Acessibilidade / Reportar erro

Antimicrobial properties of lysozyme in meat and meat products: possibilities and challenges

ABSTRACT.

Meat and meat products are highly perishable as they can provide an appropriate environment for microbial growth due to their high water activity and proper pH level. Quality, safety, sensory and nutritional properties of meat products are highly influenced by pathogenic and spoilage microorganisms. To prevent microbial growth, artificial antimicrobials have been used in food matrices, however safety concerns regarding the use of synthetic preservatives is a challenging issue. Additionally, consumer’s trend towards natural mildly processed products with extended shelf life necessitates the identification of alternative additives originating from natural sources of new acceptable and effective antimicrobials. Although the effectiveness of some natural antimicrobial agents has already been reported, still, there is lack of information regarding the possibility of using lysozyme as a preservative in meat and meat products either alone or in combination with other hurdles. In the present review the applications and beneficial effects of applying lysozyme in meat products, considering its limitations such as allergic problems, interactions with food constituents, reducing sensory changes and toxicity due to high required concentrations to prevent spoilage and oxidation in foods will be discussed.

Keywords:
Lysozyme; product; meat; natural antimicrobial

Introduction

Meat and meat products are susceptible to microbial spoilage due to their proper pH (5.5-6.5), rich nutritional composition, and high water activity (0.98-0.99), which provides favorable growth conditions for various microorganisms (Ranaii, Pilevar, Mousavi Khaneghah, & Hosseini, 2020Ranaii, V., Pilevar, Z., Mousavi Khaneghah, A., & Hosseini, H. (2020). Propionic acid: method of production, current state and perspectives. Food Technology and Biotechnology, 58(2), 115-127. DOI: http://dx.doi.org/10.17113/ftb.58.02.20.6356
https://doi.org/http://dx.doi.org/10.171...
, Pilevar, Hosseini, Beikzadeh, Khanniri, & Alizadeh., 2017Pilevar, Z., Hosseini, H., Hajimehdipoor, H., Shahraz, F., Alizadeh, L., Mousavi Khaneghah, A., & Mahmoudzadeh, M. (2017). The Anti-Staphylococcus aureus effect of combined echinophora platyloba essential oil and liquid smoke in beef. Food Technology and Biotechnology, 55, 117-124. DOI: http://doi.org/10.17113/ftb.55.01.17.4633
https://doi.org/http://doi.org/10.17113/...
, Dave & Ghaly, 2011Dave, D., & Ghaly, A. E. (2011). Meat spoilage mechanisms and preservation techniques: a critical review. American Journal of Agricultural and Biological Science, 6(4), 486-510. DOI: http://doi.org/10.3844/ajabssp.2011.486.510
https://doi.org/http://doi.org/10.3844/a...
). Moreover, some of the components in these products provide a complex growth environment which have the ability to protect microbial cells from antimicrobial access (Zhang, Kong, Xiong, & Sun, 2009Zhang, H., Kong, B., Xiong, Y. L., & Sun, X. (2009). Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4ºC. Meat science, 81(4), 686-692. DOI: http://doi.org/10.1016/j.meatsci.2008.11.011
https://doi.org/http://doi.org/10.1016/j...
). Therefore, the meat industry continues to face concerns regarding the safety and hygiene of the products. The techniques of meat processing can render it susceptible to microbiological contamination, thereby, beside the implications of microbiological deteriorations, microorganisms are responsible for many meat borne outbreaks and diseases. Although a variety of food preservation strategies such as drying, freezing, canning, chilling, fermentation, nutrition restriction, irradiation, thermal processing, and synthetic antimicrobial agents can be utilized to extend food shelf life; it is not consummate to inhibit microorganisms that may threaten consumer’s health (Negi, 2012Negi, P. S. (2012). Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. International Journal of Food Microbiology, 156, 7-17. DOI: http://doi.org/10.1016/j.ijfoodmicro.2012.03.006
https://doi.org/http://doi.org/10.1016/j...
, Goodarzi, Hovhannisyan, & Barseghyan, 2016Goodarzi, A., Hovhannisyan, H., & Barseghyan, A. (2016). Elimination of pathogen Escherichia coli O157: H7 in ground beef by a newly isolated strain of lactobacillus acidophilus during storage at 5°C. Applied Food Biotechnology, 3, 170-176. DOI: http://doi.org/10.22037/afb.v3i3.11799
https://doi.org/http://doi.org/10.22037/...
). All mentioned methods possess their own limitations principally when attempting to apply them in fresh meats. These methods are not generally designed to completely eliminate all the microorganisms (Sung et al., 2013Sung, S.-Y., Sin, L. T., Tee, T.-T., Bee, S.-T., Rahmat, A. R., Rahman, W. A. W. A., ... Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110-123. DOI: http://doi.org/10.1016/j.tifs.2013.08.001
https://doi.org/http://doi.org/10.1016/j...
, Quintavalla & Vicini, 2002Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat science, 62(3), 373-380. DOI: http://doi.org/10.1016/s0309-1740(02)00121-3
https://doi.org/http://doi.org/10.1016/s...
). To prevent cross contamination in production, distribution, and sale stages and to expand the shelf life of processed or raw meats, synthetic additives should be used. Aside from their advantages, synthetic antimicrobials, such as benzoate, sulfites, sorbates, and nitrate may have life-threatening side effects such as teratogenic and carcinogenic attributes (Anand & Sati, 2013Anand, S. P, & Sati, N. (2013). Artificial preservatives and their harmful effects: looking toward nature for safer alternatives. International Journal of Pharmaceutical Sciences and Research, 4, 2496-2501., Seetaramaiah, Smith, Murali, & Manavalan, 2011Seetaramaiah, K., Smith, A. A., Murali, R., & Manavalan, R. (2011). Preservatives in food products-review. International Journal of Pharmaceutical & Biological Archives, 2(2), 583-599.). Modern trends aim to have natural origin to protect meat from both pathogenic and spoilage microorganisms and to have minimum processing (Chouliara, Karatapanis, Savvaidis, & Kontominas, 2007Chouliara, E., Karatapanis, A., Savvaidis, I. N., & Kontominas, M. G. (2007). Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4ºC. Food Microbiology, 24(6), 607-617. DOI: http://doi.org/10.1016/j.fm.2006.12.005
https://doi.org/http://doi.org/10.1016/j...
, Pilevar & Hosseini, 2013Pilevar, Z., & Hosseini, H. (2013). Chemical composition, antimicrobial and antioxidant activity of Echinophora platyloba DC. Journal of Pharmacy and Nutrition Sciences, 3, 270-283. DOI: http:doi.org/10.6000/1927-5951.2013.03.04.10
https://doi.org/http:doi.org/10.6000/192...
, Pilevar et al., 2017Pilevar, Z., Hosseini, H., Hajimehdipoor, H., Shahraz, F., Alizadeh, L., Mousavi Khaneghah, A., & Mahmoudzadeh, M. (2017). The Anti-Staphylococcus aureus effect of combined echinophora platyloba essential oil and liquid smoke in beef. Food Technology and Biotechnology, 55, 117-124. DOI: http://doi.org/10.17113/ftb.55.01.17.4633
https://doi.org/http://doi.org/10.17113/...
). There are various numbers of antimicrobial agents in animals, plants, and microorganisms as a part of host defensive systems. Some of these compounds are flavonoids and saponins in spices and herbs, lysozyme as an iron chelator in figs and egg white, polysaccharide chitosan evolved from shrimp shells and nisin, the best known of all bacteriocins, from lactic acid bacteria (LAB) (Pilevar et al, 2020Pilevar, Z., Hosseini, H., Beikzadeh, S., Khanniri, E., & Alizadeh, A. M. (2020). Application of bacteriocins in meat and meat products: An update. Current Nutrition & Food Science, 16(2), 120-133., Pilevar & Hosseini, 2013Pilevar, Z., & Hosseini, H. (2017). Effects of starter cultures on the properties of meat products: A review. Annual Research & Review in Biology, 1-17., Kasra-Kermanshahi & Mobarak-Qamsari, 2015Kasra-Kermanshahi, R., & Mobarak-Qamsari, E. (2015). Inhibition effect of lactic acid bacteria against food born pathogen, Listeria monocytogenes. Applied Food Biotechnology, 2(4), 11-19. DOI: http://doi.org/10.22037/afb.v2i4.8894
https://doi.org/http://doi.org/10.22037/...
, Olaoye, Onilude, & Ubbor, 2015Olaoye, O. A., Onilude, A. A., & Ubbor, S. C. (2015). Control of Brochothrix thermosphacta in pork meat using lactococcus lactis subsp. lactis i23 isolated from beef. Applied Food Biotechnology, 2(3), 49-55. DOI: http://doi.org/10.22037/afb.v2i3.7993
https://doi.org/http://doi.org/10.22037/...
). Meat gets spoiled during storage due to two major causes: microbial growth and oxidative rancidity (Kim, Cho, & Han, 2013Kim, S.-J., Cho, A. R., & Han, J. (2013). Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. Food Control, 29, 112-120. DOI: http://doi.org/10.1016/j.foodcont.2012.05.060
https://doi.org/http://doi.org/10.1016/j...
). Lysozyme has shown both antibacterial and antioxidant activities in meat and meat products, inhibiting meat spoilages with other hurdles (Kozuka et al., 2015Kozuka, M., Murao, S., Yamane, T., Inoue, T., Ohkubo, I., & Ariga, H. (2015). Rapid and simple purification of lysozyme from the egg shell membrane. Journal of Nutritional Science and Vitaminology, 61, 101-103. DOI: http://doi.org/10.3177/jnsv.61.101
https://doi.org/http://doi.org/10.3177/j...
, Li et al., 2014Li, W., Li, X., Wang, Q., Pan, Y., Wang, T., Wang, H., ... Deng, H. (2014). Antibacterial activity of nanofibrous mats coated with lysozyme-layered silicate composites via electrospraying. Carbohydrate Polymers, 99, 218-225. DOI: http://doi.org/10.1016/j.carbpol.2013.07.055
https://doi.org/http://doi.org/10.1016/j...
, Zimoch-Korzycka & Jarmoluk, 2015Zimoch-Korzycka, A., & Jarmoluk, A. (2015). The use of chitosan, lysozyme, and the nano-silver as antimicrobial ingredients of edible protective hydrosols applied into the surface of meat. Journal of Food Science and Technology, 52, 5996-6002. DOI: http://doi.org/10.1007/s13197-014-1645-7
https://doi.org/http://doi.org/10.1007/s...
, Cegielska-Radziejewska & Szablewski, 2013Cegielska-Radziejewska, R., & Szablewski, T. (2013). Effect of modified lysozyme on the microflora and sensory attributes of ground pork. Journal of Food Protection, 76(2), 338-342. DOI: http://doi.org/10.4315/0362-028X.JFP-12-075
https://doi.org/http://doi.org/10.4315/0...
, Liberti, Franciosa, Gianfranceschi, & Aureli, 1996Liberti, R., Franciosa, G., Gianfranceschi, M., & Aureli, P. (1996). Effect of combined lysozyme and lipase treatment on the survival of Listeria monocytogenes. International Journal of Food Microbiology, 32(1-2), 235-242. DOI: http://doi.org/10.1016/0168-1605(96)01121-X
https://doi.org/http://doi.org/10.1016/0...
). Though the effectiveness of some natural antimicrobials has been well established, no reviews have been managed to study the potential of applying lysozyme in order to preserve meat products. Hence, the aim of this review is to discuss mechanism of action, advantages, limitations and different aspects of application of lysozyme, an important natural antimicrobial, in the meat industry.

Structure and enzymatic function of lysozyme

Lysozyme is a lytic enzyme (hydrolase), single peptide protein, cross-linked by four disulphide bonds, heat-stable in acidic solutions, with a molecular weight of 14600 Daltone (Proctor, Cunningham, & Fung, 1988Proctor, V. A., Cunningham, F. E., & Fung, D. Y. C. (1988). The chemistry of lysozyme and its use as a food preservative and a pharmaceutical. Critical Reviews in Food Science and Nutrition, 26(4), 359-395. DOI: http://doi.org/10.1080/10408398809527473
https://doi.org/http://doi.org/10.1080/1...
) that consists of 6 tryptophan, 3 tyrosine, and 3 Phenylalanine amino acids residues (Wu et al., 2017Wu, T., Wu, C., Fu, S., Wang, L., Yuan, C., Chen, S., & Hu, Y. (2017). Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydrate Polymers, 155, 192-200. DOI: http://doi.org/10.1016/j.carbpol.2016.08.076
https://doi.org/http://doi.org/10.1016/j...
). The protonated Glu35 (-COOH) and ionized Asp52 (-COO-) are the key catalytic residues as a part of the lysozyme active site (Fig.1) (Johnson, Phillips, & Rupley, 1968Johnson, L. N., Phillips, D. C., & Rupley, J. A. (1968). The activity of lysozyme: an interim review of crystallographic and chemical evidence. Brookhaven Symposia in Biology, 21(1), 120-138.). This valuable and economic biological catalyst consists of a well-known amino acids sequence and three-dimensional configuration (Chung & Hancock, 2000Chung, W., & Hancock, R. E. (2000). Action of lysozyme and nisin mixtures against lactic acid bacteria. International Journal of Food Microbiology, 60, 25-32. DOI: http://doi.org/10.1016/s0168-1605(00)00330-5
https://doi.org/http://doi.org/10.1016/s...
; Goodarzi et al., 2016Goodarzi, A., Hovhannisyan, H., & Barseghyan, A. (2016). Elimination of pathogen Escherichia coli O157: H7 in ground beef by a newly isolated strain of lactobacillus acidophilus during storage at 5°C. Applied Food Biotechnology, 3, 170-176. DOI: http://doi.org/10.22037/afb.v3i3.11799
https://doi.org/http://doi.org/10.22037/...
; Abdollahzadeh, Rezaei, & Hosseini, 2014Abdollahzadeh, E., Rezaei, M., & Hosseini, H. (2014). Antibacterial activity of plant essential oils and extracts: the role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, 35, 177-183. DOI: http://doi.org/10.1016/j.foodcont.2013.07.004
https://doi.org/http://doi.org/10.1016/j...
). The lysozyme exhibits strong enzymatic activity in a wide range of temperatures when dissolute in water or is influenced by solvents (Cegielska-Radziejewska & Szablewski, 2013Cegielska-Radziejewska, R., & Szablewski, T. (2013). Effect of modified lysozyme on the microflora and sensory attributes of ground pork. Journal of Food Protection, 76(2), 338-342. DOI: http://doi.org/10.4315/0362-028X.JFP-12-075
https://doi.org/http://doi.org/10.4315/0...
). The lysozyme lytic action against Gram-positive bacteria was found by Fleming in 1922 (Fleming & Allison, 1922Fleming, A., & Allison, V. D. (1922). Observations on a bacteriolytic substance (“lysozyme”) found in secretions and tissues. The British Journal of Experimental Pathology, 3(5), 252-260.). Lysozyme’s natural substrate is certain polysaccharides including the bacterial cell wall (Lesnierowski & Kijowski, 2007Lesnierowski, G., & Kijowski, J. (2007). Lysozyme. In R. Huopalahti, R. López-Fandiño, M. Anton & R Schade (Eds.), Bioactive Egg Compounds (p. 33-42). Berlin, GE: Springer.). Other than antimicrobial activity, lysozyme may possess radical scavenging activities and can have a role in the inhibition of calmodulin-dependent phosphodiesterase (CaMPDE) (You, Udenigwe, Aluko, & Wu, 2010You, S.-J., Udenigwe, C. C., Aluko, R. E., & Wu, J. (2010). Multifunctional peptides from egg white lysozyme. Food Research International, 43, 848-855. DOI: http://doi.org/10.1016/j.foodres.2009.12.004
https://doi.org/http://doi.org/10.1016/j...
). Hen egg white lysozyme or murimidase [EC 3.2.1.17] has 129 amino acids in length and consists about 3.4 % of total egg white proteins (You et al., 2010You, S.-J., Udenigwe, C. C., Aluko, R. E., & Wu, J. (2010). Multifunctional peptides from egg white lysozyme. Food Research International, 43, 848-855. DOI: http://doi.org/10.1016/j.foodres.2009.12.004
https://doi.org/http://doi.org/10.1016/j...
). Lysozyme is grouped into three major types according to the similarity among amino acid sequences: chicken-type, goose type, and invertebrate type (Strominger & Tipper, 1974Strominger, J. L., & Tipper, D. J. (1974). Structure of bacterial cell walls: the lysozyme substrate. In E. Osserman, R. E. Canfield & S. Beychok (Eds.), Lysozyme (p. 169-185). New York, NY: Academic Press.). Hen egg lysozyme is a primary protein that has an isoelectric pH (PI) of 10-11. This protein has two domains, the α-domain and the β-domain (Mine, Ma, & Lauriau, 2004Mine, Y., Ma, F., & Lauriau, S. (2004). Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. Journal of Agricultural and Food Chemistry, 52(5), 1088-1094. DOI: http://doi.org/10.1021/jf0345752
https://doi.org/http://doi.org/10.1021/j...
), which are dissociated by a Helix-Loop-Helix Motif (Asp 87-Arg 114), that play an important role in antimicrobial activity of the molecule (Lesnierowski & Kijowski, 2007Lesnierowski, G., & Kijowski, J. (2007). Lysozyme. In R. Huopalahti, R. López-Fandiño, M. Anton & R Schade (Eds.), Bioactive Egg Compounds (p. 33-42). Berlin, GE: Springer.). Egg white and albumin are the cheapest (Avramescu, Borneman, & Wessling, 2008Avramescu, M.-E., Borneman, Z., & Wessling, M. (2008). Particle-loaded hollow-fiber membrane adsorbers for lysozyme separation. Journal of Membrane Science, 322(2), 306-313. DOI: http://doi.org/10.1016/j.memsci.2008.06.013
https://doi.org/http://doi.org/10.1016/j...
) and major commercial (Lesnierowski & Kijowski, 2007Lesnierowski, G., & Kijowski, J. (2007). Lysozyme. In R. Huopalahti, R. López-Fandiño, M. Anton & R Schade (Eds.), Bioactive Egg Compounds (p. 33-42). Berlin, GE: Springer.) available sources of lysozyme, respectively. Lysozyme can be extracted from membrane of a fresh hen egg shell, which shows weaker antibacterial activity compared to lysozyme extracted from the hen egg white. However, the lysozyme extracted from hen egg shell can be used as an antifungal agent in food industry (Kozuka et al., 2015Kozuka, M., Murao, S., Yamane, T., Inoue, T., Ohkubo, I., & Ariga, H. (2015). Rapid and simple purification of lysozyme from the egg shell membrane. Journal of Nutritional Science and Vitaminology, 61, 101-103. DOI: http://doi.org/10.3177/jnsv.61.101
https://doi.org/http://doi.org/10.3177/j...
). Lysozyme in a 100% purified form can be easily obtained by NaCl (5%) at pH 9.5-9.8 using crystallization method and acetate buffer (pH=4.5) (Whitaker, Wong, & Voragen, 2003Whitaker, J. R., Wong, D. W. S., & Voragen, A. G. J. (2003). Handbook of Food Enzymology. New York, NY: Marcel Dekker.). Duck lysozyme has shown greater anti Salmonella enteritidis activity comparing to chicken lysozyme, and exhibits synergism effect in combination with lactoferin similarly to chicken lysozyme (Naknukool, Hayakawa, Uno, & Ogawa, 2009Naknukool, S., Hayakawa, S., Uno, T., & Ogawa, M. (2009). Antimicrobial activity of duck egg lysozyme against salmonella enteritidis. In G. Barbosa-Cánovas & P. Colonna (Eds.), Global Issues in Food Science and Technology (p. 293-307). Amsterdam, NL: Elsevier.). In contrary to chicken and duck egg white, emu egg white contains very low levels of lysozyme (Maehashi et al., 2012Maehashi, K., Matano, M., Irisawa, T., Uchino, M., Kashiwagi, Y., & Watanabe, T. (2012). Molecular characterization of goose-and chicken-type lysozymes in emu (Dromaius novaehollandiae): evidence for extremely low lysozyme levels in emu egg white. Gene, 492, 244-249. DOI: http://doi.org/10.1016/j.gene.2011.10.021
https://doi.org/http://doi.org/10.1016/j...
). Lysozyme constitutes about 0.5 % of albumen fraction and 3.5% of total egg white proteins based on lytic activity (Malicki, Jarmoluk, & Bruzewicz, 2004Malicki, A., Jarmoluk, A., & Bruzewicz, S. (2004). Effect of sodium lactate used alone or in combination with lysozyme on the physico-chemical and microbiological properties of steamed sausage stored under the refrigeration. Journal of Veterinary Research (Poland), 48, 47-51., Whitaker et al., 2003Whitaker, J. R., Wong, D. W. S., & Voragen, A. G. J. (2003). Handbook of Food Enzymology. New York, NY: Marcel Dekker.). Enzymatic activity of lysozyme is measured by quantifying the turbidity loss of a suspension of lyophilized Micrococcus lysodeikticus cells in phosphate buffer at 25°C (Weert, Hoechstetter, Hennink, & Crommelin, 2000Weert, M. V. d., Hoechstetter, J., Hennink, W. E., & Crommelin, D. J. A. (2000). The effect of a water/organic solvent interface on the structural stability of lysozyme. Journal of Controlled Release, 68(3), 351-359. DOI: http://doi.org/10.1016/s0168-3659(00)00277-7
https://doi.org/http://doi.org/10.1016/s...
). The reduction of optical dispersion at 450 nm by 0.001 min.-1 is equivalent to 1 unit (U) of enzyme activity (Proctor et al., 1988Proctor, V. A., Cunningham, F. E., & Fung, D. Y. C. (1988). The chemistry of lysozyme and its use as a food preservative and a pharmaceutical. Critical Reviews in Food Science and Nutrition, 26(4), 359-395. DOI: http://doi.org/10.1080/10408398809527473
https://doi.org/http://doi.org/10.1080/1...
). However, turbidity loss might be related to bacterial cell rupture and is not equal to the cleavage of glycosidic bonds due to the lytic action of lysozyme enzyme (Whitaker et al., 2003Whitaker, J. R., Wong, D. W. S., & Voragen, A. G. J. (2003). Handbook of Food Enzymology. New York, NY: Marcel Dekker.).

Antimicrobial mechanism of action in meat products

Lysozyme possesses enzymatic activity against (1-4) glycosidic linkages between N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) of cell wall peptidoglycan. Lysozyme is effective against Gram-positive, while less active against Gram-negative bacteria (Chen, Han, Li, & Sheng, 2017Chen, K., Han, S.-Y., Li, M., & Sheng, W.-J. (2017). Use of lysozyme and oligomeric proanthocyanidin to reduce sulfur dioxide and the evolution of volatile compounds in italian riesling ice wine during aging process. Journal of Food Processing and Preservation, 41, e12755. DOI: http://doi.org/10.1111/jfpp.12755
https://doi.org/http://doi.org/10.1111/j...
). Antimicrobial activity of lysozyme is associated with 11% of enzymatic activity, cationic activity, and also hydrophobic acting (You et al., 2010You, S.-J., Udenigwe, C. C., Aluko, R. E., & Wu, J. (2010). Multifunctional peptides from egg white lysozyme. Food Research International, 43, 848-855. DOI: http://doi.org/10.1016/j.foodres.2009.12.004
https://doi.org/http://doi.org/10.1016/j...
). The application of lysozyme is limited due to the great resistance of Gram-negatives, whose cell walls are covered by lipoprotein-lipopolysaccharide layer of the outer membrane, rendering them less susceptible to disruption by lysozyme. Among Bacillus, B. cereus and B. stearothermophilus express higher resistance to lysozyme (Abdou, Higashiguchi, Aboueleinin, Kim, & Ibrahim, 2007Abdou, A. M., Higashiguchi, S., Aboueleinin, A., Kim, M., & Ibrahim, H. R. (2007). Antimicrobial peptides derived from hen egg lysozyme with inhibitory effect against Bacillus species. Food Control, 18(2), 173-178. DOI: http://doi.org/10.1016/j.foodcont.2005.09.010
https://doi.org/http://doi.org/10.1016/j...
). A study indicated the viability loss of Gram-positive such as B. cereus and Staphylococcus aureus cells were 69 and 80% at 1 mg mL-1 of lysozyme, respectively. Although, no significant reduction in viability of Gram-negatives such as Pseudomonas fluorescens and Escherichia coli even at 2 mg mL-1 of lysozyme occurred (Rao, Chander, & Sharma, 2008Rao, M. S., Chander, R., & Sharma, A. (2008). Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. LWT-Food Science and Technology, 41(10), 1995-2001. DOI: http://doi.org/10.1016/j.lwt.2008.01.013
https://doi.org/http://doi.org/10.1016/j...
), its activity was increased in combination with membrane destroying agents or by sub-lethal injuries (Gill & Holley, 2003Gill, A. O., & Holley, R. A. (2003). Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24ºC. International journal of food microbiology, 80(3), 251-259. DOI: http://doi.org/10.1016/s0168-1605(02)00171-x
https://doi.org/http://doi.org/10.1016/s...
). Lysozyme is an antimicrobial agent with a positive charge that can be loaded onto/into materials to overcome instability and inactivation (Huang et al., 2012Huang, W., Xu, H., Xue, Y., Huang, R., Deng, H., & Pan, S. (2012). Layer-by-layer immobilization of lysozyme-chitosan-organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Research International, 48(2), 784-791. DOI: http://doi.org/10.1016/j.foodres.2012.06.026
https://doi.org/http://doi.org/10.1016/j...
). By using protein engineering, lysozyme can be physically immobilized by encapsulation or layer by layer technique, ensuring stability and antibacterial activity of an enzyme. It is suggested that via electrospraying of lysozyme, losses can be avoided or controlled. Lysozyme is stable in the presence of CO2 gas when applied to foods with acidic pH, thereby might be suitable for application in modified atmosphere packaging (MAP). Lysozyme can also be immobilized through active packaging in cellulose-based or carboxymethyl cellulose-based packages alone (Mascheroni et al., 2010Mascheroni, E., Capretti, G., Marengo, M., Iametti, S., Mora, L., Piergiovanni, L., & Bonomi, F. (2010). Modification of cellulose‐based packaging materials for enzyme immobilization. Packaging Technology and Science, 23, 47-57. DOI: http://doi.org/10.1002/pts.878
https://doi.org/http://doi.org/10.1002/p...
) or combination with lactoferrin (glycoprotein) exhibiting synergism effects (Barbiroli et al., 2012Barbiroli, A., Bonomi, F., Capretti, G., Iametti, S., Manzoni, M., Piergiovanni, L., & Rollini, M. (2012). Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control, 26(2), 387-392. DOI: http://doi.org/10.1016/j.foodcont.2012.01.046
https://doi.org/http://doi.org/10.1016/j...
). Cellulose acetate is an environmentally friendly polysaccharide that is modified and can be negatively charged. Lysozyme can be easily electro sprayed onto cellulose acetate which shows higher antibacterial activity, better enzyme activity, and lower amount of losses (Li et al., 2014Li, W., Li, X., Wang, Q., Pan, Y., Wang, T., Wang, H., ... Deng, H. (2014). Antibacterial activity of nanofibrous mats coated with lysozyme-layered silicate composites via electrospraying. Carbohydrate Polymers, 99, 218-225. DOI: http://doi.org/10.1016/j.carbpol.2013.07.055
https://doi.org/http://doi.org/10.1016/j...
). Antimicrobial activity of lysozyme enhances when incorporated in a layer by layer technique as combined with negatively charged pectin on the surface of nano fibrous of cellulose (Zhang et al., 2015Zhang, T., Zhou, P., Zhan, Y., Shi, X., Lin, J., Du, Y., ... Deng, H. (2015). Pectin/lysozyme bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. Carbohydrate Polymers, 117, 687-693. DOI: http://doi.org/10.1016/j.carbpol.2014.10.064
https://doi.org/http://doi.org/10.1016/j...
). Spray drying of lysozyme with low concentrations of pectin improves lysozyme antimicrobial activity and decreases aggregation due to configuration and conformational changes of complexes (Amara, Eghbal, Degraeve, & Gharsallaoui, 2016Amara, C. B., Eghbal, N., Degraeve, P., & Gharsallaoui, A. (2016). Using complex coacervation for lysozyme encapsulation by spray-drying. Journal of Food Engineering, 183, 50-57. DOI: http://doi.org/10.1016/j.foodeng.2016.03.016
https://doi.org/http://doi.org/10.1016/j...
).

Some investigations have reported a significant increase in lysozyme antimicrobial activity in meat products follows by the addition of certain substances including Ethylenediaminetetraacetic acid (EDTA) as the chelating agent (Branen & Davidson, 2004Branen, J. K., & Davidson, P. M. (2004). Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. International Journal of Food Microbiology, 90, 63-74. DOI: http://doi.org/10.1016/s0168-1605(03)00172-7
https://doi.org/http://doi.org/10.1016/s...
), trisodium phosphate, sodium lactate (Malicki et al., 2004Malicki, A., Jarmoluk, A., & Bruzewicz, S. (2004). Effect of sodium lactate used alone or in combination with lysozyme on the physico-chemical and microbiological properties of steamed sausage stored under the refrigeration. Journal of Veterinary Research (Poland), 48, 47-51.), butylparaben (Gill & Holley, 2000Gill, A. O., & Holley, R. A. (2000). Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. Journal of Food Protection, 63(10), 1338-1346. DOI: http://doi.org/10.4315/0362-028x-63.10.1338
https://doi.org/http://doi.org/10.4315/0...
), chitooligosaccharides (Rao et al., 2008Rao, M. S., Chander, R., & Sharma, A. (2008). Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. LWT-Food Science and Technology, 41(10), 1995-2001. DOI: http://doi.org/10.1016/j.lwt.2008.01.013
https://doi.org/http://doi.org/10.1016/j...
), and nisin (Chung & Hancock, 2000Chung, W., & Hancock, R. E. (2000). Action of lysozyme and nisin mixtures against lactic acid bacteria. International Journal of Food Microbiology, 60, 25-32. DOI: http://doi.org/10.1016/s0168-1605(00)00330-5
https://doi.org/http://doi.org/10.1016/s...
). Cannarsi et al. (2008Cannarsi, M., Baiano, A., Sinigaglia, M., Ferrara, L., Baculo, R., & Del Nobile, M. A. (2008). Use of nisin, lysozyme and EDTA for inhibiting microbial growth in chilled buffalo meat. International Journal of Food Science & Technology, 43(4), 573-578. DOI: http://doi.org/10.1111/j.1365-2621.2006.01438.x
https://doi.org/http://doi.org/10.1111/j...
) have demonstrated that lysozyme alone in high concentrations of more than 0.5% is capable to suppress the growth rate of B. thermosphacta. A mixture of nisin and lysozyme balances the high cost of nisin and the required amount of lysozyme to inhibit bacterial growth (Cannarsi et al., 2008Cannarsi, M., Baiano, A., Sinigaglia, M., Ferrara, L., Baculo, R., & Del Nobile, M. A. (2008). Use of nisin, lysozyme and EDTA for inhibiting microbial growth in chilled buffalo meat. International Journal of Food Science & Technology, 43(4), 573-578. DOI: http://doi.org/10.1111/j.1365-2621.2006.01438.x
https://doi.org/http://doi.org/10.1111/j...
). A ratio of 1:3 nisin and lysozyme has shown the highest antimicrobial activity against Bacillus thermosphacta and Carnobacterium (Nattress, Yost, & Baker, 2001Nattress, F. M., Yost, C. K., & Baker, L. P. (2001). Evaluation of the ability of lysozyme and nisin to control meat spoilage bacteria. International Journal of Food Microbiology, 70(1-2), 111-119. DOI: http://doi.org/10.1016/s0168-1605(01)00531-1
https://doi.org/http://doi.org/10.1016/s...
). The growth of Lactobacillus curvatus on both bologna and ham has been reduced by lysozyme-nisin treatment (Gill & Holley, 2000Gill, A. O., & Holley, R. A. (2000). Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. Journal of Food Protection, 63(10), 1338-1346. DOI: http://doi.org/10.4315/0362-028x-63.10.1338
https://doi.org/http://doi.org/10.4315/0...
). The range of lysozyme antimicrobial activity against Gram-negatives can be extended by specific modifications for improving the functional properties in meat products (Rao et al., 2008Rao, M. S., Chander, R., & Sharma, A. (2008). Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. LWT-Food Science and Technology, 41(10), 1995-2001. DOI: http://doi.org/10.1016/j.lwt.2008.01.013
https://doi.org/http://doi.org/10.1016/j...
). It has been reported that the mechanism of lysozyme antimicrobial activity was more widespread than muramidase activity thought before. The amphipathic helix structures in the T4 lysozyme C-terminus mediate its fungistatic and bactericidal activities (Düring, Porsch, Mahn, Brinkmann, & Gieffers, 1999Düring, K., Porsch, P., Mahn, A., Brinkmann, O., & Gieffers, W. (1999). The non‐enzymatic microbicidal activity of lysozymes. FEBS letters, 449(2-3), 93-100. DOI: http://doi.org/10.1016/s0014-5793(99)00405-6
https://doi.org/http://doi.org/10.1016/s...
). In another study, the same results were reported as it was suggested that susceptibility of bacteria to lysozyme is not dependent to enzymatic activity. It is probable that irreversibly denatured lysozyme, for example the dimeric form through polymerization, has an intrinsic structure which generally destroys the bacteria by membrane destruction (Ibrahim, Higashiguchi, Juneja, Kim, & Yamamoto, 1996Ibrahim, H. R., Higashiguchi, S., Juneja, L. R., Kim, M., & Yamamoto, T. (1996). A structural phase of heat-denatured lysozyme with novel antimicrobial action. Journal of Agricultural and Food Chemistry, 44(6), 1416-1423. DOI: http://doi.org/10.1021/jf9507147
https://doi.org/http://doi.org/10.1021/j...
). It is reported that released peptides of lysozyme also contribute in antimicrobial activity of lysozyme as well as its enzymatic activity (You et al., 2010You, S.-J., Udenigwe, C. C., Aluko, R. E., & Wu, J. (2010). Multifunctional peptides from egg white lysozyme. Food Research International, 43, 848-855. DOI: http://doi.org/10.1016/j.foodres.2009.12.004
https://doi.org/http://doi.org/10.1016/j...
).

Application of lysozyme alone and in combination with other hurdles in meat products

For application of lysozyme as an antimicrobial agent in food products, the source of origin in terms of being safe should be considered due to potential risks for consumer health. Lysozyme is very popular for use in food systems such as hard cheeses, and is commercially used to inhibit the growth of spore of Clostridium tyrobutyricum after germination (Chung & Hancock, 2000Chung, W., & Hancock, R. E. (2000). Action of lysozyme and nisin mixtures against lactic acid bacteria. International Journal of Food Microbiology, 60, 25-32. DOI: http://doi.org/10.1016/s0168-1605(00)00330-5
https://doi.org/http://doi.org/10.1016/s...
) and also meat and meat products. Lysozyme as a nitrate replacer is added to washed-curd/round-eyed cheeses to prevent late-blowing by spore-forming bacteria via hydrolysis of polysaccharides in their cell walls, controlling butyric acid fermentation (Lodi & Stadhouders, 1990Lodi, R., & Stadhouders, J. (1990). The use of lysozyme to control butyric acid fermentation. Bulletin of the International Dairy Federation, 251, 51-54.). However, this enzyme is not applied to meats as a nitrate replacer which can be further studied. In the European Union (EU) food legislation, enzymes except for lysozyme in wine and cheese and invertase in confectionary are classified as processing aids and not as food additives. Lysozyme is not harmful to human and is naturally produced in tissues and secretions of human and many animals (Cho, Bae, Ha, & Park, 2005Cho, M. H., Bae, E. K., Ha, S. D., & Park, J. Y. (2005). Application of natural antimicrobials to food industry. Food science and Industry, 38, 36-45.). The concern regarding the use of lysozyme is that it can contribute to problems of susceptible individuals who suffer from lacking immunity (Malicki et al., 2004Malicki, A., Jarmoluk, A., & Bruzewicz, S. (2004). Effect of sodium lactate used alone or in combination with lysozyme on the physico-chemical and microbiological properties of steamed sausage stored under the refrigeration. Journal of Veterinary Research (Poland), 48, 47-51.; Gill & Holley, 2000Gill, A. O., & Holley, R. A. (2000). Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. Journal of Food Protection, 63(10), 1338-1346. DOI: http://doi.org/10.4315/0362-028x-63.10.1338
https://doi.org/http://doi.org/10.4315/0...
). Therefore, it should be considered that lysozyme may cause problems including allergic (Leduc et al., 1999Leduc, V., Demeulemester, C., Guizard, C., Le Guern, L., Polack, B., & Peltre, G. (1999). Immunochemical detection of egg‐white antigens and allergens in meat products. Allergy, 54(5), 464-472. DOI: http://doi.org/10.1034/j.1398-9995.1999.00928.x
https://doi.org/http://doi.org/10.1034/j...
) and antigenic aspects of ingested lysozyme (Cunningham, Proctor, & Goetsch, 1991Cunningham, F. E., Proctor, V. A., & Goetsch, S. J. (1991). Egg-white lysozyme as a food preservative: an overview. World's Poultry Science Journal, 47(2), 141-163. DOI: http://doi.org/10.1079/WPS19910015
https://doi.org/http://doi.org/10.1079/W...
). Thus, this enzyme is applied to meat products in combination with other antimicrobial agents and hurdles to reduce the concentrations needed to be applied for inhibition of bacteria. However, enzymatic activity of lysozyme decreases at high temperature and increased pH value, thereby other preservation methods than temperature are proposed. For example, using modern techniques such as high hydrostatic pressure (HHP) along with heat treatment can reduce the allergenic effects of lysozyme in meat products (Hildebrandt et al., 2010Hildebrandt, S., Schütte, L., Stoyanov, S., Hammer, G., Steinhart, H., & Paschke, A. (2010). In vitro determination of the allergenic potential of egg white in processed meat. Journal of allergy, 2010, 238573. DOI: http://doi.org/10.1155/2010/238573
https://doi.org/http://doi.org/10.1155/2...
). These novel non-thermal hurdle approaches are used in meat processing to ensure microbiological safety in combination with natural preservatives such as lysozyme (Oliveira, Ramos, Ramos, Piccoli, & Cristianini, 2015Oliveira, T. L. C. d., Ramos, A. L. S., Ramos, E. M, Piccoli, R. H., & Cristianini, M. (2015). Natural antimicrobials as additional hurdles to preservation of foods by high pressure processing. Trends in Food Science & Technology, 45, 60-85. DOI: http://doi.org/10.1016/j.tifs.2015.05.007.
https://doi.org/http://doi.org/10.1016/j...
). Using a combination of lysozyme in minimum inhibitory concentration (MIC) level (MIC against Lactobacillus brevis=50 mg L-1) and 150-170 MPa of pressure has shown a reduction of 6 logarithmic cycles in model systems (Tribst, Franchi, & Cristianini, 2008Tribst, A. A. L., Franchi, M. A., & Cristianini, M. (2008). Ultra-high pressure homogenization treatment combined with lysozyme for controlling Lactobacillus brevis contamination in model system. Innovative Food Science & Emerging Technologies, 9(3), 265-271. DOI: http://doi.org/10.1016/j.ifset.2007.07.012
https://doi.org/http://doi.org/10.1016/j...
).

The lysozyme at a concentration of 0.5-2 % without addition of EDTA cannot reduce Pseudomonas spp. population in buffalo meat samples (Cannarsi et al., 2008Cannarsi, M., Baiano, A., Sinigaglia, M., Ferrara, L., Baculo, R., & Del Nobile, M. A. (2008). Use of nisin, lysozyme and EDTA for inhibiting microbial growth in chilled buffalo meat. International Journal of Food Science & Technology, 43(4), 573-578. DOI: http://doi.org/10.1111/j.1365-2621.2006.01438.x
https://doi.org/http://doi.org/10.1111/j...
). It has been shown that lysozyme along with 2% EDTA can inhibit the other spoilage microorganisms and extend the shelflife of fresh buffalo meat. Consistent with this survey, in time-kill assay, organic acids without addition of lysozyme did not have anti listeria activity (Oh, Lee, Jeong, & Kim, 2016Oh, M., Lee, J., Jeong, Y., & Kim, M. (2016). Synergistic antilisterial effects of mixtures of lysozyme and organic acids. Journal of Food Protection, 79(12), 2184-2189. DOI: http://doi.org/10.4315/0362-028X.JFP-16-156
https://doi.org/http://doi.org/10.4315/0...
). Therefore in these cases, lysozyme is applied to meat products with other components exhibiting anti-listeria activity. Lysozyme has shown the same antimicrobial activity alone and in combination with other hurdles against Listeria monocytogenes in dairy products (Whitaker et al., 2003Whitaker, J. R., Wong, D. W. S., & Voragen, A. G. J. (2003). Handbook of Food Enzymology. New York, NY: Marcel Dekker.). As other examples of hurdle technique, combined EDTA and lysozyme exhibit higher antimicrobial activity in red meat and dairy products (Bevilacqua, Sinigaglia, & Corbo, 2010Bevilacqua, A., Sinigaglia, M., & Corbo, M. R. (2010). Use of lysozyme and na2‐ethylenediaminetetraacetic acid for the inhibition of hafnia alvei of dairy origin: individuation of the minimal inhibitory concentrations. Journal of Food Processing and Preservation, 34(5), 904-914. DOI: http://doi.org/10.1111/j.1745-4549.2009.00406.x
https://doi.org/http://doi.org/10.1111/j...
), or lysozyme in combination with essential oils such as oregano or rosemary oil in chicken meat (Ntzimani, Giatrakou, & Savvaidis, 2010Ntzimani, A. G., Giatrakou, V. I., & Savvaidis, I. N. (2010). Combined natural antimicrobial treatments (EDTA, lysozyme, rosemary and oregano oil) on semi cooked coated chicken meat stored in vacuum packages at 4ºC: microbiological and sensory evaluation. Innovative Food Science & Emerging Technologies, 11, 187-196. DOI: http://doi.org/10.1016/j.ifset.2009.09.004
https://doi.org/http://doi.org/10.1016/j...
) and combination with organic acids and chitosan in pork meat (Huang et al., 2012Huang, W., Xu, H., Xue, Y., Huang, R., Deng, H., & Pan, S. (2012). Layer-by-layer immobilization of lysozyme-chitosan-organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Research International, 48(2), 784-791. DOI: http://doi.org/10.1016/j.foodres.2012.06.026
https://doi.org/http://doi.org/10.1016/j...
) exhibits synergistic antimicrobial activities. By checkerboard assay in vitro, a mixture of lysozyme with organic acids such as acetic/lactic acid and others have shown synergistic effects against Listeria monocytogenes. Amongst examined organic acids, malic acid and succinic acid have demonstrated higher synergistic effects against L. monocytogenes (Oh et al., 2016Oh, M., Lee, J., Jeong, Y., & Kim, M. (2016). Synergistic antilisterial effects of mixtures of lysozyme and organic acids. Journal of Food Protection, 79(12), 2184-2189. DOI: http://doi.org/10.4315/0362-028X.JFP-16-156
https://doi.org/http://doi.org/10.4315/0...
). Added lysozyme to chitosan coatings and hydrosols (with Nano silver) also can help in increasing antibacterial and antioxidant activities of theses antimicrobial agents when applied onto meat surfaces (Zimoch-Korzycka & Jarmoluk, 2015Zimoch-Korzycka, A., & Jarmoluk, A. (2015). The use of chitosan, lysozyme, and the nano-silver as antimicrobial ingredients of edible protective hydrosols applied into the surface of meat. Journal of Food Science and Technology, 52, 5996-6002. DOI: http://doi.org/10.1007/s13197-014-1645-7
https://doi.org/http://doi.org/10.1007/s...
). At specific pH values lysozyme in combination with sodium caseinate and Spirulina protein forms insoluble complexes of edible films which modifies mobility and release of lysozyme (Benelhadj et al., 2016Benelhadj, S., Fejji, N., Degraeve, P., Attia, H., Ghorbel, D., & Gharsallaoui, A. (2016). Properties of lysozyme/Arthrospira platensis (Spirulina) protein complexes for antimicrobial edible food packaging. Algal Research, 15, 43-49. DOI: http://doi.org/10.1016/j.algal.2016.02.003
https://doi.org/http://doi.org/10.1016/j...
). Combination of gamma radiated chitosan (chitooligosaccharides) with lysozyme in minced meat shows synergistic effects against Gram-negative bacteria and extends the shelf life up to 15 days during storage at refrigeration temperatures (Rao et al., 2008Rao, M. S., Chander, R., & Sharma, A. (2008). Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. LWT-Food Science and Technology, 41(10), 1995-2001. DOI: http://doi.org/10.1016/j.lwt.2008.01.013
https://doi.org/http://doi.org/10.1016/j...
). As other example of combined components in meat products is application of xanthan gum with lysozyme which leads to higher antimicrobial activity of lysozyme and higher quality of emulsifier in meat and meat products (Hussain et al., 2017Hussain, A., Zia, K. M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., & Zuber, M. (2017). Blends and composites of exopolysaccharides; properties and applications: a review. International Journal of Biological Macromolecules, 94(A), 10-27. DOI: http://doi.org/10.1016/j.ijbiomac.2016.09.104
https://doi.org/http://doi.org/10.1016/j...
).

Series of studies are done on the application of lysozyme in meat and meat products such as Vienna sausage (Akashi, 1971Akashi, A. (1971). Preservative effect of egg white lysozyme on Vienna sausage. Japanese Journal of Zootechnical Science, 42(6), 289-295.), salami (Akashi, 1970Akashi, A. (1970). Preservative effect of egg-white lysozyme on salami sausage. Japanese Journal of Zootechnical Science, 41, 143-150.), and cooked sausages (Akashi, 1969Akashi, A. (1969). Preservative effect of egg-white lysozyme added to cooked sausage. Japanese Journal of Zootechnical Science, 40, 243-248.). The results have indicated the effective combination of lysozyme with other preservatives such as salt or sodium nitrite. In a type of Italian chicken sausage, half of the nitrite amount was replaced by lysozyme (1/2 nitrite+1/2 lysozyme). The sample showed the same antibacterial activity against Escherichia coli and Salmonella and antioxidant activity compared to the control with 2/2 of applied nitrite. The sensory properties have been improved by replacing a part of nitrite with lysozyme (Herath, Priyanath, Ahn, & Abeyrathne, 2015Herath, I. A. H. M. E., Priyanath, J. J. M., Ahn, D. U., & Abeyrathne, E. D. N. S. (2015). Use of lysozyme from chicken egg white as a nitrite replacer in an Italian-type chicken sausage. Functional Foods in Health and Disease, 5(9), 319-329. DOI: http://doi.org/10.31989/ffhd.v5i9.217
https://doi.org/http://doi.org/10.31989/...
). The addition of polyphosphates (lipase) to lysozyme has shown to significantly enhance the lytic and antibacterial activity of lysozyme on growing cultures at various temperatures and against L. monocytogenes in buffer solution (Liberti et al., 1996Liberti, R., Franciosa, G., Gianfranceschi, M., & Aureli, P. (1996). Effect of combined lysozyme and lipase treatment on the survival of Listeria monocytogenes. International Journal of Food Microbiology, 32(1-2), 235-242. DOI: http://doi.org/10.1016/0168-1605(96)01121-X
https://doi.org/http://doi.org/10.1016/0...
). In ground pork samples, modified lysozyme has shown stronger antibacterial activity against Pseudomonas species and Enterobacteriaceae family when compared to lysozyme monomer. Modified lysozyme in heat-treated samples have shown to exhibit higher antibacterial activity in ground pork (Cegielska-Radziejewska & Szablewski, 2013Cegielska-Radziejewska, R., & Szablewski, T. (2013). Effect of modified lysozyme on the microflora and sensory attributes of ground pork. Journal of Food Protection, 76(2), 338-342. DOI: http://doi.org/10.4315/0362-028X.JFP-12-075
https://doi.org/http://doi.org/10.4315/0...
) and also in wine against lactic acid bacteria and acetic acid bacteria (Carrillo, García-Ruiz, Recio, & Moreno-Arribas, 2014Carrillo, W., García-Ruiz, A., Recio, I., & Moreno-Arribas, M. V. (2014). Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria. Journal of food protection, 77(10), 1732-1739. DOI: http://doi.org/10.4315/0362-028X.JPF-14-009
https://doi.org/http://doi.org/10.4315/0...
).

In meat, carbohydrates and amino acids interact to form intermediate substances that are converted to flavor compounds through decarboxylation, oxidation, cyclization and condensation (Nagai, Inoue, Kanamori, Suzuki, & Nagashima, 2006Nagai, T., Inoue, R., Kanamori, N., Suzuki, N., & Nagashima, T. (2006). Characterization of honey from different floral sources. Its functional properties and effects of honey species on storage of meat. Food Chemistry, 97(2), 256-262. DOI: http://doi.org/10.1016/j.foodchem.2005.03.045
https://doi.org/http://doi.org/10.1016/j...
). Typical examples of pronounced compounds are flavonoids and saponins (spices and herbs), lysozyme (figs, egg white), nisin (LAB), chitosan (shrimp shells), and lactoperoxidase from milk. Herbs and spices have been used in many cuisines to impart aroma and flavor in food (Kanatt, Chander, & Sharma, 2008Kanatt, S. R., Chander, R., & Sharma, A. (2008). Chitosan and mint mixture: a new preservative for meat and meat products. Food Chemistry, 107(2), 845-852. DOI: http://doi.org/10.1016/j.foodchem.2007.08.088
https://doi.org/http://doi.org/10.1016/j...
). Aforementioned, like essential oils, lysozyme can be prepared in micro encapsulated or beads form, or in forms of films and nanoparticles in meat and meat products (Wu et al., 2017Wu, T., Wu, C., Fu, S., Wang, L., Yuan, C., Chen, S., & Hu, Y. (2017). Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydrate Polymers, 155, 192-200. DOI: http://doi.org/10.1016/j.carbpol.2016.08.076
https://doi.org/http://doi.org/10.1016/j...
). However, lysozyme can make changes in sensory properties that can be inhibited by micro ionization, but in this method degradation of lysozyme should be controlled. The particles of lysozyme (2.8-13.8 micrometer) resulted by expanded liquid anti-solvent technique are smaller than can be felt, but integrity of lysozyme and absence of solvent in final product should also be considered to ensure the safety (Prosapio, Reverchon, & De Marco, 2016Prosapio, V., Reverchon, E., & De Marco, I. (2016). Production of lysozyme microparticles to be used in functional foods, using an expanded liquid antisolvent process. The Journal of Supercritical Fluids, 107, 106-113. DOI: http://doi.org/10.1016/j.supflu.2015.09.001
https://doi.org/http://doi.org/10.1016/j...
). Decontaminated chicken legs by spraying lysozyme (6000-48000 U mL-1) has not shown any significant sensory differences with fresh meat samples during storage at 4°C (120h), where control leg samples were deteriorated and had darker color mainly in cutting lines (Kijowski, Marciszewska, Cegielska-Radziejewska, & Popiół, 2013Kijowski, J., Marciszewska, C., Cegielska-Radziejewska, R., & Popiół, A. (2013). Effect of lysozyme treatment on quality and bacterial contamination of chilled chicken legs. Bulletin of the Veterinary Institute in Pulawy, 57, 79-84. DOI: http://doi.org/10.2478/bvip-2013-0015
https://doi.org/http://doi.org/10.2478/b...
). The addition of modified lysozyme into ground pork samples have not shown any adverse effect on sensory properties compared to samples without addition of lysozyme during 72h (Cegielska-Radziejewska & Szablewski, 2013Kijowski, J., Marciszewska, C., Cegielska-Radziejewska, R., & Popiół, A. (2013). Effect of lysozyme treatment on quality and bacterial contamination of chilled chicken legs. Bulletin of the Veterinary Institute in Pulawy, 57, 79-84. DOI: http://doi.org/10.2478/bvip-2013-0015
https://doi.org/http://doi.org/10.2478/b...
).

Lysozyme is commercially obtained from hen egg white (albumen fraction), where contains about 0.5% lysozyme (with low activity) that might possess immunological problems. Except for allergic problems, extraction of lysozyme from egg white has other disadvantages such as huge amounts of needed egg white to reach an acceptable purity. Therefore, application of lysozyme extracted from egg white might be restricted, and it should be noted on product labeling that the food product contains egg. lysozyme is used in the hydrochloride form in foods, largely to preserve vegetables, tofu salad, potato, fresh fruits, semidry cheeses, and seafoods including fish cakes, bacon, meat, and sausages (Malicki et al., 2004Malicki, A., Jarmoluk, A., & Bruzewicz, S. (2004). Effect of sodium lactate used alone or in combination with lysozyme on the physico-chemical and microbiological properties of steamed sausage stored under the refrigeration. Journal of Veterinary Research (Poland), 48, 47-51.). The commercial production of lysozyme by microbial fermentation i.e. Micrococcus lysodeikticus has been proposed as an alternative to the lysozyme extracted from hen egg. In this method, cheaper raw materials with uniform quality can be applied for enzyme production through surface or submerged fermentation. In this case, Micrococcus luteus is an obligate Gram-positive aerobe.

Conclusion

Meat and meat products are highly perishable as they have relatively high water activity and an appropriate pH level for microbial growth. Lysozyme as a natural preservative is of great interest for use in meat and meat products as it shows antibacterial activity against Gram-positive bacteria including L. monocytogenes and partially Gram-negative bacteria in meats. Few studies have been carried out to explain the synergistic effects of lysozyme with other antimicrobial components, therefore, more investigations are needed to obtain higher antibacterial activity against resistant Gram-negative bacteria in meat and meat products as well as Gram-positives. In conclusion, studies indicate that antibacterial and antioxidant activities of lysozyme can be improved by HHP or/and in combination with bacteriocins (nisin), glycoprotein (lactoferrin), EDTA, certain salts (phosphates), paraben derivatives, oregano or rosemary essential oils, and organic acids such as malic acid and succinic acid or by loading of enzyme with chitosan or radiated chitosan hydrosols, coatings and onto cellulose based packages. Hen egg white lysozyme is expensive and may pose a risk to individuals allergic to eggs, therefore, production of lysozyme by fermentation process has been proposed.

More investigations are required to figure out the approaches to achieve better application of lysozyme in meat products conforming to market trends.

Acknowledgements

We appreciate the ‘Student Research Committee’ and ‘Research & Technology Chancellor’ in Shahid Beheshti University of Medical Sciences for their financial support of this study

References

  • Abdollahzadeh, E., Rezaei, M., & Hosseini, H. (2014). Antibacterial activity of plant essential oils and extracts: the role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, 35, 177-183. DOI: http://doi.org/10.1016/j.foodcont.2013.07.004
    » https://doi.org/http://doi.org/10.1016/j.foodcont.2013.07.004
  • Abdou, A. M., Higashiguchi, S., Aboueleinin, A., Kim, M., & Ibrahim, H. R. (2007). Antimicrobial peptides derived from hen egg lysozyme with inhibitory effect against Bacillus species. Food Control, 18(2), 173-178. DOI: http://doi.org/10.1016/j.foodcont.2005.09.010
    » https://doi.org/http://doi.org/10.1016/j.foodcont.2005.09.010
  • Akashi, A. (1969). Preservative effect of egg-white lysozyme added to cooked sausage. Japanese Journal of Zootechnical Science, 40, 243-248.
  • Akashi, A. (1970). Preservative effect of egg-white lysozyme on salami sausage. Japanese Journal of Zootechnical Science, 41, 143-150.
  • Akashi, A. (1971). Preservative effect of egg white lysozyme on Vienna sausage. Japanese Journal of Zootechnical Science, 42(6), 289-295.
  • Amara, C. B., Eghbal, N., Degraeve, P., & Gharsallaoui, A. (2016). Using complex coacervation for lysozyme encapsulation by spray-drying. Journal of Food Engineering, 183, 50-57. DOI: http://doi.org/10.1016/j.foodeng.2016.03.016
    » https://doi.org/http://doi.org/10.1016/j.foodeng.2016.03.016
  • Anand, S. P, & Sati, N. (2013). Artificial preservatives and their harmful effects: looking toward nature for safer alternatives. International Journal of Pharmaceutical Sciences and Research, 4, 2496-2501.
  • Avramescu, M.-E., Borneman, Z., & Wessling, M. (2008). Particle-loaded hollow-fiber membrane adsorbers for lysozyme separation. Journal of Membrane Science, 322(2), 306-313. DOI: http://doi.org/10.1016/j.memsci.2008.06.013
    » https://doi.org/http://doi.org/10.1016/j.memsci.2008.06.013
  • Barbiroli, A., Bonomi, F., Capretti, G., Iametti, S., Manzoni, M., Piergiovanni, L., & Rollini, M. (2012). Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control, 26(2), 387-392. DOI: http://doi.org/10.1016/j.foodcont.2012.01.046
    » https://doi.org/http://doi.org/10.1016/j.foodcont.2012.01.046
  • Benelhadj, S., Fejji, N., Degraeve, P., Attia, H., Ghorbel, D., & Gharsallaoui, A. (2016). Properties of lysozyme/Arthrospira platensis (Spirulina) protein complexes for antimicrobial edible food packaging. Algal Research, 15, 43-49. DOI: http://doi.org/10.1016/j.algal.2016.02.003
    » https://doi.org/http://doi.org/10.1016/j.algal.2016.02.003
  • Bevilacqua, A., Sinigaglia, M., & Corbo, M. R. (2010). Use of lysozyme and na2‐ethylenediaminetetraacetic acid for the inhibition of hafnia alvei of dairy origin: individuation of the minimal inhibitory concentrations. Journal of Food Processing and Preservation, 34(5), 904-914. DOI: http://doi.org/10.1111/j.1745-4549.2009.00406.x
    » https://doi.org/http://doi.org/10.1111/j.1745-4549.2009.00406.x
  • Branen, J. K., & Davidson, P. M. (2004). Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. International Journal of Food Microbiology, 90, 63-74. DOI: http://doi.org/10.1016/s0168-1605(03)00172-7
    » https://doi.org/http://doi.org/10.1016/s0168-1605(03)00172-7
  • Cannarsi, M., Baiano, A., Sinigaglia, M., Ferrara, L., Baculo, R., & Del Nobile, M. A. (2008). Use of nisin, lysozyme and EDTA for inhibiting microbial growth in chilled buffalo meat. International Journal of Food Science & Technology, 43(4), 573-578. DOI: http://doi.org/10.1111/j.1365-2621.2006.01438.x
    » https://doi.org/http://doi.org/10.1111/j.1365-2621.2006.01438.x
  • Carrillo, W., García-Ruiz, A., Recio, I., & Moreno-Arribas, M. V. (2014). Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria. Journal of food protection, 77(10), 1732-1739. DOI: http://doi.org/10.4315/0362-028X.JPF-14-009
    » https://doi.org/http://doi.org/10.4315/0362-028X.JPF-14-009
  • Cegielska-Radziejewska, R., & Szablewski, T. (2013). Effect of modified lysozyme on the microflora and sensory attributes of ground pork. Journal of Food Protection, 76(2), 338-342. DOI: http://doi.org/10.4315/0362-028X.JFP-12-075
    » https://doi.org/http://doi.org/10.4315/0362-028X.JFP-12-075
  • Chen, K., Han, S.-Y., Li, M., & Sheng, W.-J. (2017). Use of lysozyme and oligomeric proanthocyanidin to reduce sulfur dioxide and the evolution of volatile compounds in italian riesling ice wine during aging process. Journal of Food Processing and Preservation, 41, e12755. DOI: http://doi.org/10.1111/jfpp.12755
    » https://doi.org/http://doi.org/10.1111/jfpp.12755
  • Cho, M. H., Bae, E. K., Ha, S. D., & Park, J. Y. (2005). Application of natural antimicrobials to food industry. Food science and Industry, 38, 36-45.
  • Chouliara, E., Karatapanis, A., Savvaidis, I. N., & Kontominas, M. G. (2007). Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4ºC. Food Microbiology, 24(6), 607-617. DOI: http://doi.org/10.1016/j.fm.2006.12.005
    » https://doi.org/http://doi.org/10.1016/j.fm.2006.12.005
  • Chung, W., & Hancock, R. E. (2000). Action of lysozyme and nisin mixtures against lactic acid bacteria. International Journal of Food Microbiology, 60, 25-32. DOI: http://doi.org/10.1016/s0168-1605(00)00330-5
    » https://doi.org/http://doi.org/10.1016/s0168-1605(00)00330-5
  • Cunningham, F. E., Proctor, V. A., & Goetsch, S. J. (1991). Egg-white lysozyme as a food preservative: an overview. World's Poultry Science Journal, 47(2), 141-163. DOI: http://doi.org/10.1079/WPS19910015
    » https://doi.org/http://doi.org/10.1079/WPS19910015
  • Dave, D., & Ghaly, A. E. (2011). Meat spoilage mechanisms and preservation techniques: a critical review. American Journal of Agricultural and Biological Science, 6(4), 486-510. DOI: http://doi.org/10.3844/ajabssp.2011.486.510
    » https://doi.org/http://doi.org/10.3844/ajabssp.2011.486.510
  • Düring, K., Porsch, P., Mahn, A., Brinkmann, O., & Gieffers, W. (1999). The non‐enzymatic microbicidal activity of lysozymes. FEBS letters, 449(2-3), 93-100. DOI: http://doi.org/10.1016/s0014-5793(99)00405-6
    » https://doi.org/http://doi.org/10.1016/s0014-5793(99)00405-6
  • Fleming, A., & Allison, V. D. (1922). Observations on a bacteriolytic substance (“lysozyme”) found in secretions and tissues. The British Journal of Experimental Pathology, 3(5), 252-260.
  • Gill, A. O., & Holley, R. A. (2000). Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. Journal of Food Protection, 63(10), 1338-1346. DOI: http://doi.org/10.4315/0362-028x-63.10.1338
    » https://doi.org/http://doi.org/10.4315/0362-028x-63.10.1338
  • Gill, A. O., & Holley, R. A. (2003). Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24ºC. International journal of food microbiology, 80(3), 251-259. DOI: http://doi.org/10.1016/s0168-1605(02)00171-x
    » https://doi.org/http://doi.org/10.1016/s0168-1605(02)00171-x
  • Goodarzi, A., Hovhannisyan, H., & Barseghyan, A. (2016). Elimination of pathogen Escherichia coli O157: H7 in ground beef by a newly isolated strain of lactobacillus acidophilus during storage at 5°C. Applied Food Biotechnology, 3, 170-176. DOI: http://doi.org/10.22037/afb.v3i3.11799
    » https://doi.org/http://doi.org/10.22037/afb.v3i3.11799
  • Herath, I. A. H. M. E., Priyanath, J. J. M., Ahn, D. U., & Abeyrathne, E. D. N. S. (2015). Use of lysozyme from chicken egg white as a nitrite replacer in an Italian-type chicken sausage. Functional Foods in Health and Disease, 5(9), 319-329. DOI: http://doi.org/10.31989/ffhd.v5i9.217
    » https://doi.org/http://doi.org/10.31989/ffhd.v5i9.217
  • Hildebrandt, S., Schütte, L., Stoyanov, S., Hammer, G., Steinhart, H., & Paschke, A. (2010). In vitro determination of the allergenic potential of egg white in processed meat. Journal of allergy, 2010, 238573. DOI: http://doi.org/10.1155/2010/238573
    » https://doi.org/http://doi.org/10.1155/2010/238573
  • Huang, W., Xu, H., Xue, Y., Huang, R., Deng, H., & Pan, S. (2012). Layer-by-layer immobilization of lysozyme-chitosan-organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Research International, 48(2), 784-791. DOI: http://doi.org/10.1016/j.foodres.2012.06.026
    » https://doi.org/http://doi.org/10.1016/j.foodres.2012.06.026
  • Hussain, A., Zia, K. M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., & Zuber, M. (2017). Blends and composites of exopolysaccharides; properties and applications: a review. International Journal of Biological Macromolecules, 94(A), 10-27. DOI: http://doi.org/10.1016/j.ijbiomac.2016.09.104
    » https://doi.org/http://doi.org/10.1016/j.ijbiomac.2016.09.104
  • Ibrahim, H. R., Higashiguchi, S., Juneja, L. R., Kim, M., & Yamamoto, T. (1996). A structural phase of heat-denatured lysozyme with novel antimicrobial action. Journal of Agricultural and Food Chemistry, 44(6), 1416-1423. DOI: http://doi.org/10.1021/jf9507147
    » https://doi.org/http://doi.org/10.1021/jf9507147
  • Johnson, L. N., Phillips, D. C., & Rupley, J. A. (1968). The activity of lysozyme: an interim review of crystallographic and chemical evidence. Brookhaven Symposia in Biology, 21(1), 120-138.
  • Kanatt, S. R., Chander, R., & Sharma, A. (2008). Chitosan and mint mixture: a new preservative for meat and meat products. Food Chemistry, 107(2), 845-852. DOI: http://doi.org/10.1016/j.foodchem.2007.08.088
    » https://doi.org/http://doi.org/10.1016/j.foodchem.2007.08.088
  • Kasra-Kermanshahi, R., & Mobarak-Qamsari, E. (2015). Inhibition effect of lactic acid bacteria against food born pathogen, Listeria monocytogenes. Applied Food Biotechnology, 2(4), 11-19. DOI: http://doi.org/10.22037/afb.v2i4.8894
    » https://doi.org/http://doi.org/10.22037/afb.v2i4.8894
  • Kijowski, J., Marciszewska, C., Cegielska-Radziejewska, R., & Popiół, A. (2013). Effect of lysozyme treatment on quality and bacterial contamination of chilled chicken legs. Bulletin of the Veterinary Institute in Pulawy, 57, 79-84. DOI: http://doi.org/10.2478/bvip-2013-0015
    » https://doi.org/http://doi.org/10.2478/bvip-2013-0015
  • Kim, S.-J., Cho, A. R., & Han, J. (2013). Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. Food Control, 29, 112-120. DOI: http://doi.org/10.1016/j.foodcont.2012.05.060
    » https://doi.org/http://doi.org/10.1016/j.foodcont.2012.05.060
  • Kozuka, M., Murao, S., Yamane, T., Inoue, T., Ohkubo, I., & Ariga, H. (2015). Rapid and simple purification of lysozyme from the egg shell membrane. Journal of Nutritional Science and Vitaminology, 61, 101-103. DOI: http://doi.org/10.3177/jnsv.61.101
    » https://doi.org/http://doi.org/10.3177/jnsv.61.101
  • Leduc, V., Demeulemester, C., Guizard, C., Le Guern, L., Polack, B., & Peltre, G. (1999). Immunochemical detection of egg‐white antigens and allergens in meat products. Allergy, 54(5), 464-472. DOI: http://doi.org/10.1034/j.1398-9995.1999.00928.x
    » https://doi.org/http://doi.org/10.1034/j.1398-9995.1999.00928.x
  • Lesnierowski, G., & Kijowski, J. (2007). Lysozyme. In R. Huopalahti, R. López-Fandiño, M. Anton & R Schade (Eds.), Bioactive Egg Compounds (p. 33-42). Berlin, GE: Springer.
  • Li, W., Li, X., Wang, Q., Pan, Y., Wang, T., Wang, H., ... Deng, H. (2014). Antibacterial activity of nanofibrous mats coated with lysozyme-layered silicate composites via electrospraying. Carbohydrate Polymers, 99, 218-225. DOI: http://doi.org/10.1016/j.carbpol.2013.07.055
    » https://doi.org/http://doi.org/10.1016/j.carbpol.2013.07.055
  • Liberti, R., Franciosa, G., Gianfranceschi, M., & Aureli, P. (1996). Effect of combined lysozyme and lipase treatment on the survival of Listeria monocytogenes. International Journal of Food Microbiology, 32(1-2), 235-242. DOI: http://doi.org/10.1016/0168-1605(96)01121-X
    » https://doi.org/http://doi.org/10.1016/0168-1605(96)01121-X
  • Lodi, R., & Stadhouders, J. (1990). The use of lysozyme to control butyric acid fermentation. Bulletin of the International Dairy Federation, 251, 51-54.
  • Maehashi, K., Matano, M., Irisawa, T., Uchino, M., Kashiwagi, Y., & Watanabe, T. (2012). Molecular characterization of goose-and chicken-type lysozymes in emu (Dromaius novaehollandiae): evidence for extremely low lysozyme levels in emu egg white. Gene, 492, 244-249. DOI: http://doi.org/10.1016/j.gene.2011.10.021
    » https://doi.org/http://doi.org/10.1016/j.gene.2011.10.021
  • Malicki, A., Jarmoluk, A., & Bruzewicz, S. (2004). Effect of sodium lactate used alone or in combination with lysozyme on the physico-chemical and microbiological properties of steamed sausage stored under the refrigeration. Journal of Veterinary Research (Poland), 48, 47-51.
  • Mascheroni, E., Capretti, G., Marengo, M., Iametti, S., Mora, L., Piergiovanni, L., & Bonomi, F. (2010). Modification of cellulose‐based packaging materials for enzyme immobilization. Packaging Technology and Science, 23, 47-57. DOI: http://doi.org/10.1002/pts.878
    » https://doi.org/http://doi.org/10.1002/pts.878
  • Mine, Y., Ma, F., & Lauriau, S. (2004). Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. Journal of Agricultural and Food Chemistry, 52(5), 1088-1094. DOI: http://doi.org/10.1021/jf0345752
    » https://doi.org/http://doi.org/10.1021/jf0345752
  • Nagai, T., Inoue, R., Kanamori, N., Suzuki, N., & Nagashima, T. (2006). Characterization of honey from different floral sources. Its functional properties and effects of honey species on storage of meat. Food Chemistry, 97(2), 256-262. DOI: http://doi.org/10.1016/j.foodchem.2005.03.045
    » https://doi.org/http://doi.org/10.1016/j.foodchem.2005.03.045
  • Naknukool, S., Hayakawa, S., Uno, T., & Ogawa, M. (2009). Antimicrobial activity of duck egg lysozyme against salmonella enteritidis In G. Barbosa-Cánovas & P. Colonna (Eds.), Global Issues in Food Science and Technology (p. 293-307). Amsterdam, NL: Elsevier.
  • Nattress, F. M., Yost, C. K., & Baker, L. P. (2001). Evaluation of the ability of lysozyme and nisin to control meat spoilage bacteria. International Journal of Food Microbiology, 70(1-2), 111-119. DOI: http://doi.org/10.1016/s0168-1605(01)00531-1
    » https://doi.org/http://doi.org/10.1016/s0168-1605(01)00531-1
  • Negi, P. S. (2012). Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. International Journal of Food Microbiology, 156, 7-17. DOI: http://doi.org/10.1016/j.ijfoodmicro.2012.03.006
    » https://doi.org/http://doi.org/10.1016/j.ijfoodmicro.2012.03.006
  • Ntzimani, A. G., Giatrakou, V. I., & Savvaidis, I. N. (2010). Combined natural antimicrobial treatments (EDTA, lysozyme, rosemary and oregano oil) on semi cooked coated chicken meat stored in vacuum packages at 4ºC: microbiological and sensory evaluation. Innovative Food Science & Emerging Technologies, 11, 187-196. DOI: http://doi.org/10.1016/j.ifset.2009.09.004
    » https://doi.org/http://doi.org/10.1016/j.ifset.2009.09.004
  • Oh, M., Lee, J., Jeong, Y., & Kim, M. (2016). Synergistic antilisterial effects of mixtures of lysozyme and organic acids. Journal of Food Protection, 79(12), 2184-2189. DOI: http://doi.org/10.4315/0362-028X.JFP-16-156
    » https://doi.org/http://doi.org/10.4315/0362-028X.JFP-16-156
  • Olaoye, O. A., Onilude, A. A., & Ubbor, S. C. (2015). Control of Brochothrix thermosphacta in pork meat using lactococcus lactis subsp. lactis i23 isolated from beef. Applied Food Biotechnology, 2(3), 49-55. DOI: http://doi.org/10.22037/afb.v2i3.7993
    » https://doi.org/http://doi.org/10.22037/afb.v2i3.7993
  • Oliveira, T. L. C. d., Ramos, A. L. S., Ramos, E. M, Piccoli, R. H., & Cristianini, M. (2015). Natural antimicrobials as additional hurdles to preservation of foods by high pressure processing. Trends in Food Science & Technology, 45, 60-85. DOI: http://doi.org/10.1016/j.tifs.2015.05.007.
    » https://doi.org/http://doi.org/10.1016/j.tifs.2015.05.007
  • Pilevar, Z., Hosseini, H., Beikzadeh, S., Khanniri, E., & Alizadeh, A. M. (2020). Application of bacteriocins in meat and meat products: An update. Current Nutrition & Food Science, 16(2), 120-133.
  • Pilevar, Z., & Hosseini, H. (2017). Effects of starter cultures on the properties of meat products: A review. Annual Research & Review in Biology, 1-17.
  • Pilevar, Z., & Hosseini, H. (2013). Chemical composition, antimicrobial and antioxidant activity of Echinophora platyloba DC. Journal of Pharmacy and Nutrition Sciences, 3, 270-283. DOI: http:doi.org/10.6000/1927-5951.2013.03.04.10
    » https://doi.org/http:doi.org/10.6000/1927-5951.2013.03.04.10
  • Pilevar, Z., Hosseini, H., Hajimehdipoor, H., Shahraz, F., Alizadeh, L., Mousavi Khaneghah, A., & Mahmoudzadeh, M. (2017). The Anti-Staphylococcus aureus effect of combined echinophora platyloba essential oil and liquid smoke in beef. Food Technology and Biotechnology, 55, 117-124. DOI: http://doi.org/10.17113/ftb.55.01.17.4633
    » https://doi.org/http://doi.org/10.17113/ftb.55.01.17.4633
  • Proctor, V. A., Cunningham, F. E., & Fung, D. Y. C. (1988). The chemistry of lysozyme and its use as a food preservative and a pharmaceutical. Critical Reviews in Food Science and Nutrition, 26(4), 359-395. DOI: http://doi.org/10.1080/10408398809527473
    » https://doi.org/http://doi.org/10.1080/10408398809527473
  • Prosapio, V., Reverchon, E., & De Marco, I. (2016). Production of lysozyme microparticles to be used in functional foods, using an expanded liquid antisolvent process. The Journal of Supercritical Fluids, 107, 106-113. DOI: http://doi.org/10.1016/j.supflu.2015.09.001
    » https://doi.org/http://doi.org/10.1016/j.supflu.2015.09.001
  • Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat science, 62(3), 373-380. DOI: http://doi.org/10.1016/s0309-1740(02)00121-3
    » https://doi.org/http://doi.org/10.1016/s0309-1740(02)00121-3
  • Ranaii, V., Pilevar, Z., Mousavi Khaneghah, A., & Hosseini, H. (2020). Propionic acid: method of production, current state and perspectives. Food Technology and Biotechnology, 58(2), 115-127. DOI: http://dx.doi.org/10.17113/ftb.58.02.20.6356
    » https://doi.org/http://dx.doi.org/10.17113/ftb.58.02.20.6356
  • Rao, M. S., Chander, R., & Sharma, A. (2008). Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. LWT-Food Science and Technology, 41(10), 1995-2001. DOI: http://doi.org/10.1016/j.lwt.2008.01.013
    » https://doi.org/http://doi.org/10.1016/j.lwt.2008.01.013
  • Seetaramaiah, K., Smith, A. A., Murali, R., & Manavalan, R. (2011). Preservatives in food products-review. International Journal of Pharmaceutical & Biological Archives, 2(2), 583-599.
  • Strominger, J. L., & Tipper, D. J. (1974). Structure of bacterial cell walls: the lysozyme substrate. In E. Osserman, R. E. Canfield & S. Beychok (Eds.), Lysozyme (p. 169-185). New York, NY: Academic Press.
  • Sung, S.-Y., Sin, L. T., Tee, T.-T., Bee, S.-T., Rahmat, A. R., Rahman, W. A. W. A., ... Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110-123. DOI: http://doi.org/10.1016/j.tifs.2013.08.001
    » https://doi.org/http://doi.org/10.1016/j.tifs.2013.08.001
  • Tribst, A. A. L., Franchi, M. A., & Cristianini, M. (2008). Ultra-high pressure homogenization treatment combined with lysozyme for controlling Lactobacillus brevis contamination in model system. Innovative Food Science & Emerging Technologies, 9(3), 265-271. DOI: http://doi.org/10.1016/j.ifset.2007.07.012
    » https://doi.org/http://doi.org/10.1016/j.ifset.2007.07.012
  • Weert, M. V. d., Hoechstetter, J., Hennink, W. E., & Crommelin, D. J. A. (2000). The effect of a water/organic solvent interface on the structural stability of lysozyme. Journal of Controlled Release, 68(3), 351-359. DOI: http://doi.org/10.1016/s0168-3659(00)00277-7
    » https://doi.org/http://doi.org/10.1016/s0168-3659(00)00277-7
  • Whitaker, J. R., Wong, D. W. S., & Voragen, A. G. J. (2003). Handbook of Food Enzymology New York, NY: Marcel Dekker.
  • Wu, T., Wu, C., Fu, S., Wang, L., Yuan, C., Chen, S., & Hu, Y. (2017). Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydrate Polymers, 155, 192-200. DOI: http://doi.org/10.1016/j.carbpol.2016.08.076
    » https://doi.org/http://doi.org/10.1016/j.carbpol.2016.08.076
  • You, S.-J., Udenigwe, C. C., Aluko, R. E., & Wu, J. (2010). Multifunctional peptides from egg white lysozyme. Food Research International, 43, 848-855. DOI: http://doi.org/10.1016/j.foodres.2009.12.004
    » https://doi.org/http://doi.org/10.1016/j.foodres.2009.12.004
  • Zhang, H., Kong, B., Xiong, Y. L., & Sun, X. (2009). Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4ºC. Meat science, 81(4), 686-692. DOI: http://doi.org/10.1016/j.meatsci.2008.11.011
    » https://doi.org/http://doi.org/10.1016/j.meatsci.2008.11.011
  • Zhang, T., Zhou, P., Zhan, Y., Shi, X., Lin, J., Du, Y., ... Deng, H. (2015). Pectin/lysozyme bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. Carbohydrate Polymers, 117, 687-693. DOI: http://doi.org/10.1016/j.carbpol.2014.10.064
    » https://doi.org/http://doi.org/10.1016/j.carbpol.2014.10.064
  • Zimoch-Korzycka, A., & Jarmoluk, A. (2015). The use of chitosan, lysozyme, and the nano-silver as antimicrobial ingredients of edible protective hydrosols applied into the surface of meat. Journal of Food Science and Technology, 52, 5996-6002. DOI: http://doi.org/10.1007/s13197-014-1645-7
    » https://doi.org/http://doi.org/10.1007/s13197-014-1645-7

Publication Dates

  • Publication in this collection
    06 June 2022
  • Date of issue
    Jan-Dec 2022

History

  • Received
    15 Aug 2020
  • Accepted
    22 Sept 2021
Editora da Universidade Estadual de Maringá - EDUEM Av. Colombo, 5790, bloco 40, CEP 87020-900 , Tel. (55 44) 3011-4253, Fax (55 44) 3011-1392 - Maringá - PR - Brazil
E-mail: actaanim@uem.br