Acessibilidade / Reportar erro

Effect of atmospheric CO2 enrichment on the establishment of seedlings of Jatobá, Hymenaea Courbaril L. (Leguminosae, Caesalpinioideae)

Abstracts

Plants grown in elevated CO2 environments may exhibit photosynthetic acclimation or down regulation, which is characterised by reduced rates of photosynthesis. In most cases of CO2-induced photosynthetic acclimation, the reduced rates of photosynthesis were still higher than those detected in plants growing at ambient CO2 concentrations. In this work we present a study on the behaviour of seedlings of Hymenaea courbaril, a late secondary/climax species that is one of the most important trees in mature tropical forests of the Americas. After germination, the seedling of H. courbaril increases its rate of growth due to the mobilisation of massive amounts of a storage cell wall polysaccharide (xyloglucan) from its cotyledons. In our experiments, germinated seeds were incubated in open top chambers with increased concentration of atmospheric CO2 (720 ppm) (control at 360 ppm). To test the effects of the presence of the storage compound on the responses of growing seedlings, cotyledons were detached before the start of polysaccharide mobilisation and parameters such as dry mass, leaf area, CO2 assimilation rates and chlorophyll a fluorescence were measured during 98 days. A comparison between 360 and 720ppm growing seedlings showed a significant increase in leaf area only in metaphylls of seedlings growing under higher CO2. However, a marked and persistent increase (2 fold) in photosynthesis (CO2 assimilation) was observed in all cases (with or without cotyledons). Changes in the levels of sucrose have been suggested to act as a signalling mechanism that switches on/off the storage or development mode in plant tissues. Thus, the explanation for our general observation that the differential response in terms of growth of seedlings ceases to exist when storage mobilisation is functioning, might be related to the fact that higher levels of sucrose are produced as a result of carbon storage compounds degradation. By the results obtained, it appears that plants grown under enriched CO2 did not acclimate and therefore under the climatic conditions forecasted on the basis of the present carbon dioxide emissions, Hymenaea courbaril should establish faster in its natural environment and might also serve as an efficient mechanism of carbon sequestration within the forest.

Photosynthesis; CO2 enrichment; Hymenaea courbaril; storage mobilisation; root:shoot ratio; seedling growth; cotyledons; open top chamber; xyloglucan; biodiversity


Plântulas de jatobá crescidas em ambiente com concentrações elevadas de CO2 podem exibir aclimatação fotossintética ou retro-inibição, a qual é caracterizada pela redução das taxas fotossintéticas. Em muitos casos de aclimatação induzida por alto CO2, taxas reduzidas de fotossíntese são observadas, mas ainda são mais altas que aquelas detectadas em plantas crescendo em concentrações atuais de CO2 atmosférico (360ppm). No presente trabalho, realizamos um estudo do comportamento de plântulas de Hymenaea courbaril, uma espécie secundária tardia/clímax de grande importância em florestas tropicais maduras nas Américas. Em nossos experimentos, sementes recém germinadas foram cultivadas em câmaras de topo aberto com concentrações alteradas de CO2 (720 ppm e controle a 340 ppm). Para testar os efeitos da presença de compostos de reserva sobre as respostas de plântulas em crescimento, cotilédones foram destacados antes do início da mobilização do polissacarídeo de reserva (xiloglucano) e parâmetros tais como massa seca, área foliar, assimilação de CO2 e fluorescência da clorofila a, foram medidos durante 98 dias. A comparação entre plântulas crescendo em atmosfera de CO2 a 360 e 720 ppm, mostraram aumento siginificativo em área foliar apenas nos metáfilos de plântulas crescendo nas concentrações mais altas. No entanto, um efeito marcado e consistente de aumento na fotossíntese (assimilação de CO2) foi observado em todos os casos (com e sem cotilédones). Acredita-se que as variações nos níveis de sacarose podem funcionar como um mecanismo sinalizador de alterações nos estados de armazenamento ou desenvolvimento de tecidos vegetais. Portanto, uma possível explicação para nossas observações gerais de que uma resposta diferencial em termos de crescimento de plântulas deixa de existir quando a mobilização de reservas está em curso, pode estar relacionada com o fato de que altos níveis de sacarose são produzidos quando há degradação de compostos de reservas. De acordo com nossos resultados, parece que as plantas crescidas sob concentrações enriquecidas de CO2 não aclimataram e portanto, sob as condições climáticas previstas com base nos níveis atmosféricos atuais, plântulas de Hymenaea courbaril deverão estabelecer mais rapidamente em seu ambiente natural e podem também servir como um mecanismo eficiente de seqüestro de carbono pela floresta.schottiana Mart.. Phytoseiidae foi a segunda família mais numerosa (11,2% dos ácaros coletados), sendo a mais abundante em folíolos.

Fotossíntese; enriquecimento CO2 atmosférico; Hymenaea courbaril; mobilização de reservas; razão raíz:parte aérea; crescimento e estabelecimento de plântula; cotilédones; câmara de topo aberto; xiloglucano; biodiverisdade


ARTICLES

Effect of atmospheric CO2 enrichment on the establishment of seedlings of Jatobá, Hymenaea Courbaril L. (Leguminosae, Caesalpinioideae)

Aidar, M.P.M.I; Martinez, C.A.II; Costa, A.C.III; Costa, P.M.F.I; Dietrich, S.M.C.I; Buckeridge, M.S.I, * * Corresponding author: msbuck@usp.br

ISeção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica, CP4005 CEP 01061-970, São Paul

IIDepartamento de Biologia, FFCLRP, USP, 14040-901, Ribeirão Preto, São Paulo

IIIDepartamento de Biologia Vegetal, UFV, 36571-000, Viçosa, Minas Gerais

ABSTRACT

Plants grown in elevated CO2 environments may exhibit photosynthetic acclimation or down regulation, which is characterised by reduced rates of photosynthesis. In most cases of CO2-induced photosynthetic acclimation, the reduced rates of photosynthesis were still higher than those detected in plants growing at ambient CO2 concentrations. In this work we present a study on the behaviour of seedlings of Hymenaea courbaril, a late secondary/climax species that is one of the most important trees in mature tropical forests of the Americas. After germination, the seedling of H. courbaril increases its rate of growth due to the mobilisation of massive amounts of a storage cell wall polysaccharide (xyloglucan) from its cotyledons. In our experiments, germinated seeds were incubated in open top chambers with increased concentration of atmospheric CO2 (720 ppm) (control at 360 ppm). To test the effects of the presence of the storage compound on the responses of growing seedlings, cotyledons were detached before the start of polysaccharide mobilisation and parameters such as dry mass, leaf area, CO2 assimilation rates and chlorophyll a fluorescence were measured during 98 days. A comparison between 360 and 720ppm growing seedlings showed a significant increase in leaf area only in metaphylls of seedlings growing under higher CO2. However, a marked and persistent increase (2 fold) in photosynthesis (CO2 assimilation) was observed in all cases (with or without cotyledons). Changes in the levels of sucrose have been suggested to act as a signalling mechanism that switches on/off the storage or development mode in plant tissues. Thus, the explanation for our general observation that the differential response in terms of growth of seedlings ceases to exist when storage mobilisation is functioning, might be related to the fact that higher levels of sucrose are produced as a result of carbon storage compounds degradation. By the results obtained, it appears that plants grown under enriched CO2 did not acclimate and therefore under the climatic conditions forecasted on the basis of the present carbon dioxide emissions, Hymenaea courbaril should establish faster in its natural environment and might also serve as an efficient mechanism of carbon sequestration within the forest.

Key Words: Photosynthesis; CO2 enrichment; Hymenaea courbaril; storage mobilisation; root:shoot ratio; seedling growth; cotyledons; open top chamber; xyloglucan; biodiversity

RESUMO

Plântulas de jatobá crescidas em ambiente com concentrações elevadas de CO2 podem exibir aclimatação fotossintética ou retro-inibição, a qual é caracterizada pela redução das taxas fotossintéticas. Em muitos casos de aclimatação induzida por alto CO2, taxas reduzidas de fotossíntese são observadas, mas ainda são mais altas que aquelas detectadas em plantas crescendo em concentrações atuais de CO2 atmosférico (360ppm). No presente trabalho, realizamos um estudo do comportamento de plântulas de Hymenaea courbaril, uma espécie secundária tardia/clímax de grande importância em florestas tropicais maduras nas Américas. Em nossos experimentos, sementes recém germinadas foram cultivadas em câmaras de topo aberto com concentrações alteradas de CO2 (720 ppm e controle a 340 ppm). Para testar os efeitos da presença de compostos de reserva sobre as respostas de plântulas em crescimento, cotilédones foram destacados antes do início da mobilização do polissacarídeo de reserva (xiloglucano) e parâmetros tais como massa seca, área foliar, assimilação de CO2 e fluorescência da clorofila a, foram medidos durante 98 dias. A comparação entre plântulas crescendo em atmosfera de CO2 a 360 e 720 ppm, mostraram aumento siginificativo em área foliar apenas nos metáfilos de plântulas crescendo nas concentrações mais altas. No entanto, um efeito marcado e consistente de aumento na fotossíntese (assimilação de CO2) foi observado em todos os casos (com e sem cotilédones). Acredita-se que as variações nos níveis de sacarose podem funcionar como um mecanismo sinalizador de alterações nos estados de armazenamento ou desenvolvimento de tecidos vegetais. Portanto, uma possível explicação para nossas observações gerais de que uma resposta diferencial em termos de crescimento de plântulas deixa de existir quando a mobilização de reservas está em curso, pode estar relacionada com o fato de que altos níveis de sacarose são produzidos quando há degradação de compostos de reservas. De acordo com nossos resultados, parece que as plantas crescidas sob concentrações enriquecidas de CO2 não aclimataram e portanto, sob as condições climáticas previstas com base nos níveis atmosféricos atuais, plântulas de Hymenaea courbaril deverão estabelecer mais rapidamente em seu ambiente natural e podem também servir como um mecanismo eficiente de seqüestro de carbono pela floresta.schottiana Mart.. Phytoseiidae foi a segunda família mais numerosa (11,2% dos ácaros coletados), sendo a mais abundante em folíolos.

Palavras-chave: Fotossíntese; enriquecimento CO2 atmosférico; Hymenaea courbaril; mobilização de reservas; razão raíz:parte aérea; crescimento e estabelecimento de plântula; cotilédones; câmara de topo aberto; xiloglucano; biodiverisdade

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

ACKNOWLEDGEMENTS

This work was supported by BIOTA-FAPESP (grant number 98/05124-8). MSB and SMCD acknowledge a research productivity fellowship by CNPq. PFC acknowledges a MSc fellowship by CNPq. Authors acknowledge the Federal University of Viçosa for the use of the CO2 research facilities.

BIBLIOGRAPHY

Date received: June,08, 2002 - Accepted: June, 30, 2002

  • Aidar, M.P.M., Godoy, J.R.L., Bergmann, J. & Joly, C.A. 2001. Atlantic forest succession over calcareous soil, Parque Estadual Turísitico do Alto Ribeira PETAR, SP. Revista Brasileira de Botânica 24:455-469.
  • Allen, O.N. and E. K. Allen, 1981. The Leguminosae. The University of Wisconsin Press. pp. 337-338.
  • Berner, R.A. 1991. Atmospheric CO2 levels over phanerozoic time. Science 249:1382-1386.
  • Bowes, G. 1996. Photosynthetic responses to changing atmospheric carbon dioxide concentration. In: Baker, N.R. (ed.) Photosynthesis and the environment. Kluwer Academic Publisher. Dordrecht. Pp.387-407
  • Buckeridge, M.S. & Dietrich, S.M.C. (1990) Galactomannan from Brazilian legume seeds. Revta.brasil.Bot. 13: 109-112 Aidar, M.P.M. (et al) -Biota Neotropica v2 (n1) BN01602012002
  • Centritto, M. and Jarvis, P.G. 1999. Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). II. Photosynthetic capacity and nitrogen use efficiency. Tree Physiology 19: 807-814.
  • Chambers, J.Q., Higuchi, N. and Schimel, J.P. 1998. Ancient trees in Amazonia. Nature 391: 135-136.
  • Egli, P., Maurer, S., Gunthardt-Goerg, M.S. and Korner, C. 1998. Effects of elevated CO2 and soil quality on leaf gas exchange and aboveground growth in beech-spruce model ecosystems. New Phytologist 140: 185-196.
  • Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T. and Tans, P. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282: 442-446.
  • Fernandez, M.D., Pieters, A., Donoso, C., Tezara, W., Azuke, M., Herrera, C., Rengifo, E. and Herrera, A. 1998. Effects of a natural source of very high CO2 concentration on the leaf gas exchange, xylem water potential and stomatal characteristics of plants of Spatiphylum cannifolium and Bauhinia multinervia. New Phytologist 138: 689-697.
  • Gandolfi, S., Leitão Filho, H. F. & Bezerra, C. L. F. 1995. Levantamento florísitico e caráter sucessional das espécies arbustivo-arbóreas de uma Floresta Mesófila Semidecídua no município de Guarulhos. Revista Brasileira de Biologia 55:753-767
  • Garcia, R.L., Long, S.P., Wall, G.W., Osborne, C.P., Kimball, B.A., Nie, G.Y., Pinter Jr., P.J., LaMorte, R.L. and Wechsung, F. 1998. Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-air atmospheric CO2 enrichment. Plant, Cell and Environment 21: 659-669.
  • Gesch, R.W., Boote, K.J., Vu, J.C.V., Allen, L.H., Jr. and Bowes, G. 1998. Changes in growth CO2 result in rapid adjustments of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene expression in expanding and mature leaves of rice. Plant Physiology 118: 521-529.
  • Houghton, J.T., Miera Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A. and Maskell, K (Eds.). 1996. Climate Change 1995: The Science of Climate Change Cambridge University Press, Cambridge, UK.
  • IBGE. 1992. Manual Técnico da Vegetação Brasileira. Manuais Técnicos em Geociências v1. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. Brasil. 92p.
  • Idso, S.B. 1999. The long-term response of trees to atmospheric CO2 enrichment. Global Change Biology 5: 493-495.
  • Iturralde-Vinent, M., and MacPhee, R. 1996. Age and paleogeographic origin of Dominican Amber. Science No. 273 p. 2750-2752
  • Kerstiens, G. 2001. Meta-analysis of the interaction between shade-tolerance, light environment and growth response of woody species to elevated CO2. Acta Oecologica 22, 61-69.
  • Kitajima, K. 1996. Cotyledon functional morphology and patterns of seed reserve utilization by neotropical tree seedlings. In: M. D. Swaine (ed.) The Ecology of Tropical Forest Tree Seedlings. Parthenon Press, NY. pp.
  • Langenheim, J.H. 1981. Amber. In Encyclopedia of Science and Technology pp. 403-405. McGraw Hill Book Co., N.Y.
  • Langhans, R.W. and Tibbitts, T.W. (eds.). 1997. Plant growth chamber handbook. North Central Regional Res. Publ. No. 340, Iowa State Agr. & Home Econ. Expt. Stat. Rpt. No. 99, Ames.
  • Long, S.P. 1999. Understanding the impacts of rising CO2 : the contribution of environmental physiology. In: Press, M.C., Scholes, J.D. & Barker, M.G. (Eds.) Physiological Plant Ecology. British Ecological Society, Blackwell Science. Pp. 263-282.
  • Lovelock, C.E., Winter, K., Mersits, R. and Popp, M. 1998. Responses of communities of tropical tree species to elevated CO2 in a forest clearing. Oecologia 116: 207-218.
  • Ludewig, F., Sonnewald, U., Kauder, F., Heineke, D., Geiger, M., Stitt, M., Muller-Rober, B.T., Gillissen, B., Kuhn, C. and Frommer, W.B. 1998. The role of transient starch in acclimation to elevated atmospheric CO2. FEBS Letters 429: 147-151.
  • Martinez, C.A. (2002) Efeitos do aumento do CO2 atmosférico no crescimento das plantas. Ação Ambiental 21: 16-19.
  • Oliveira Filho, A. & Fontes, M.A. 1999. Patterns of Floristic Differentiation among Atlantic Forests in South-Eastern Brazil, and the Influence of Climate. Biotropica 32:793-810.
  • Pan, Q., Wang, Z. and Quebedeaux, B. 1998. Responses of the apple plant to CO2 enrichment: changes in photosynthesis, sorbitol, other soluble sugars, and starch. Australian Journal of Plant Physiology 25: 293-297.
  • Petit, J.R., Jouzel, J.,Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E. & Stievenard, M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429-436.
  • Phillips, O.L., Malhi, Y., Higuchi, N., Laurance, W.F., Nunez, P.V., Vasquez, R.M., Laurance, S.G., Ferreira, L.V., Stern, M., Brown, S. and Grace, J. 1998. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science 282: 439-442.
  • Reekie, E.G., MacDougall, G., Wong, I. and Hicklenton, P.R. 1998. Effect of sink size on growth response to elevated atmospheric CO2 within the genus Brassica Canadian Journal of Botany 76: 829-835.
  • Rey, A. and Jarvis, P.G. 1998. Long-Term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch (Betula pendula) trees. Tree Physiology 18: 441-450.
  • Rodrigues R. R. & Nave. A.G. 2000. Heterogeneidade florística das matas ciliares. In: Rodrigues, R. R.; Leitão Filho, H. F. (Ed.) Matas ciliares: conservação e recuperação. São Paulo, Editora da USP/FAPESP, 2000. p.45-71.
  • Santos, H.P. 2002. Importância ecofisiológica da reserva de xiloglucano e o controle de sua mobilização em cotilédones de Hymenaea courbaril L. Tese de doutorado UNICAMP 151p.
  • Saxe, H., Melvin G. R. Cannell, M.G.R. Johnsen, O., Ryan, M.G. & Vourlitis, G. 2001. Tree and forest functioning in response to global warming. New Phytologist 149: 369 400
  • Tiné, M.A.S. , Cortelazzo, A.L. & Buckeridge, M.S. (2000) Xyloglucan mobilisation in cotyledons of developing plantlets of Hymenaea courbaril L. (Leguminosae-Caesalpinoideae). Plant Science 154:117-126
  • Tjoelker, M.G., Oleksyn, J. and Reich, P.B. 1998. Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO2 and temperature. Tree Physiology 18: 715-726.
  • Turnbull, M.H., Tissue, D.T., Griffin, K.L., Rogers, G.N.D. and Whitehead, D. 1998. Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles. Plant, Cell and Environment 21: 1019-1028.
  • *
    Corresponding author:
  • Publication Dates

    • Publication in this collection
      11 June 2013
    • Date of issue
      2002

    History

    • Accepted
      30 June 2002
    • Received
      08 June 2002
    Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
    E-mail: contato@biotaneotropica.org.br