyceae (8%), and Cryptophyceae (8%) (Table 1). Total biomass was 23.70 ± 2.94 mg.L-1, with no dominant taxa registered (Table 1). The total phytoplankton biomass was significantly higher in the without zooplankton treatment compared to treatment with zooplankton and the TInitial (F = 10.93 and p = 0.00998) (Figure 1b). A reduction in the relative biomass of Bacillariophyceae was observed in the treatment with zooplankton at the end of the experiment (TFinal), while there was an increase in the relative biomasses of Cyanophyceae and Chlorophyceae (Figure 1c).

Table 1
Phytoplankton biomass (mg.L-1) and standard error of the mean (±SEM) at the beginning of the experiment (TInitial) and the end of the experiment with and without zooplankton (TFinal) at Apipucos reservoir.

In zooplankton treatment, we observed a significant reduction in biomass of diatom Aulacoseira granulata (Ehrenberg) Simonsen and Cyclotella meneghiniana Kützing, and the chlorophyte Chlamydomonas sp. (Table 1). The chlorophytes Dictyosphaerium pulchellum H.C. Wood and Micractinium pusillum Fresenius, and the cryptophyceae Cryptomonas erosa Ehrenberg also presented reduced biomasses in the presence of zooplankton but was not significant (Table 1). On the other hand, we observed a significant increase in biomass of cyanobacteria Raphidiopsis raciborskii in the presence of zooplankton.

3.2. Mundaú reservoir

Twelve zooplankton taxa were identified at TInitial of the experiment, belonging to Rotifera (92%), and Copepoda (8%, adults and nauplii). Total biomass was 1003.90 ± 171.17 mg.L-1, with dominance of Brachionus (259.60 ± 64.15 mg.L-1), Thermocyclops (142.40 ± 18.84 mg.L-1), and nauplii (585.95 ± 83.33 mg.L-1) (Figure 2a). At TFinal we observed total biomass of 190.24 ± 58.03 mg.L-1 and a reduction of Brachionus (p = 0.04071) and nauplii biomass (p = 0.002151) (Figure 2a).

Figure 2
Zooplankton biomass (a), total phytoplankton biomass (b), and relative biomass of phytoplankton classes (c) in experiments at Mundaú reservoir. TInitial = Begin of experiment; TFinal = End of experiment. Bars represent standard errors of the mean (±SEM). In Figure b, columns with the same letter do not differ significantly (p < 0.05). Cyano = Cyanophyceae, Bacilla = Bacillariophyceae, Chloro = Chlorophyceae.

The phytoplankton community was composed of 11 taxa belonging to Cyanophyceae (46%), Chlorophyceae (27%), and Bacillariophyceae (27%) (Table 2). The total biomass was 45.31 ± 0.85 mg.L-1, with the dominance of cyanobacteria R. raciborskii (Table 2). The total biomass of phytoplankton showed a significant difference between treatments (F = 30.53 and p = 0.00072) (Figure 2b). The relative biomass showed that Cyanophyceae dominated over the other phytoplankton classes at TInitial and in treatments with and without zooplankton at TFinal, however, there was a slight reduction in Cyanophyceae biomass at the TFinal compared to TInitial (Figure 2c).

Table 2
Phytoplankton biomass (mg.L-1) and standard error of the mean (±SEM) at the beginning of the experiment (TInitial) and the end of the experiment with and without zooplankton (TFinal) at Mundaú reservoir.

Regarding the phytoplankton species, we observed a significant reduction in biomass of cyanobacteria R. raciborskii, Geitlerinema amphibium (C.Agardh ex Gomont) Anagnostidis, Merismopedia tenuissima Lemmermann, and the diatom C. meneghiniana at TFinal in the presence and absence of zooplankton compared to TInitial (Table 2). Although no significant results were observed in the R. raciborskii biomass between treatments with and without zooplankton, an increase in the biomass of this cyanobacteria has been verified in the presence of zooplankton at the end of the experiment (Table 2). Differently, the cyanobacteria Microcystis aeruginosa (Kützing) Kützing, the chlorophyte Monoraphidium griffithii (Berkeley) Komárková-Legnerová and other chlorophytes, and the diatom A. granulata had their biomass increased in the presence of zooplankton, as compared to treatment without zooplankton at the end of the experiment (Table 2).

4. Discussion

In the present study, we observed zooplankton from tropical reservoirs controlling phytoplankton biomass. Zooplankton proved to be an important factor in modifying the structure of the phytoplankton community, especially in the Apipucos reservoir, where the presence of zooplankton reduced the total phytoplankton biomass and increased biomass of R. raciborskii. Even though the Mundaú reservoir had higher phytoplankton and zooplankton biomass, it showed weak trophic links between these communities, since the presence of the zooplankton doesn’t significantly reduce any phytoplankton taxon. However, zooplankton showed positive effects on M. aeruginosa biomass.

Despite the high biomass of zooplankton in the Mundaú reservoir, the occurrence of cyanobacterial blooms certainly explains the slight effect of predation on phytoplankton in this environment during the experiment. Studies show that cyanobacteria are not a good food source for zooplankton (Chalar, 2009CHALAR, G. The use of phytoplankton patterns of diversity for algal bloom management. Limnologica, 2009, 39(3), 200-208. http://dx.doi.org/10.1016/j.limno.2008.04.001.
http://dx.doi.org/10.1016/j.limno.2008.0...
), this can weaken trophic relationships (Heathcote et al., 2016HEATHCOTE, A.J., FILSTRUP, C.T., KENDALL, D. and DOWNING, J.A. Biomass pyramids in lake plankton: influence of Cyanobacteria size and abundance. Inland Waters, 2016, 6(2), 250-257. http://dx.doi.org/10.5268/IW-6.2.941.
http://dx.doi.org/10.5268/IW-6.2.941...
). The size of filaments or colonies are factors that can suppress the top-down control of zooplankton over cyanobacteria by reducing the feeding efficiency of consumers (Lampert, 1987LAMPERT, W. Laboratory studies on zooplankton‐cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research, 1987, 21(3), 483-490. http://dx.doi.org/10.1080/00288330.1987.9516244.
http://dx.doi.org/10.1080/00288330.1987....
), mainly when zooplankton is dominated by rotifers. Moreover, the cyanobacteria reduce both the phytoplankton diversity in aquatic ecosystems where they form blooms and the heterogeneity of food that can be used by zooplankton (Wang et al., 2009WANG, C., HUANG, Y., HE, S., LIN, Y., WANG, X. and KONG, H. Variation of phytoplankton community before an induced cyanobacterial (Arthrospira platensis) bloom. Journal of Environmental Sciences (China), 2009, 21(12), 1632-1638. http://dx.doi.org/10.1016/S1001-0742(08)62466-3. PMid:20131591.
http://dx.doi.org/10.1016/S1001-0742(08)...
). Under these conditions, zooplankton directly affects the trophic web because it uses other food sources such as microzooplankton (heterotrophic protozoa – ciliates, heterotrophic flagellates, and other heterotrophic organisms) under high biomass of non-nutritive algae, e.g., cyanobacteria (Ger et al., 2016GER, K.A., URRUTIA-CORDERO, P., FROST, P.C., HANSSON, L.A., SARNELLE, O., WILSON, A.E. and LÜRLING, M. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae, 2016, 54, 128-144. http://dx.doi.org/10.1016/j.hal.2015.12.005. PMid:28073472.
http://dx.doi.org/10.1016/j.hal.2015.12....
).

Unlike cyanobacteria, heterotrophic protozoa produce high amounts of fatty acids, implying the inhibition of zooplankton grazing on phytoplankton, and consequent increase in algae biomass and reduction in heterotrophic protozoa (Stoecker & Pierson, 2019STOECKER, D. and PIERSON, J. Predation on protozoa: its importance to zooplankton revisited. Journal of Plankton Research, 2019, 41(4), 367-373. http://dx.doi.org/10.1093/plankt/fbz027.
http://dx.doi.org/10.1093/plankt/fbz027...
). Moreover, heterotrophic protozoa can ingest toxic cyanobacteria (e.g., Microcystis) since they can coexist with them, and promote increased biodiversity of the phytoplankton community (Zhang et al., 2020ZHANG, L., WANG, Z., WANG, N., GU, L., SUN, Y., HUANG, Y., CHEN, Y. and YANG, Z. Mixotrophic Ochromonas addition improves the harmful Microcystis-dominated phytoplankton community in in situ microcosms. Environmental Science & Technology, 2020, 54(7), 4609-4620. http://dx.doi.org/10.1021/acs.est.9b06438. PMid:32126758.
http://dx.doi.org/10.1021/acs.est.9b0643...
). Thus, microzooplankton plays a fundamental role in the trophic web and the microbial loop.

In the Apipucos reservoir, the high diversity of phytoplankton species with high biomass taxa that is highly susceptible to herbivores such as C. meneghiniana (James & Forsyth, 1990JAMES, M.R. and FORSYTH, D.J. Zooplankton-phytoplankton interactions in a eutrophic lake. Journal of Plankton Research, 1990, 12(3), 455-472. http://dx.doi.org/10.1093/plankt/12.3.455.
http://dx.doi.org/10.1093/plankt/12.3.45...
), and the presence of taxa with high nutritional quality for zooplankton, as Chlamydomonas sp. (Santer & van den Bosch, 1994SANTER, B. and VAN DEN BOSCH, F. Herbivorous nutrition of Cyclops vicinus: the effect of a pure algal diet on feeding, development, reproduction and life cycle. Journal of Plankton Research, 1994, 16(2), 171-195. http://dx.doi.org/10.1093/plankt/16.2.171.
http://dx.doi.org/10.1093/plankt/16.2.17...
) and Cryptomonas erosa (von Ruckert & Giani, 2008VON RÜCKERT, G. and GIANI, A. Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? Journal of Plankton Research, 2008, 30(10), 1157-1168. http://dx.doi.org/10.1093/plankt/fbn065.
http://dx.doi.org/10.1093/plankt/fbn065...
), was important for establishing the high degree of zooplankton coupling in this environment. Therefore, as reported by Danielsdottir et al. (2007)DANIELSDOTTIR, M.G., BRETT, M.T. and ARHONDITSIS, G.B. Phytoplankton food quality control of planktonic food web processes. Hydrobiologia, 2007, 589(1), 29-41. http://dx.doi.org/10.1007/s10750-007-0714-6.
http://dx.doi.org/10.1007/s10750-007-071...
and von Rückert & Giani (2008)VON RÜCKERT, G. and GIANI, A. Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? Journal of Plankton Research, 2008, 30(10), 1157-1168. http://dx.doi.org/10.1093/plankt/fbn065.
http://dx.doi.org/10.1093/plankt/fbn065...
, both the concentration, in terms of density or biomass, and the phytoplankton composition, containing taxa with different nutritional quality, are essential for maintaining the zooplankton populations and natural processes of energy transfer in aquatic food webs.

The increase in phytoplankton biomass, especially cyanobacteria in treatments with zooplankton, demonstrates the importance of the indirect effect of herbivory in tropical reservoirs, as shown by Hong et al. (2013)HONG, Y., BURFORD, M.A., RALPH, P.J., UDY, J.W. and DOBLIN, M.A. The cyanobacterium Cylindrospermopsis raciborskii is facilitated by copepod selective grazing. Harmful Algae, 2013, 29, 14-21. http://dx.doi.org/10.1016/j.hal.2013.07.003.
http://dx.doi.org/10.1016/j.hal.2013.07....
and Leitão et al. (2018)LEITÃO, E., GER, K.A. and PANOSSO, R. Selective grazing by a tropical copepod (Notodiaptomus iheringi) facilitates Microcystis dominance. Frontiers in Microbiology, 2018, 9, 301. http://dx.doi.org/10.3389/fmicb.2018.00301. PMid:29527199.
http://dx.doi.org/10.3389/fmicb.2018.003...
. Such approach has been the focus of many studies, especially those which advocate the hypothesis that states the maintenance of perennial cyanobacteria blooms in tropical reservoirs is partially due to competitive advantage for nutrients by cyanobacteria with a reduction in the biomass of other algal species that are preferably predated by zooplankton in that region (Mitra & Flynn, 2006MITRA, F. and FLYNN, K.J. Promotion of harmful algal blooms by zooplankton predatory activity. Biology Letters, 2006, 2(2), 194-197. http://dx.doi.org/10.1098/rsbl.2006.0447. PMid:17148360.
http://dx.doi.org/10.1098/rsbl.2006.0447...
; Wang et al., 2010WANG, X.D., QIN, B.Q., GAO, G. and PAERL, H.W. Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. Journal of Plankton Research, 2010, 32(4), 457-470. http://dx.doi.org/10.1093/plankt/fbp143.
http://dx.doi.org/10.1093/plankt/fbp143...
; Ger et al., 2014GER, K.A., HANSSON, L.A. and LÜRLING, M. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshwater Biology, 2014, 59(9), 1783-1798. http://dx.doi.org/10.1111/fwb.12393.
http://dx.doi.org/10.1111/fwb.12393...
).

The substitution of cladocerans and Calanoid copepods for rotifers can occur because of increased eutrophication, which consequently favors increased cyanobacteria (Borges et al., 2010BORGES, P.A.F., TRAIN, S., DIAS, J.D. and BONECKER, C.C. Effects of fish farming on plankton structure in a Brazilian tropical reservoir. Hydrobiologia, 2010, 649(1), 279-291. http://dx.doi.org/10.1007/s10750-010-0271-2.
http://dx.doi.org/10.1007/s10750-010-027...
). Furthermore, eutrophication can also lead to the dominance of Cyclopoid copepods in several reservoirs (Jeppesen et al., 2000JEPPESEN, E., PEDER JENSEN, J., SØNDERGAARD, M., LAURIDSEN, T. and LANDKILDEHUS, F. Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient. Freshwater Biology, 2000, 45(2), 201-218. http://dx.doi.org/10.1046/j.1365-2427.2000.00675.x.
http://dx.doi.org/10.1046/j.1365-2427.20...
) as a result of their feeding habits (Soto & Hurlbert, 1991SOTO, D. and HURLBERT, S.H. Long-term experiments on calanoid–cyclopoid interactions. Ecological Monographs, 1991, 61(3), 245-265. http://dx.doi.org/10.2307/2937108.
http://dx.doi.org/10.2307/2937108...
; Hansson et al., 2007HANSSON, L.A., GUSTAFSSON, S., RENGEFORS, K. and BOMARK, L. Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biology, 2007, 52(7), 1290-1301. http://dx.doi.org/10.1111/j.1365-2427.2007.01765.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
). In addition to the ability to consume algae (Tõnno et al., 2016TÕNNO, I., AGASILD, H., KÕIV, T., FREIBERG, R., NÕGES, P. and NÕGES, T. Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PLoS One, 2016, 11(4), e0154526. http://dx.doi.org/10.1371/journal.pone.0154526. PMid:27124652.
http://dx.doi.org/10.1371/journal.pone.0...
) and other zooplankton (Andrade & López, 2005ANDRADE, A. and LÓPEZ, C. Predatory interactions between Thermocyclops decipiens Kiefer (Cyclopoida: Copepoda) and two small cladocerans: behavior and prey post-encounter vulnerability. Annales de Limnologie - International Journal of Limnology, 2005, 41(3), 153-159. http://dx.doi.org/10.1051/limn:20054130153.
http://dx.doi.org/10.1051/limn:200541301...
) through their ambush feeding habit, cyclopoid copepods show better performance in food activity under low light availability (Kandathil Radhakrishnan et al., 2020KANDATHIL RADHAKRISHNAN, D., AKBARALI, I., THUNDIPARAMBIL SATHRAJITH, A., SCHMIDT, B.V., SIVANPILLAI, S. and THAZHAKOT VASUNAMBESAN, S. Grazing rates of freshwater copepod Thermocyclops decipiens (Kiefer, 1929) on Chlorella vulgaris under different light intensities. Aquaculture (Amsterdam, Netherlands), 2020, 525, 735321. http://dx.doi.org/10.1016/j.aquaculture.2020.735321.
http://dx.doi.org/10.1016/j.aquaculture....
). This may explain the success of cyclopoid copepods in coexisting with cyanobacterial blooms, which commonly reduce the penetration of light into the water column. In our study, the rotifer Brachionus and cyclopoid copepod Thermocyclops (in the nauplii and adult stages) were the most abundant zooplankton taxa in the Mundaú and Apipucos reservoirs, respectively.

Brachionus species can simultaneously collect food particles of small size and process larger cells individually (Pagano, 2008PAGANO, M. Feeding of tropical cladocerans (Moina micrura, Diaphanosoma excisum) and rotifer (Brachionus calyciflorus) on natural phytoplankton: effect of phytoplankton size–structure. Journal of Plankton Research, 2008, 30(4), 401-414. http://dx.doi.org/10.1093/plankt/fbn014.
http://dx.doi.org/10.1093/plankt/fbn014...
), as well as select or reject particles according to their quality and quantity (Gilbert & Starkweather, 1977GILBERT, J.J. and STARKWEATHER, P.L. Feeding in the rotifer Brachionus calyciflorus. Oecologia, 1977, 28(2), 125-131. http://dx.doi.org/10.1007/BF00345247. PMid:28309010.
http://dx.doi.org/10.1007/BF00345247...
). Studies by Starkweather & Kellar (1983)STARKWEATHER, P.L. and KELLAR, P.E. Utilization of cyanobacteria by Brachionus calyciflorus: Anabaena flos-aquae (NRC-44-1) as a sole or complementary food source. Hydrobiologia, 1983, 104(1), 373-377. http://dx.doi.org/10.1007/BF00045994.
http://dx.doi.org/10.1007/BF00045994...
, Soares et al. (2010)SOARES, M.C.S., LÜRLING, M. and HUSZAR, V.L.M. Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. Journal of Plankton Research, 2010, 32(7), 999-1008. http://dx.doi.org/10.1093/plankt/fbq042.
http://dx.doi.org/10.1093/plankt/fbq042...
, and Kâ et al. (2012)KÂ, S., MENDOZA-VERA, J.M., BOUVY, M., CHAMPALBERT, G., N’GOM-KÂ, R. and PAGANO, M. Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiologia, 2012, 679(1), 119-138. http://dx.doi.org/10.1007/s10750-011-0860-8.
http://dx.doi.org/10.1007/s10750-011-086...
show that Brachionus species, typical to tropical environments (B. angularis, B. calyciflorus, and B. falcatus), can consume filamentous cyanobacteria, such as R. raciborskii and Anabaena flos-aquae Brébisson ex Bornet & Flauhault. Regarding colonial cyanobacteria, such as Microcystis aeruginosa, Kâ et al. (2012)KÂ, S., MENDOZA-VERA, J.M., BOUVY, M., CHAMPALBERT, G., N’GOM-KÂ, R. and PAGANO, M. Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiologia, 2012, 679(1), 119-138. http://dx.doi.org/10.1007/s10750-011-0860-8.
http://dx.doi.org/10.1007/s10750-011-086...
showed that zooplankton of different taxonomic groups, including Brachionus, were not able to consume this cyanobacteria. Such results are similar to those found in Mundaú, where the dominant zooplankton (Brachionus) favored the M. aeruginosa biomass and reduced the R. raciborskii biomass. In contrast, Soares et al. (2010)SOARES, M.C.S., LÜRLING, M. and HUSZAR, V.L.M. Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. Journal of Plankton Research, 2010, 32(7), 999-1008. http://dx.doi.org/10.1093/plankt/fbq042.
http://dx.doi.org/10.1093/plankt/fbq042...
showed the potential of B. calyciflorus to ingest Microcystis, even though population growth was not supported when exposed to a diet made of only these cyanobacteria.

In turn, the copepod Thermocyclops shows several eating habits depending on its life stage and is a filter feeder during the nauplii stadium, consuming small algae, while as an adult is omnivorous with the raptorial eating habit (Gliwicz, 2004GLIWICZ, Z.M. Zooplankton. In: P.E. O’SULLIVAN and C.S. REYNOLDS, eds. The Lakes Handbook: Limnology and limnetic ecology. Oxford: Blackwell Science, 2004, pp. 461–516.). However, Hopp et al. (1997)HOPP, U., MAIER, G. and BLEHER, R. Reproduction and adult longevity of five species of planktonic cyclopoid copepods reared on different diets: a comparative study. Freshwater Biology, 1997, 38(2), 289-300. http://dx.doi.org/10.1046/j.1365-2427.1997.00214.x.
http://dx.doi.org/10.1046/j.1365-2427.19...
showed experimentally that many adult cyclopoids, including Thermocyclops, manage to survive on a diet composed of only algae, and present higher reproductive performance and longevity when exposed to a mixed diet, consisting of rotifers, copepod nauplii, small copepodites, and large phytoplankton forms.

In our study, we observed an increase of R. raciborskii in the presence of zooplankton in the Apipucos experiment, with Thermocyclops as the dominant species. Leitão et al. (2018)LEITÃO, E., GER, K.A. and PANOSSO, R. Selective grazing by a tropical copepod (Notodiaptomus iheringi) facilitates Microcystis dominance. Frontiers in Microbiology, 2018, 9, 301. http://dx.doi.org/10.3389/fmicb.2018.00301. PMid:29527199.
http://dx.doi.org/10.3389/fmicb.2018.003...
showed that copepods can promote the dominance of cyanobacteria, however, this study evaluated the effects of the Calanoid copepod Notodiaptomus iheringi (Wright, 1935) on M. aeruginosa. Differently, Leitão et al. (2020)LEITÃO, E., PANOSSO, R., MOLICA, R. and GER, K.A. Top‐down regulation of filamentous cyanobacteria varies among a raptorial versus current feeding copepod across multiple prey generations. Freshwater Biology, 2020, 66(1), 142-156. http://dx.doi.org/10.1111/fwb.13625.
http://dx.doi.org/10.1111/fwb.13625...
showed that N. iheringi can efficiently control the biomass of R. raciborskii, while Thermocyclops decipiens (Kiefer, 1929), although not have a top-down effect on the biomass of R. raciborskii, can reduce the length of filaments, facilitating the top-down control of N. iheringi.

In the Mundaú reservoir, the high biomass of R. raciborskii negatively affected the Thermocyclops biomass, nevertheless, at the end of the experiment there was a small reduction in Cyanophyceae biomass in the zooplankton treatment. According to Gebrehiwot et al. (2019)GEBREHIWOT, M., KIFLE, D. and TRIEST, L. Grazing and growth rate of a cyclopoid copepod fed with a phytoplankton diet constituted by a filamentous cyanobacterium. Hydrobiologia, 2019, 828(1), 213-227. http://dx.doi.org/10.1007/s10750-018-3813-7.
http://dx.doi.org/10.1007/s10750-018-381...
, T. decipiens can ingest R. raciborskii through the fragmentation of long filaments but can negatively affect the survival and growth of zooplankton when cyanobacteria are the only food source. Meanwhile, the reduction of Thermocyclops observed in our results may not have been related to poor food (cyanobacteria), but rather to acclimatization time. Also, treatment with edible prey for zooplankton was not maintained during the experiment, making it impossible to analyze the direct effects of cyanobacteria on zooplankton.

In the Pampulha reservoir, located in the Southeastern region of Brazil, von Rückert & Giani (2008)VON RÜCKERT, G. and GIANI, A. Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? Journal of Plankton Research, 2008, 30(10), 1157-1168. http://dx.doi.org/10.1093/plankt/fbn065.
http://dx.doi.org/10.1093/plankt/fbn065...
observed a weak interaction between phytoplankton and zooplankton, possibly due to the use of other non-algal food sources by T. decipiens, the dominant zooplankton species. The reduction of Thermocyclops biomass in nauplii stadium herein may be due to predation by adult organisms of this taxon, as noted by Carvalho (1984)CARVALHO, M.A.J. On feeding behavior of Thermocyclops crassus. Crustaceana, 1984, 7, 122-125.. Furthermore, Thermocyclops can consume the nauplii of its species, even when offered other food types, like other zooplankton species and microalgae. However, these results are not conclusive and were unable to determine a predation interaction between these taxa. Moreover, we cannot rule out the possibility that the laboratory conditions could have influenced our results. Therefore, further studies are required to evaluate the direct relationship between these taxa.

In conclusion, the zooplankton reduced the phytoplankton biomass in the reservoir with the dominance of diatoms and green algae, which supports the importance of the phytoplankton community structure on the strength of trophic interactions in the tropics. Phytoplankton biomass reduction was observed for the taxa of diatoms, green algae, and unicellular or colonial cryptomonads of small size. On the other hand, cyanobacteria and large colonial chlorophytes were not adversely affected when exposed to zooplankton. R. raciborskii and M. aeruginosa commonly formed blooms in the reservoirs and increased biomass in the presence of zooplankton. These results emphasize the framework of other studies (Wang et al., 2010WANG, X.D., QIN, B.Q., GAO, G. and PAERL, H.W. Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. Journal of Plankton Research, 2010, 32(4), 457-470. http://dx.doi.org/10.1093/plankt/fbp143.
http://dx.doi.org/10.1093/plankt/fbp143...
; Leitão et al., 2018LEITÃO, E., GER, K.A. and PANOSSO, R. Selective grazing by a tropical copepod (Notodiaptomus iheringi) facilitates Microcystis dominance. Frontiers in Microbiology, 2018, 9, 301. http://dx.doi.org/10.3389/fmicb.2018.00301. PMid:29527199.
http://dx.doi.org/10.3389/fmicb.2018.003...
), which support that tropical zooplankton plays an important role in maintaining cyanobacterial blooms.

Acknowledgments

We are grateful to the “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”- Process 305829/2019-0 for financial support to carry out this study.

  • Cite as: Severiano, J.S., Amaral, C.B., Diniz, A.S. and Moura, A.N. Species-specific response of phytoplankton to zooplankton grazing in tropical eutrophic reservoirs. Acta Limnologica Brasiliensia, 2021, vol. 33, e17.

References

  • ALMEIDA, V.L.S., DANTAS, Ê.W., MELO-JÚNIOR, M., BITTENCOURT-OLIVEIRA, M.C. and MOURA, A.N. Zooplanktonic community of six reservoirs in northeast Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2009, 69(1), 57-65. http://dx.doi.org/10.1590/S1519-69842009000100007 PMid:19347146.
    » http://dx.doi.org/10.1590/S1519-69842009000100007
  • ALMEIDA, V.L.S., MELÃO, M.G.G. and MOURA, A.N. Plankton diversity and limnological characterization in two shallow tropical urban reservoirs of Pernambuco State, Brazil. Anais da Academia Brasileira de Ciências, 2012, 84(2), 537-550. http://dx.doi.org/10.1590/S0001-37652012005000027 PMid:22534751.
    » http://dx.doi.org/10.1590/S0001-37652012005000027
  • ANDRADE, A. and LÓPEZ, C. Predatory interactions between Thermocyclops decipiens Kiefer (Cyclopoida: Copepoda) and two small cladocerans: behavior and prey post-encounter vulnerability. Annales de Limnologie - International Journal of Limnology, 2005, 41(3), 153-159. http://dx.doi.org/10.1051/limn:20054130153
    » http://dx.doi.org/10.1051/limn:20054130153
  • BITTENCOURT-OLIVEIRA, M.C., MOURA, A.N., HEREMAN, T.C. and DANTAS, Ê.W. Increase in straight and coiled Cylindrospermopsis raciborskii (Cyanobacteria) Populations under Conditions of Thermal De-Stratification in a Shallow Tropical Reservoir. Journal of Water Resource and Protection, 2011, 3(4), 245-252. http://dx.doi.org/10.4236/jwarp.2011.34031
    » http://dx.doi.org/10.4236/jwarp.2011.34031
  • BORGES, P.A.F., TRAIN, S., DIAS, J.D. and BONECKER, C.C. Effects of fish farming on plankton structure in a Brazilian tropical reservoir. Hydrobiologia, 2010, 649(1), 279-291. http://dx.doi.org/10.1007/s10750-010-0271-2
    » http://dx.doi.org/10.1007/s10750-010-0271-2
  • CARVALHO, M.A.J. On feeding behavior of Thermocyclops crassus. Crustaceana, 1984, 7, 122-125.
  • CHALAR, G. The use of phytoplankton patterns of diversity for algal bloom management. Limnologica, 2009, 39(3), 200-208. http://dx.doi.org/10.1016/j.limno.2008.04.001
    » http://dx.doi.org/10.1016/j.limno.2008.04.001
  • COLINA, M., CALLIARI, D., CARBALLO, C. and KRUK, C. A trait-based approach to summarize zooplankton–phytoplankton interactions in fresh waters. Hydrobiologia, 2016, 767(1), 221-233. http://dx.doi.org/10.1007/s10750-015-2503-y
    » http://dx.doi.org/10.1007/s10750-015-2503-y
  • DANIELSDOTTIR, M.G., BRETT, M.T. and ARHONDITSIS, G.B. Phytoplankton food quality control of planktonic food web processes. Hydrobiologia, 2007, 589(1), 29-41. http://dx.doi.org/10.1007/s10750-007-0714-6
    » http://dx.doi.org/10.1007/s10750-007-0714-6
  • DANTAS, Ê.W., MOURA, A.N., BITTENCOURT-OLIVEIRA, M.C., ARRUDA NETO, J.D.T. and CAVALCANTI, A.D.C. Temporal variation of the phytoplankton community at short sampling intervals in the Mundaú reservoir, Northeastern Brazil. Acta Botanica Brasílica, 2008, 22(4), 970-982. http://dx.doi.org/10.1590/S0102-33062008000400008
    » http://dx.doi.org/10.1590/S0102-33062008000400008
  • DINIZ, A.S., SEVERIANO, J.S., MELO JÚNIOR, M., DANTAS, Ê.W. and MOURA, A.N. Phytoplankton–zooplankton relationships based on phytoplankton functional groups in two tropical reservoirs. Marine and Freshwater Research, 2019, 70(5), 721-733. http://dx.doi.org/10.1071/MF18049
    » http://dx.doi.org/10.1071/MF18049
  • GEBREHIWOT, M., KIFLE, D. and TRIEST, L. Grazing and growth rate of a cyclopoid copepod fed with a phytoplankton diet constituted by a filamentous cyanobacterium. Hydrobiologia, 2019, 828(1), 213-227. http://dx.doi.org/10.1007/s10750-018-3813-7
    » http://dx.doi.org/10.1007/s10750-018-3813-7
  • GER, K.A., HANSSON, L.A. and LÜRLING, M. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshwater Biology, 2014, 59(9), 1783-1798. http://dx.doi.org/10.1111/fwb.12393
    » http://dx.doi.org/10.1111/fwb.12393
  • GER, K.A., URRUTIA-CORDERO, P., FROST, P.C., HANSSON, L.A., SARNELLE, O., WILSON, A.E. and LÜRLING, M. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae, 2016, 54, 128-144. http://dx.doi.org/10.1016/j.hal.2015.12.005 PMid:28073472.
    » http://dx.doi.org/10.1016/j.hal.2015.12.005
  • GILBERT, J.J. and STARKWEATHER, P.L. Feeding in the rotifer Brachionus calyciflorus. Oecologia, 1977, 28(2), 125-131. http://dx.doi.org/10.1007/BF00345247 PMid:28309010.
    » http://dx.doi.org/10.1007/BF00345247
  • GLIWICZ, Z.M. and LAMPERT, W. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology, 1990, 71(2), 691-702. http://dx.doi.org/10.2307/1940323
    » http://dx.doi.org/10.2307/1940323
  • GLIWICZ, Z.M. Zooplankton. In: P.E. O’SULLIVAN and C.S. REYNOLDS, eds. The Lakes Handbook: Limnology and limnetic ecology Oxford: Blackwell Science, 2004, pp. 461–516.
  • HANEY, J. Field studies on zooplankton-cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research, 1987, 21(3), 467-475. http://dx.doi.org/10.1080/00288330.1987.9516242
    » http://dx.doi.org/10.1080/00288330.1987.9516242
  • HANSSON, L.A., GUSTAFSSON, S., RENGEFORS, K. and BOMARK, L. Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biology, 2007, 52(7), 1290-1301. http://dx.doi.org/10.1111/j.1365-2427.2007.01765.x
    » http://dx.doi.org/10.1111/j.1365-2427.2007.01765.x
  • HEATHCOTE, A.J., FILSTRUP, C.T., KENDALL, D. and DOWNING, J.A. Biomass pyramids in lake plankton: influence of Cyanobacteria size and abundance. Inland Waters, 2016, 6(2), 250-257. http://dx.doi.org/10.5268/IW-6.2.941
    » http://dx.doi.org/10.5268/IW-6.2.941
  • HILL, M., CHADD, R.P., MORRIS, N., SWAINE, J.D. and WOOD, P.J. Aquatic macroinvertebrate biodiversity associated with artificial agricultural drainage ditches. Hydrobiologia, 2016, 776(1), 249-260. http://dx.doi.org/10.1007/s10750-016-2757-z
    » http://dx.doi.org/10.1007/s10750-016-2757-z
  • HILLEBRAND, H., DÜRSELEN, C., KIRSCHTEL, D., POLLINGHER, U. and ZOHARY, T. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 1999, 35(2), 403-424. http://dx.doi.org/10.1046/j.1529-8817.1999.3520403.x
    » http://dx.doi.org/10.1046/j.1529-8817.1999.3520403.x
  • HONG, Y., BURFORD, M.A., RALPH, P.J., UDY, J.W. and DOBLIN, M.A. The cyanobacterium Cylindrospermopsis raciborskii is facilitated by copepod selective grazing. Harmful Algae, 2013, 29, 14-21. http://dx.doi.org/10.1016/j.hal.2013.07.003
    » http://dx.doi.org/10.1016/j.hal.2013.07.003
  • HOPP, U., MAIER, G. and BLEHER, R. Reproduction and adult longevity of five species of planktonic cyclopoid copepods reared on different diets: a comparative study. Freshwater Biology, 1997, 38(2), 289-300. http://dx.doi.org/10.1046/j.1365-2427.1997.00214.x
    » http://dx.doi.org/10.1046/j.1365-2427.1997.00214.x
  • IGLESIAS, C., MAZZEO, N., GOYENOLA, G., FOSALBA, C., DE MELLO, F., GARCIA, S. and JEPPESEN, E. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous-planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology, 2008, 53(9), 1797-1807. http://dx.doi.org/10.1111/j.1365-2427.2008.02007.x
    » http://dx.doi.org/10.1111/j.1365-2427.2008.02007.x
  • JAMES, M.R. and FORSYTH, D.J. Zooplankton-phytoplankton interactions in a eutrophic lake. Journal of Plankton Research, 1990, 12(3), 455-472. http://dx.doi.org/10.1093/plankt/12.3.455
    » http://dx.doi.org/10.1093/plankt/12.3.455
  • JEPPESEN, E., NÕGES, P., DAVIDSON, T.A., HABERMAN, J., NÕGES, T., BLANK, K., LAURIDSEN, T.L., SØNDERGAARD, M., SAYER, C., LAUGASTE, R., JOHANSSON, L.S., BJERRING, R. and AMSINCK, S.L. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 2011, 676(1), 279-297. http://dx.doi.org/10.1007/s10750-011-0831-0
    » http://dx.doi.org/10.1007/s10750-011-0831-0
  • JEPPESEN, E., PEDER JENSEN, J., SØNDERGAARD, M., LAURIDSEN, T. and LANDKILDEHUS, F. Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient. Freshwater Biology, 2000, 45(2), 201-218. http://dx.doi.org/10.1046/j.1365-2427.2000.00675.x
    » http://dx.doi.org/10.1046/j.1365-2427.2000.00675.x
  • KÂ, S., MENDOZA-VERA, J.M., BOUVY, M., CHAMPALBERT, G., N’GOM-KÂ, R. and PAGANO, M. Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiologia, 2012, 679(1), 119-138. http://dx.doi.org/10.1007/s10750-011-0860-8
    » http://dx.doi.org/10.1007/s10750-011-0860-8
  • KANDATHIL RADHAKRISHNAN, D., AKBARALI, I., THUNDIPARAMBIL SATHRAJITH, A., SCHMIDT, B.V., SIVANPILLAI, S. and THAZHAKOT VASUNAMBESAN, S. Grazing rates of freshwater copepod Thermocyclops decipiens (Kiefer, 1929) on Chlorella vulgaris under different light intensities. Aquaculture (Amsterdam, Netherlands), 2020, 525, 735321. http://dx.doi.org/10.1016/j.aquaculture.2020.735321
    » http://dx.doi.org/10.1016/j.aquaculture.2020.735321
  • LAMPERT, W. Laboratory studies on zooplankton‐cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research, 1987, 21(3), 483-490. http://dx.doi.org/10.1080/00288330.1987.9516244
    » http://dx.doi.org/10.1080/00288330.1987.9516244
  • LEITÃO, E., GER, K.A. and PANOSSO, R. Selective grazing by a tropical copepod (Notodiaptomus iheringi) facilitates Microcystis dominance. Frontiers in Microbiology, 2018, 9, 301. http://dx.doi.org/10.3389/fmicb.2018.00301 PMid:29527199.
    » http://dx.doi.org/10.3389/fmicb.2018.00301
  • LEITÃO, E., PANOSSO, R., MOLICA, R. and GER, K.A. Top‐down regulation of filamentous cyanobacteria varies among a raptorial versus current feeding copepod across multiple prey generations. Freshwater Biology, 2020, 66(1), 142-156. http://dx.doi.org/10.1111/fwb.13625
    » http://dx.doi.org/10.1111/fwb.13625
  • LI, Y., MENG, J., ZHANG, C., JI, S., KONG, Q., WANG, R. and LIU, J. Bottom-up and top-down effects on phytoplankton communities in two freshwater lakes. PLoS One, 2020, 15(4), e0231357. http://dx.doi.org/10.1371/journal.pone.0231357 PMid:32271852.
    » http://dx.doi.org/10.1371/journal.pone.0231357
  • LIRA, G.A.S.T., MOURA, A.N., VILAR, M.C.P., CORDEIRO-ARAÚJO, M.K. and BITTENCOURT-OLIVEIRA, M.C. Vertical and temporal variation in phytoplankton assemblages correlated with environmental conditions in the Mundaú reservoir, semi-arid northeastern Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2014, 74(3, Suppl 1), S093-S102. http://dx.doi.org/10.1590/1519-6984.27612 PMid:25627370.
    » http://dx.doi.org/10.1590/1519-6984.27612
  • LOBO, E. and LEIGHTON, G. Estructuras comunitarias de las fitocenosis planctónicas de los sistemas de desembocaduras de rios y esteros de la zona central. Revista de Biología Marina y Oceanografía, 1986, 22(1), 1-29.
  • LÜRLING, M. and VAN DONK, E. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos, 2000, 88(1), 111-118. http://dx.doi.org/10.1034/j.1600-0706.2000.880113.x
    » http://dx.doi.org/10.1034/j.1600-0706.2000.880113.x
  • LÜRLING, M. Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annales de Limnologie-International Journal of Limnology, 2003, 39(2), 85-101. http://dx.doi.org/10.1051/limn/2003014
    » http://dx.doi.org/10.1051/limn/2003014
  • MELO JÚNIOR, M.D., ALMEIDA, V.L.S., PARANAGUÁ, M.N. and MOURA, A.N. Crustáceos planctônicos de um reservatório oligotrófico do Nordeste do Brasil. Revista Brasileira de Zoociências, 2007, 9(1), 19-30.
  • MITRA, F. and FLYNN, K.J. Promotion of harmful algal blooms by zooplankton predatory activity. Biology Letters, 2006, 2(2), 194-197. http://dx.doi.org/10.1098/rsbl.2006.0447 PMid:17148360.
    » http://dx.doi.org/10.1098/rsbl.2006.0447
  • MOURA, A.N., BITTENCOURT-OLIVEIRA, M.C., DANTAS, Ê.W. and ARRUDA NETO, J.D.D.T. Phytoplanktonic associations: a tool to understanding dominance events in a tropical Brazilian reservoir. Acta Botanica Brasílica, 2007, 21(3), 641-648. http://dx.doi.org/10.1590/S0102-33062007000300011
    » http://dx.doi.org/10.1590/S0102-33062007000300011
  • MÜLLER-NAVARRA, D.C., BRETT, M.T., LISTON, A.M. and GOLDMAN, C.R. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 2000, 403(6765), 74-77. http://dx.doi.org/10.1038/47469 PMid:10638754.
    » http://dx.doi.org/10.1038/47469
  • NEUMANN-LEITÃO, S., NOGUEIRA-PARANHOS, J.D. and SOUZA, F.B.V.A. Zooplâncton do açude de Apipucos, Recife - PE (Brasil). Arquivos de Biologia e Tecnologia, 1989, 32(4), 803-821.
  • OLIVEIRA, F.H., ARA, A.L., MOREIRA, C.H., LIRA, O.O., PADILHA, M.R. and SHINOHARA, N.K. Seasonal changes of water quality in a tropical shallow and eutrophic reservoir in the metropolitan region of Recife (Pernambuco-Brazil). Anais da Academia Brasileira de Ciências, 2014, 86(4), 1863-1872. http://dx.doi.org/10.1590/0001-3765201420140128 PMid:25590722.
    » http://dx.doi.org/10.1590/0001-3765201420140128
  • PAERL, H.W., FULTON, R.S. 3rd., MOISANDER, P.H. and DYBLE, J. Harmful Freshwater Algal Blooms, with an emphasis on Cyanobacteria. TheScientificWorldJournal, 2001, 1, 76-113. http://dx.doi.org/10.1100/tsw.2001.16 PMid:12805693.
    » http://dx.doi.org/10.1100/tsw.2001.16
  • PAGANO, M. Feeding of tropical cladocerans (Moina micrura, Diaphanosoma excisum) and rotifer (Brachionus calyciflorus) on natural phytoplankton: effect of phytoplankton size–structure. Journal of Plankton Research, 2008, 30(4), 401-414. http://dx.doi.org/10.1093/plankt/fbn014
    » http://dx.doi.org/10.1093/plankt/fbn014
  • PEREIRA, S.M.B. and NASCIMENTO, P.R.F. Macrófitas Aquáticas. In: K. BURGOS and E. ARANTES, eds. Açude de Apipucos: história e ecologia Recife: Companhia Editora de Pernambuco, 2009, pp.1-176.
  • PIELOU, E.C. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 1966, 13, 131-144. http://dx.doi.org/10.1016/0022-5193(66)90013-0
    » http://dx.doi.org/10.1016/0022-5193(66)90013-0
  • PINTO-COELHO, R.M. Métodos de coleta, preservação, contagem e determinação de biomassa em zooplâncton de águas epicontinentais. In: C.E.M. BICUDO and D.C. BICUDO, eds. Amostragem em limnologia São Carlos: RiMa, 2004, pp. 149-166.
  • PINTO-COELHO, R.M., BEZERRA-NETO, J.F. and MORAIS-JR, C.A. Effects of eutrophication on size and biomass of crustacean zooplankton in a tropical reservoir. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2005, 65(2), 325-338. http://dx.doi.org/10.1590/S1519-69842005000200017 PMid:16097736.
    » http://dx.doi.org/10.1590/S1519-69842005000200017
  • R CORE TEAM. R: A Language and Environment for Statistical Computing [online]. Vienna, Austria: R Foundation for Statistical Computing, 2016. [viewed 27 Nov. 2019]. Available from: http://www.R-project.org/
    » http://www.R-project.org/
  • REYNOLDS, C.S. Ecology of phytoplankton Cambridge: Cambridge University Press, 2006. http://dx.doi.org/10.1017/CBO9780511542145
    » http://dx.doi.org/10.1017/CBO9780511542145
  • RUTTNER-KOLISKO, A. Suggestions for biomass calculation of planktonic rotifers. Archiv für Hydrobiologie, 1977, 8, 71-77.
  • SANTER, B. and VAN DEN BOSCH, F. Herbivorous nutrition of Cyclops vicinus: the effect of a pure algal diet on feeding, development, reproduction and life cycle. Journal of Plankton Research, 1994, 16(2), 171-195. http://dx.doi.org/10.1093/plankt/16.2.171
    » http://dx.doi.org/10.1093/plankt/16.2.171
  • SCASSO, F., MAZZEO, N., GORGA, J., KRUK, C., LACEROT, G., CLEMENTE, J., FABIÁN, D. and BONILLA, S. Limnological changes in a sub-tropical shallow hypertrophic lake during its restoration two years of a whole-lake experiment. Aquatic Conservation, 2001, 11(1), 31-44. http://dx.doi.org/10.1002/aqc.420
    » http://dx.doi.org/10.1002/aqc.420
  • SECRETARIA DOS RECURSOS HÍDRICOS – SRH. Plano Estadual de Recursos Hídricos do Estado de Pernambuco - Documento Síntese [online]. Recife: SRH, 2000. [viewed 27 Nov. 2019]. Available from: https://www.srh.ce.gov.br/
    » https://www.srh.ce.gov.br/
  • SHANNON, C.E. A mathematical theory of communication. The Bell System Technical Journal, 1948, 27(3), 379-423. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
    » http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
  • SILVA, V.L., FIGUEIREDO, A.C. and CORRÊA, M.M. Qualidade da água do Açude de Apipucos. In: K. BURGOS and E. ARANTES, eds. Açude de Apipucos: história e ecologia Recife: CEPE, 2009, pp. 77-84.
  • SILVEIRA, R.M.L., PAIVA, L.L.A.R. and CAMARGO, J.C. Top-down control in a tropical shallow lake of Northern Pantanal, Brazil. Acta Limnologica Brasiliensia, 2010, 22(4), 455-465. http://dx.doi.org/10.4322/actalb.2011.009
    » http://dx.doi.org/10.4322/actalb.2011.009
  • SIPAÚBA-TAVARES, L.H., BACHION, M.A. and ROCHA, O. Estudo do crescimento populacional de três espécies zooplanctônicas em laboratório e o uso de plâncton na alimentação de alevinos de Oreochromis niloticus (tilápia) e Astyanax scabripinus paranae (lambari). Revista Unimar, 1994, 16(3), 189-201.
  • SOARES, M.C.S., LÜRLING, M. and HUSZAR, V.L.M. Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. Journal of Plankton Research, 2010, 32(7), 999-1008. http://dx.doi.org/10.1093/plankt/fbq042
    » http://dx.doi.org/10.1093/plankt/fbq042
  • SOTO, D. and HURLBERT, S.H. Long-term experiments on calanoid–cyclopoid interactions. Ecological Monographs, 1991, 61(3), 245-265. http://dx.doi.org/10.2307/2937108
    » http://dx.doi.org/10.2307/2937108
  • STARKWEATHER, P.L. and KELLAR, P.E. Utilization of cyanobacteria by Brachionus calyciflorus: Anabaena flos-aquae (NRC-44-1) as a sole or complementary food source. Hydrobiologia, 1983, 104(1), 373-377. http://dx.doi.org/10.1007/BF00045994
    » http://dx.doi.org/10.1007/BF00045994
  • STOECKER, D. and PIERSON, J. Predation on protozoa: its importance to zooplankton revisited. Journal of Plankton Research, 2019, 41(4), 367-373. http://dx.doi.org/10.1093/plankt/fbz027
    » http://dx.doi.org/10.1093/plankt/fbz027
  • TÕNNO, I., AGASILD, H., KÕIV, T., FREIBERG, R., NÕGES, P. and NÕGES, T. Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PLoS One, 2016, 11(4), e0154526. http://dx.doi.org/10.1371/journal.pone.0154526 PMid:27124652.
    » http://dx.doi.org/10.1371/journal.pone.0154526
  • URRUTIA‐CORDERO, P., EKVALL, M.K. and HANSSON, L. Responses of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? Freshwater Biology, 2015, 60(5), 960-972. http://dx.doi.org/10.1111/fwb.12555
    » http://dx.doi.org/10.1111/fwb.12555
  • UTERMÖHL, H. Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung für theoretische und angewandte Limnologie Mitteilungen, 1958, 9(1), 1-38.
  • VON RÜCKERT, G. and GIANI, A. Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? Journal of Plankton Research, 2008, 30(10), 1157-1168. http://dx.doi.org/10.1093/plankt/fbn065
    » http://dx.doi.org/10.1093/plankt/fbn065
  • WANG, C., HUANG, Y., HE, S., LIN, Y., WANG, X. and KONG, H. Variation of phytoplankton community before an induced cyanobacterial (Arthrospira platensis) bloom. Journal of Environmental Sciences (China), 2009, 21(12), 1632-1638. http://dx.doi.org/10.1016/S1001-0742(08)62466-3 PMid:20131591.
    » http://dx.doi.org/10.1016/S1001-0742(08)62466-3
  • WANG, X.D., QIN, B.Q., GAO, G. and PAERL, H.W. Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. Journal of Plankton Research, 2010, 32(4), 457-470. http://dx.doi.org/10.1093/plankt/fbp143
    » http://dx.doi.org/10.1093/plankt/fbp143
  • WILSON, A.E., SARNELLE, O. and TILLMANNS, A.R. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta-analyses of laboratory experiments. Limnology and Oceanography, 2006, 51(4), 1915-1924. http://dx.doi.org/10.4319/lo.2006.51.4.1915
    » http://dx.doi.org/10.4319/lo.2006.51.4.1915
  • YANG, Z., KONG, F., SHI, X. and CAO, H. Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia, 2006, 563(1), 225-230. http://dx.doi.org/10.1007/s10750-005-0008-9
    » http://dx.doi.org/10.1007/s10750-005-0008-9
  • ZHANG, J., XIE, P., TAO, M., GUO, L., CHEN, J., LI, L., ZHANG, X.Z. and ZHANG, L. The impact of fish predation and cyanobacteria on zooplankton size structure in 96 subtropical lakes. PLoS One, 2013, 8(10), e76378. http://dx.doi.org/10.1371/journal.pone.0076378 PMid:24124552.
    » http://dx.doi.org/10.1371/journal.pone.0076378
  • ZHANG, L., WANG, Z., WANG, N., GU, L., SUN, Y., HUANG, Y., CHEN, Y. and YANG, Z. Mixotrophic Ochromonas addition improves the harmful Microcystis-dominated phytoplankton community in in situ microcosms. Environmental Science & Technology, 2020, 54(7), 4609-4620. http://dx.doi.org/10.1021/acs.est.9b06438 PMid:32126758.
    » http://dx.doi.org/10.1021/acs.est.9b06438

Edited by

Associate Editors: Kemal Ali Ger, Antonio Fernando Monteiro Camargo.

Publication Dates

  • Publication in this collection
    25 June 2021
  • Date of issue
    2021

History

  • Received
    27 Nov 2019
  • Accepted
    27 May 2021
Associação Brasileira de Limnologia Av. 24 A, 1515, 13506-900 Rio Claro-SP/Brasil, Tel.:(55 19)3526 4227 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com