A multidisciplinary framework for biodiversity prediction in the Brazilian Atlantic Forest hotspot

Integrando disciplinas para a predição da biodiversidade da Floresta Atlântica no Brasil

Cristina Y. Miyaki Francisco W. Cruz Michael Hickerson Fabián A. Michelangeli Ricardo Pinto-da-Rocha Wayt Thomas Ana Carolina Carnaval About the authors

Abstract:

We briefly describe selected results from our thematic project focused on the biodiversity of the Atlantic Forest (“AF BIOTA”), which was jointly funded by FAPESP’s BIOTA Program, the U.S. National Science Foundation Dimensions of Biodiversity Program, and the National Aeronautics and Space Administration (NASA). As one of the five most important hotspots of biodiversity in the world, the Atlantic Forest (AF) holds less than 16% of its vegetation cover, yet, amongst the hotspots, it still harbors one of the highest numbers of species, including endemics. By gathering specialists across multiple disciplines (biology, geology, engineering), we aimed to understand how this megabiodiversity was built through time, informing biodiversity science and conservation. Among the results, we trained 18 Master’s and 26 Ph.D. students, published more than 400 peer-reviewed papers that improved our knowledge about the forest’s biologic and climatic diversity and dynamics through time, developed new analytical methods, produced outreach videos and articles, and provided data to help define biodiversity conservation policies.

Keywords:
Biogeography; Phylogeography; Paleoclimate; Paleovegetation; Geogenomics

Resumo:

Descrevemos de forma resumida resultados selecionados do nosso projeto temático com foco na biodiversidade da Floresta Atlântica (“AF BIOTA”), que foi financiado pelo BIOTA FAPESP e pelo programa “Dimensions of Biodiversity” da “U.S. National Science Foundation” e “National Aeronautics and Space Administration” (NASA). Devido à sua megabiodiversidade (que inclui várias espécies endêmicas), e por restar menos de 16% da vegetação original, a Floresta Atlântica (FA) é uma das cinco áreas mais importantes para a biodiversidade do planeta (“biodiversity hotspot”). Reunimos especialistas de diversas disciplinas (biologia, geologia, engenharia) visando compreender como essa megabiodiversidade evoluiu ao longo do tempo e fornecer informações científicas para a sua conservação. Dentre os resultados obtidos, nós formamos 18 mestres e 26 doutores, publicamos mais de 400 artigos científicos que aumentaram o conhecimento sobre a diversidade biológica e climática da FA e sua dinâmica ao longo do tempo, desenvolvemos novos métodos analíticos, produzimos material de divulgação científica e fornecemos dados para desenvolver políticas públicas de conservação da biodiversidade.

Palavras-chave:
Biogeografia; Filogeografia; Paleoclima; Paleovegetação; Geogenômica

Introduction

1. Context

The Atlantic Forest (AF) is one of the top five hotspots of biodiversity on the planet (Myers et al. 2000MYERS, N.; MITTERMEIER, R.; MITTERMEIER, C.; FONSECA, G.A.B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.). It houses high numbers of species of plants and animals (e.g. 20,000 out of 300,000 plants on Earth, and 1,361 out of 27,298 of our planet’s vertebrate species, Myers et al. 2000MYERS, N.; MITTERMEIER, R.; MITTERMEIER, C.; FONSECA, G.A.B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.), including various endemic species ( 2.7% of the world’s plants and 2.1% of total vertebrates exclusively occur in the AF, Myers et al. 2000MYERS, N.; MITTERMEIER, R.; MITTERMEIER, C.; FONSECA, G.A.B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.). This is in spite of the high levels of degradation imposed to this region; less than 16% of this domain remains forested today (Ribeiro et al. 2009RIBEIRO, M.C.; METZGER, J.P.; MARTENSEN, A.C.; PONZONI, F.J. & HIROTA, M.M. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142: 1141-1153.). Given the importance of the AF, several of us have been focusing our studies on AF organisms since the early 2000s - if not before. FAPESP has funded several of those research projects (Thematic grants: 98/10018-2, 99/05446-8, 03/14106-3; PIPE grant 10/51390-5; Young Researcher grants: 06/06761-0, 12/17517-3; Regular grants: 00/05729-9, 07/52906-2, 07/54498-9, 08/06604-7, 09/12989-1, 10/20560-2, 11/50394-0, 12/02969-6, 16/00299-4), which aimed to describe the forest’s biodiversity (including taxonomic and biogeographic analyses) and paleoclimate. In 2013, we were awarded a thematic BIOTA grant jointly funded with the U.S. National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA) that aimed to apply a multidisciplinary framework to explain and help preserve its biodiversity patterns. We nicknamed our project “AF BIOTA”. Here we describe how our project was designed, our main questions, and results. We also discuss how those results have been used to help conserve the biodiversity of this fascinating system, and address future perspectives.

2. Design and coordination

In November 2011, FAPESP and NSF co-organized a meeting in Atlanta to discuss strategies and build collaborations that could be jointly funded by the two agencies, under the umbrella of a new program, Dimensions of Biodiversity. Two years later, we submitted a proposal to that joint call and we were given an award. The US team was coordinated by PI Carnaval and Co-PI Michelangeli, and the Brazilian team was coordinated by PI Miyaki. Our AF BIOTA project gathered, for the first time, various members of our research team to develop mechanistic predictions of biodiversity patterns in the AF to help guide conservation and research. Together, we linked spatial patterns of biodiversity with their underlying ecological mechanisms and historical climatic and demographic processes. We integrated data from various disciplines (evolution, population genetics and genomics, physiology, geography, paleoclimatology, paleovegetation, taxonomy, and remote sensing) to describe and explain spatial patterns of lineage and species-level diversity, endemism, and turnover. It has been a rewarding challenge to combine data and ideas from biologists, geologists, and engineers, and, with time, new members joined us. As a group, we have reconstructed population histories across co-distributed taxa to infer community-level macro-ecological processes of community assembly, allowing us to detect forces behind regional biodiversity patterns, and to understand how changes in the environment differentially affected species distributions. Initially, our genetic data were mostly based on sequences of a few nuclear loci and mitochondrial or chloroplast genes (Cabanne et al. 2014CABANNE, G.S.; TRUJILLO-ARIAS, N.; CALDERÓN, L.; D’HORTA, F.M. & MIYAKI, C.Y. 2014. Phenotypic evolution of an Atlantic Forest passerine (Xiphorhynchus fuscus): biogeographic and systematic implications. Biol. J. Linn. Soc. 113: 1047–1066., Carnaval et al. 2014CARNAVAL, A.C.; WALTARI, E.; RODRIGUES, M.T.; ROSAUER, D.; VANDERWAL, J.; DAMASCENO, R.; PRATES, I.; STRANGAS, M.; SPANOS, Z.; RIVERA, D.; PIE, M.R.; FIRKOWSKI, C.R.; BORNSCHEIN, M.R.; RIBEIRO, L.F. & MORITZ, C. 2014. Prediction of phylogeographic endemism in an environmentally complex biome. P. Roy. Soc. Lon. B. Bio. 281: 20141461., Dantas et al. 2014DANTAS, G.P.M.; SARI, E.H.R.; CABANNE, G.S.; PESSOA, R.O.; MARINI, M.A.; MIYAKI, C.Y. & SANTOS, F.R. 2014. Population genetic structure of the Atlantic Forest endemic Conopophaga lineata (Passeriformes: Conopophagidae) reveals a contact zone in the Atlantic Forest. J. Ornithol. 156: 85–99.). However, the award allowed us to progressively generate new or leverage ongoing next-generation sequencing (NGS) efforts for use in phylogenomics and phylogeographic studies of AF taxa (Aguirre-Santoro et al. 2016AGUIRRE-SANTORO. J., STEVENSON, D. W. & MICHELANGELI, F. A. 2016. Molecular phylogenetics of the Ronnbergia Alliance (Bromeliaceae, Bromelioideae) and insights about its morphological evolution. Mol. Phylogenet. Evol. 100: 1-20., Amaral et al. 2021AMARAL, F.R.; THOM, G.; LIMA-RIBEIRO, M.S.; ALVARADO-SERRANO, D.F.; MONTESANTI, J.A.C.; PELLEGRINO, K.C.M.; MIYAKI, C.Y.; HICKERSON, M.J. & MALDONADO-COELHO, M. 2021. Rugged relief and climate promote isolation and divergence between two neotropical cold-associated birds. Evolution 75: 2371-2387., Goldenberg et al. 2018GOLDENBERG, R.; REGINATO, M. & MICHELANGELI, F. A. 2018. Disentangling the infrageneric classification of megadiverse taxa from Mata Atlantica: phylogeny of Miconia section Chaenanthera (Melastomataceae. Miconieae). Taxon 67: 537-551., Reginato & Michelangeli 2016REGINATO, M. & MICHELANGELI, F. A. 2016. Untangling the phylogeny of Leandra sensu str. (Melastomataceae, Miconieae). Mol. Phylogenet. Evol. 96: 17-32., Prates et al. 2016bPRATES, I.; XUE, A.; BROWN, J.L.; ALVARADO-SERRANO, D.F.; RODRIGUES, M.T.; HICKERSON, M.J. & CARNAVAL, A.C. 2016b. Inferring responses to climate dynamics from historical demography in Neotropical forest lizards. P. Natl. Acad. Sci. USA 113: 7978-7985., Thom et al. 2021THOM, G.; GEHARA, M.; SMITH, B.T.; MIYAKI, C.Y. & AMARAL, F.R. 2021. Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest. Nat. Commun. 12: 6269.). Those reconstructions of population histories have helped us to identify and prioritize regions of heightened stability and genetic diversity, identify areas of connectivity, and help determine areas and groups under greater extinction threats.

Our pre-award studies sought to understand the spatio-temporal pattern of distribution of the genetic variability of a selected AF species (e.g. reptiles: Pellegrino et al. 2005PELLEGRINO, K.C.M.; RODRIGUES, M.T.; WAITE, A.N.; MORANDO, M.; YASSUDA, Y.Y. E SITES, J.W. 2005. Phylogeography and species limits in the Gymnodactylus darwinii complex (Gekkonidae, Squamata): genetic structure coincides with river systems in the Brazilian Atlantic Forest. Biol. J. Linn. Soc. 85: 13-26.; birds: Cabanne et al. 2007CABANNE, G.S., SANTOS, F.R. & MIYAKI, C.Y. 2007. Phylogeography of Xiphorhynchus fuscus (Passeriformes: Dendrocolaptidae): vicariance and recent demographic expansion in southern Atlantic forest. Biol. J. Linn. Soc. 91: 73-84., 2008CABANNE, G. S.; SARI, E.H. R.; SANTOS, F. R. & MIYAKI, C. Y. 2008. Nuclear and mitochondrial phylogeography of the Atlantic forest endemic Xiphorhynchus fuscus (Aves: Dendrocolaptidae): Biogeography and systematics implications. Mol. Phylogenet. Evol. 49: 760-773.; amphibians: Carnaval et al. 2009CARNAVAL, A.C.; HICKERSON, M.J.; HADDAD, C.F.B.; RODRIGUES, M.T. & MORITZ, C. 2009. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323: 785-789.), detecting evolutionary differentiation of lineages that occurred in the south and in the north of the AF. Thanks to the BIOTA/Dimensions of Biodiversity award, we were able to combine and reconcile these and other published data and summarize patterns of genetic diversity along the forest - building from information about the fauna and flora (Cabanne et al. 2016CABANNE, G.S.; CALDERÓN, L.; TRUJILLO-ARIAS, N.; FLORES, P.; PESSOA, R.; D’HORTA, F.M. & MIYAKI, C.Y. 2016. Effects of Pleistocene climate changes on species ranges and evolutionary processes in the Neotropical Atlantic Forest. Biol. J. Linn. Soc. 119: 856–872., Carnaval et al. 2014CARNAVAL, A.C.; WALTARI, E.; RODRIGUES, M.T.; ROSAUER, D.; VANDERWAL, J.; DAMASCENO, R.; PRATES, I.; STRANGAS, M.; SPANOS, Z.; RIVERA, D.; PIE, M.R.; FIRKOWSKI, C.R.; BORNSCHEIN, M.R.; RIBEIRO, L.F. & MORITZ, C. 2014. Prediction of phylogeographic endemism in an environmentally complex biome. P. Roy. Soc. Lon. B. Bio. 281: 20141461., Peres et al. 2020PERES, E.A.; PINTO-DA-ROCHA R.; LOHMANN, L.G.; MICHELANGELI, F.A.; MIYAKI, C.Y. & CARNAVAL, A.C. 2020. Patterns of species and lineage diversity in the Atlantic rainforest of Brazil. In Neotropical Diversification: Patterns and Processes (V. Rull & A.C. Carnaval, eds). Springer, Cham, p.415-447.) and harmonizing data across labs and research groups (Brown et al. 2020BROWN, J.L.; PAZ, A.; REGINATO, M.; AMARO, R.C.; ASSIS, C.; LYRA, M.; CADDAH, M.K.; AGUIRRE-SANTORO, J.; D’HORTA, F.; AMARAL, F.R.; GOLDENBERG, R.; SILVA-BRANDÃO, K.L.; FREITAS, A.V.L.; RODRIGUES, M T.; MICHELANGELI, F.A.; MIYAKI, C.Y. & CARNAVAL, A.C. 2020. Seeing the forest through many trees: multi-taxon patterns of phylogenetic diversity in the Atlantic Forest hotspot. Divers. Distrib. 26:1160–1176., Paz et al. 2020PAZ, A.; REGINATO, M.; MICHELANGELI, F.A.; GOLDENBERG, R.; CADDAH, M.K.; AGUIRRE-SANTORO, J.; LOHMANN, L.G.; KAEHLER, M. & CARNAVAL, A. 2020. Predicting patterns of plant diversity and endemism in the tropics with remote sensing data sources – a study case from the Brazilian Atlantic rainforest. In Remote Sensing of Plant Biodiversity: Using Spectral Signals to Understand the Biology and Biodiversity of Plants, Communities, Ecosystems and the Tree of Life (J. Cavender-Bares, J. Gamon & P. Townsend, eds.). Springer, Cham, p. 255-266., 2021PAZ, A.; BROWN, J.L.; CORDEIRO, C.L.O.; AGUIRRE-SANTORO, J.; ASSIS, C.; AMARO, R.C.; AMARAL, F.R.; BO-CHORNY, T.; BACCI, L.F.; CADDAH, M.K.; D’HORTA, F.; KAEHLER, M.; LYRA, M.; GROHMANN, C.H.; REGINATO, M.; SILVA-BRANDÃO, K.L.; FREITAS, A.V.L.; GOLDENBERG, R.; LOHMANN, L.G.; MICHELANGELI, F.A.; MIYAKI, C.; RODRIGUES, M.T.; SILVA, T.S. & CARNAVAL, A.C. 2021. Environmental correlates of taxonomic and phylogenetic diversity in the Atlantic Forest. J. Biogeogr. 48: 1377-1391.). To interpret those patterns, we employed newly generated data on the paleoclimate of the AF. Also back in 2013, members of our team published an analysis of oxygen isotope ratios in calcium carbonate cave formations (speleothems) to describe an anti-phased paleo-precipitation pattern in South America during the last glacial-interglacial periods (Cheng et al. 2013CHENG, H., SINHA, A., CRUZ, F.W., WANG, X., EDWARDS, R.L., D’HORTA, F.M., RIBAS, C.C., VUILLE, M., STOTT, L.D., AULER, A.S. 2013. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4: 1411.). For instance, the climate during the Last Glacial Maximum (LGM, circa 20 thousand years ago, kya) to the early-mid Holocene (circa 5-10 kya) in the southern AF shifted from relatively wet to moderately dry conditions, while the northern AF shifted from severely dry to substantial wet conditions. Those insights helped us to build our project’s framework that recognized the heterogeneous environments and a complex evolutionary history of the AF along its broad latitudinal and altitudinal gradients.

Main Results

1. Academic

Since the inception of AF BIOTA, 18 students defended their Master’s Thesis and 26 students received their Ph.D. degrees while working on topics directly tied to the project - both in Brazil and the United States. We also trained 15+ undergraduate students and 18 postdocs, many of whom now hold tenure-track faculty positions. Before the COVID-19 pandemic, we hosted annual project meetings in São Paulo (2014: 4 days, 70+ participants; 2015: 4 days, 50+ participants; 2016: 2 days, 25+ participants; 2017: 1 day, 5 participants; 2018: 5 days, 30 participants, including a 3-day training workshop on Genomic Data Processing in Ecology and Evolution to Brazilian graduate students; 2019: 2 days, 20+ participants). Several of those meetings counted with the presence of invited speakers or new collaborators who helped us design and execute part of our strategic research plan. Leveraging the annual meetings, we hosted two symposia at FAPESP (2014: 10 talks and 15 posters, 260+ participants; 2019: 13 talks, 90+ participants), where we presented our findings to the general and scientific public. The training workshop on Genomic Data Processing in Ecology and Evolution, organized by two of our former postdocs in 2018, is freely available online (https://radcamp.github.io/ and https://radcamp.github.io/AF-Biota/). As a result of our collaborative work, various of our team members visited project collaborators, +19 students were exchanged between Brazilian and US research groups - especially between USP and the City College of New York, but also involving UNESP, Universidade Federal do Paraná, and the New York Botanical Garden. Our international team worked together in various field trips to collect biological samples (invertebrates, vertebrates, plants), geological samples (paleopolen, speleothems), and environmental data (humidity, temperature, precipitation).

Below we describe some selected results produced by our team:

  1. Our project improved documentation of the AF diversity. Some examples include the description of one new family of harvestmen, four tribes of Melastomataceae, and 85 new species of animals or plants (four onychophorans, 22 arachnids, 17 butterflies, two lizards, one treefrog, seven Bignoniaceae, two Eriocaulaceae, one Myrtaceae, four Cyperaceae, and 27 Melastomataceae; Supplementary Material S1). To improve our understanding of their evolutionary relationships, we contributed with 31 phylogeographic studies (12 of birds, seven of arachnids, two of bees, seven of amphibians/reptiles, one of butterflies, and two of plants; Supplementary Material S2) and 95 phylogenetic studies with at least one AF taxon (12 of arachnids, one of velvet worm (onychophora), 22 of butterflies, five of birds, 27 of amphibians or reptiles, one of mammal, two of fish, and 25 of plants; Supplementary Material S3).

  2. Several new analytical methods that process genetic and genomic data, specially focusing on multi-taxon tests, were developed by the research group of US Co-PI Hickerson. One of these methods detects concerted demographic histories across an ecological assemblage accommodating dataset heterogeneity (such as variability in effective population size, mutation rates, and sample sizes across species), and exploits the statistical strength from the simultaneous analysis of multiple species (Chan et al. 2014CHAN, Y.L.; SCHANZENBACH, D. & HICKERSON, M.J. 2014. Detecting concerted demographic response across community assemblages using hierarchical Approximate Bayesian Computation. Mol. Biol. Evol. 31: 2501–2515.). This can increase our understanding of the impact of historical climate change by determining what proportion of the community responded in concert or independently, and can be used with a wide variety of comparative phylogeographic data sets. Also, it helps to understand the effects of future climate and landscape changes and the resulting acceleration of extinctions, biological invasions, and potential surges in adaptive evolution. Another method developed by our group is the use of the aggregate joint site frequency spectrum (ajSFS) to compare divergences across multiple sister population pairs (Xue & Hickerson, 2020XUE, A.T. & HICKERSON, M.J. 2020. Comparative phylogeographic inference with genome‐wide data from aggregated population pairs. Evolution 74: 808-830.). These methods were successfully tested on real datasets and revealed complex and flexible co-demographic patterns.

  3. A 14 m deep sediment core retrieved in 2014 from the Colônia crater, south of the city of São Paulo, recorded the local past vegetation dynamics. Led by collaborator Ledru, the chronostratigraphic analysis of the core revealed that it spans the last 1.5 million years and that the Colônia basin formed between 11.2-5.3 million years ago (Simon et al. 2020SIMON, Q.; LEDRU, M.P.; SAWAKUCHI, A.; FAVIER, C.; MINELLI, T.D.; BARD, E.; THOUVENY, N.; GARCIA, M.; TACHIKAWA, K.; GUEDES, M.; GROHMAN, C. & RODRIGUEZ-ZORRO, P. 2020. Chronostratigraphy of a 1.5±0.1 Ma composite sedimentary record from Colônia basin (SE Brazil): Bayesian modeling based on paleomagnetic, authigenic 10Be/9Be, radiocarbon and luminescence dating. Quat. Geochronol. 58: 101081.). Data from the top portion of the core (180,000 years ago [180 ka] until the present) indicated that: 1) a cool mixed evergreen forest was present in the region between 180 and 45 ka, being replaced by rainforest, 2) the temperature around 57-29 ka (penultimate glacial period) was cooler than during the Last Glacial Maximum (23-29 ka), and 3) wet summer season became longer from 95 ka until the present (Rodríguez-Zorro et al. 2020RODRÍGUEZ-ZORRO, P.A.; LEDRU, M.-P.; BARD, E.; AQUINO-ALFONSO, O.; CAMEJO, A.; DANIAU, A.-L.; FAVIER, C.; GARCIA, M.; MINELLI, T.D.; ROSTEK, F.; RICARDI-BRANCO, F.; SAWAKUCHI, A.O.; SIMON, Q.; TACHIKAWA, K. & THOUVENY, N. 2020. Shut down of the South American summer monsoon during the penultimate glacial. Sci. Rep. 10: 6275- 6288.). These results show that tropical forest dynamics display different patterns than mid-latitude areas during the last 180 ka, and demonstrate the importance of paleoecological data to help draw a more detailed scenario of the AF vegetation dynamics through time.

  4. Geochemical analyses of various speleothems from South America helped to reconstruct its past rainfall pattern. The research group of the Brazilian Co-PI Cruz analyzed a stalagmite from a cave in the state of Santa Catarina, southeastern Brazil, that recorded multidecadal to centennial changes in precipitation during the Holocene. The comparison of the precipitation dynamics with those in other speleothems revealed that the amount of rainfall in northeastern and southeastern Brazil was markedly anti-phased and was possibly mediated by solar irradiance (Bernal et al. 2016BERNAL, J.P.; CRUZ, F.W.; STRIKIS, N.M.; WANG, X; DEININGER, M.; CATUNDA, M.C.; ORTEGA-OBREGÓN, C.; CHENG, H.; EDWARDS, R.L & AULER, A.S. 2016. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil. Earth Planet. Sc. Lett. 450: 186-196.). Two other speleothems from the Peruvian Amazon also provided records on high-resolution paleo-precipitation changes (Bustamante et al. 2016BUSTAMANTE, M.G.; CRUZ, F.W.; VUILLE, M.; APAÉSTEGUI, J.; STRIKIS, N.M.; PANIZO, G.; NOVELLO, F.V.; DEININGER, M.; SIFEDDINE, A.; CHENG, H.; MOQUET, J.S.; GUYOT, J.L.; SANTOS, R.V.; SEGURA, H. & EDWARDS, R.L. 2016. Holocene changes in monsoon precipitation in the Andes of NE Peru based on δ18O speleothem records. Quaternary Sci. Rev. 146: 274-287.). These latter records are very relevant to understand the climate fluctuations that occurred in southern Brazil because this region is highly impacted by moisture availability and deep convection over the Amazon region (Novello et al., 2019NOVELLO, V. F.; CRUZ, F.W.; MCGLUE, M.M.; WONG, C.I.; WARD, B.M.; VUILLE, M.; SANTOS, R.A.; JAQUETO, P.; PESSENDA, L.C.R.; ATORRE, T.; RIBEIRO, L.M.A.L.; KARMANN, I.; BARRETO, E.S.; CHENG, H.; EDWARDS, R.L.; PAULA, M.S. & SCHOLZ, D. 2019. Vegetation and environmental changes in tropical South America from the last glacial to the Holocene documented by multiple cave sediment proxies. Earth Planet. Sci. Lett. 524: 115717.). In addition, we have linked changes in Amazon climate to precipitation variability on the eastern coast of Brazil and the Andes Cordillera (Strikis et al. 2015STRÍKIS, N.M.; CHIESSI, C.M.; CRUZ, F.W.; VUILLE, M.; CHENG, H.; DE SOUZA BARRETO, E.A.; MOLLENHAUER, G.; KASTEN, S.; KARMANN, I.; EDWARDS, R. L.; BERNAL, J.P. & SALES, H.R. 2015. Timing and structure of Mega-SACZ events during Heinrich Stadial 1. Geophys. Res. Lett. 42: 1-8.; 2018STRÍKIS, N. M.; CRUZ, F.W.; BARRETO, E.A. S.; NAUGHTON, F.; VUILLE, M.; CHENG, H.; VOELKER, A.H. L.; ZHANG, H.; KARMANN, I.; EDWARDS, R. L.; AULER, A.S.; SANTOS, .V. & SALES, H.R. (2018). South American monsoon response to iceberg discharge in the North Atlantic. P. Natl. Acad. Sci. USA. 115: 3788-3793.). The establishment of long-term paleo-precipitation patterns is of great relevance for discussing possible vegetation connections among forest biomes - such as AF and Amazon. These connections are a key factor for the dispersal of species and biogeography features. Pollen studies revealed that the dispersion of montane forest species from the north to the south of the AF are linked to some wet events reconstructed in these studies based on speleothem isotope records (Pinaya et al. 2019PINAYA, J.L.D.; CRUZ, F.W.; CECCANTINI, G.C. T.; CORRÊA, P.L.P.; PITMAN, N.; VEMADO, F.; LOPEZ, M.C.S.; PEREIRA FO., A.J.; GROHMANN, C.H.; CHIESSI, C.M.; STRÍKIS, N.M.; HORÁK-TERRA, I.; PINAYA, W.H.L.; MEDEIROS, V.B.; SANTOS, R.A.; AKABANE, T.K.; SILVA, M.A.; CHEDDADI, R.; BUSH, M.; HENROT, A.-J.; FRANÇOIS, L.; HAMBUCKERS, A.; BOYER, F.; CARRÉ, M.; COISSAC, E.; et al. 2019. Brazilian montane rainforest expansion induced by Heinrich Stadial 1 event. Sci. Rep. 9: 1-14.).

  5. Information on the physiological thresholds of the local fauna and flora is important given expected scenarios of future climate change, especially higher global temperatures. Thus, our herpetology group analyzed thermal thresholds in lizards of the AF. One such investigation described how thermal tolerance can be measured in lizards using panting behavior, mass loss, and locomotion loss (Camacho et al. 2018CAMACHO, A.; RUSCH, T.; RAY, G.; TELEMECO, R.S.; RODRIGUES, M.T. & ANGILLETA, M.J. 2018. Measuring behavioral thermal tolerance to address hot topics in ecology, evolution, and conservation. J. Therm. Biol. 73: 71-79.). Another paper discussed how biotic interactions may play an important role, along with thermophysiological constraints, in limiting the altitudinal range of montane lizards (Strangas et al. 2019STRANGAS, M.; NAVAS, C.A.; RODRIGUES, M.T., & CARNAVAL, A.C. 2019. Thermophysiology, microclimates, and species distributions of lizards in the mountains of the Brazilian Atlantic Forest. Ecography 42: 354-364.).

  6. An analysis of a floristic database of 2,616 species of trees from the central region of the AF, combined with geo-climatic data, revealed that tree species composition shows pronounced turnover north of the Rio Doce, where both humidity and energy levels shift. The study showed that climatic conditions, rather than the river itself, influence biogeographical shifts of the AF flora (Saiter et al. 2016SAITER, F.Z.; BROWN, J.L.; THOMAS, W.W.; OLIVEIRA-FILHO, A.T. & CARNAVAL, A.C. 2016. Environmental correlates of floristic regions and plant turnover in the Atlantic Forest hotspot. J. Biogeogr. 43: 2322-2331.). Shifts in community composition near the Rio Doce had been previously observed by our team when analyzing genetic diversity patterns of 25 vertebrates (Carnaval et al. 2014CARNAVAL, A.C.; WALTARI, E.; RODRIGUES, M.T.; ROSAUER, D.; VANDERWAL, J.; DAMASCENO, R.; PRATES, I.; STRANGAS, M.; SPANOS, Z.; RIVERA, D.; PIE, M.R.; FIRKOWSKI, C.R.; BORNSCHEIN, M.R.; RIBEIRO, L.F. & MORITZ, C. 2014. Prediction of phylogeographic endemism in an environmentally complex biome. P. Roy. Soc. Lon. B. Bio. 281: 20141461.). A similar turnover near the Rio Doce was also observed in an AF database of (ca. 600) harvestmen species (Nogueira et al 2019aNOGUEIRA, A.A.; BRAGAGNOLO, C.; DASILVA, M.B.; CARVALHO, L.S.; BENEDETTI, A.R. & PINTO-DA-ROCHA, R. (2019a) Spatial variation in phylogenetic diversity of communities of Atlantic Forest harvestmen (Opiliones, Arachnida). Insect Conserv. Diver. 12: 414-426., 2019bNOGUEIRA, A.A.; BRAGAGNOLO, C.; DASILVA, M.B.; MARTINS, T.; PERBICHE-NEVES, G. & PINTO-DA-ROCHA, R. 2019b. Historical signatures in the alpha and beta diversity patterns of Atlantic Forest harvestman communities (Opiliones-Arachnida). Can. J. Zool. 97: 631-643.). Phylogeographic patterns observed in a harvestmen species nonetheless detected genetic breaks that are parallel to the coast; this low mobility organism revealed new spatial patterns, with much older divergences than those revealed by other groups of animals (Bragagnolo et al. 2015BRAGAGNOLO, C.; HARA, M.R. & PINTO-DA-ROCHA, R. (2015). A new family of Gonyleptoidea from South America (Opiliones, Laniatores). Zool. J. Lin. Soc., 173: 296-319., Peres et al. 2017PERES, E.A.; DASILVA, M.B.; ANTUNES, M. & PINTO-DA-ROCHA, R. 2017. A short-range endemic species from south-eastern Atlantic Rain Forest shows deep signature of historical events: phylogeography of harvestmen Acutisoma longipes (Arachnida: Opiliones). Syst. Biodivers. 16: 171-187., Castro-Pereira et al. 2021CASTRO-PEREIRA, D.; PERES, E.A. & PINTO-DA-ROCHA, R. 2021. Systematics and phylogeography of the Brazilian Atlantic Forest endemic harvestmen Neosadocus Mello-Leitão, 1926 (Arachnida: Opiliones: Gonyleptidae). PLoS One 16: e0249746.). Our work has revealed both shared and unique patterns of geographic distribution of genetically differentiated lineages, and also detected varying levels of divergence across co-distributed lineages (see review by Peres et al. 2020PERES, E.A.; PINTO-DA-ROCHA R.; LOHMANN, L.G.; MICHELANGELI, F.A.; MIYAKI, C.Y. & CARNAVAL, A.C. 2020. Patterns of species and lineage diversity in the Atlantic rainforest of Brazil. In Neotropical Diversification: Patterns and Processes (V. Rull & A.C. Carnaval, eds). Springer, Cham, p.415-447.).

  7. We integrated data from hundreds of plant species (melastomes and bromeliads), vertebrates (amphibians, reptiles, birds), and invertebrates (butterflies) across our research groups to map patterns of taxonomic and phylogenetic diversity, endemism and turnover along the AF based on verified phylogenetic, phylogeographic, taxonomic, and locality data. The results highlighted the importance of conserving the remaining forest cover of the AF, especially along the Serra do Mar, which holds a relevant portion of the AF biodiversity (Brown et al. 2020BROWN, J.L.; PAZ, A.; REGINATO, M.; AMARO, R.C.; ASSIS, C.; LYRA, M.; CADDAH, M.K.; AGUIRRE-SANTORO, J.; D’HORTA, F.; AMARAL, F.R.; GOLDENBERG, R.; SILVA-BRANDÃO, K.L.; FREITAS, A.V.L.; RODRIGUES, M T.; MICHELANGELI, F.A.; MIYAKI, C.Y. & CARNAVAL, A.C. 2020. Seeing the forest through many trees: multi-taxon patterns of phylogenetic diversity in the Atlantic Forest hotspot. Divers. Distrib. 26:1160–1176.). Using an extended dataset, we analyzed if environmental conditions predict the distribution of these multiple groups of organisms in the AF, despite their ecological differences. The results showed that current precipitation, and precipitation stability over the past 120 kyrs, are strongly correlated with species richness and phylogenetic diversity. However, our results are less homogenous across groups when phylogenetic endemism is considered (Paz et al. 2020PAZ, A.; REGINATO, M.; MICHELANGELI, F.A.; GOLDENBERG, R.; CADDAH, M.K.; AGUIRRE-SANTORO, J.; LOHMANN, L.G.; KAEHLER, M. & CARNAVAL, A. 2020. Predicting patterns of plant diversity and endemism in the tropics with remote sensing data sources – a study case from the Brazilian Atlantic rainforest. In Remote Sensing of Plant Biodiversity: Using Spectral Signals to Understand the Biology and Biodiversity of Plants, Communities, Ecosystems and the Tree of Life (J. Cavender-Bares, J. Gamon & P. Townsend, eds.). Springer, Cham, p. 255-266., 2021PAZ, A.; BROWN, J.L.; CORDEIRO, C.L.O.; AGUIRRE-SANTORO, J.; ASSIS, C.; AMARO, R.C.; AMARAL, F.R.; BO-CHORNY, T.; BACCI, L.F.; CADDAH, M.K.; D’HORTA, F.; KAEHLER, M.; LYRA, M.; GROHMANN, C.H.; REGINATO, M.; SILVA-BRANDÃO, K.L.; FREITAS, A.V.L.; GOLDENBERG, R.; LOHMANN, L.G.; MICHELANGELI, F.A.; MIYAKI, C.; RODRIGUES, M.T.; SILVA, T.S. & CARNAVAL, A.C. 2021. Environmental correlates of taxonomic and phylogenetic diversity in the Atlantic Forest. J. Biogeogr. 48: 1377-1391.).

  8. Our studies also revealed that the history of the AF is deeply connected with other Neotropical biomes, such as the Amazon forest (lizards: Prates et al. 2016aPRATES, I.; RIVERA, D.; RODRIGUES, M.T. & CARNAVAL, A.C. 2016a. A mid-Pleistocene rainforest corridor enabled synchronous invasions of the Atlantic Forest by Amazonian anole lizards. Mol. Ecol. 25: 5174., bPRATES, I.; XUE, A.; BROWN, J.L.; ALVARADO-SERRANO, D.F.; RODRIGUES, M.T.; HICKERSON, M.J. & CARNAVAL, A.C. 2016b. Inferring responses to climate dynamics from historical demography in Neotropical forest lizards. P. Natl. Acad. Sci. USA 113: 7978-7985.; paleoclimate: Novello et al. 2017NOVELLO, V.F.; CRUZ, F.W.; VUILLE, M.; STRÍKIS, N.M.; EDWARDS, R.L.; CHENG, H.; EMERICK, S.; SAITO DE PAULA, M.; LI, X.; BARRETO, E.S.; KARMANN, I.; SANTOS, R.V. 2017. A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Sci. Rep. 7: 44267., 2019NOVELLO, V. F.; CRUZ, F.W.; MCGLUE, M.M.; WONG, C.I.; WARD, B.M.; VUILLE, M.; SANTOS, R.A.; JAQUETO, P.; PESSENDA, L.C.R.; ATORRE, T.; RIBEIRO, L.M.A.L.; KARMANN, I.; BARRETO, E.S.; CHENG, H.; EDWARDS, R.L.; PAULA, M.S. & SCHOLZ, D. 2019. Vegetation and environmental changes in tropical South America from the last glacial to the Holocene documented by multiple cave sediment proxies. Earth Planet. Sci. Lett. 524: 115717.) and the Andean forest (birds: Trujillo-Arias et al. 2018TRUJILLO-ARIAS; N.; CALDERÓN, L.; SANTOS, F.R.; MIYAKI, C.Y.; ALEIXO, A.; WITTF, C.C.; TUBARO, P.L. & CABANNE, G.S. 2018. Forest corridors between the central Andes and the southern Atlantic Forest enabled dispersal and peripatric diversification without niche divergence in a passerine. Mol. Phylogenet. Evol. 128: 221-232., 2020TRUJILLO-ARIAS, N.; RODRÍGUEZ-CAJARVILLE, M.J.; SARI, E.; MIYAKI, C.Y.; SANTOS, F.R.; WITT, C.C.; BARREIRA, A.S.; GÓMEZ, I.; NAOKI, K.; TUBARO, P.L. & CABANNE, G.S. 2020. Evolution between forest macrorefugia is linked to discordance between genetic and morphological variation in Neotropical passerines. Mol. Phylogenet. Evol. 149: 106849.; lizards: Prates et al. 2017PRATES, I.; MELO-SAMPAIO, P.R.; DRUMMOND, L.O.; TEIXEIRA, M.; RODRIGUES, M.T. & CARNAVAL A.C. 2017. Biogeographic links between the southern Atlantic Forest and western South America: rediscovery, re-description, and phylogenetic relationships of two rare montane anole lizards from Brazil. Mol. Phylogenet. Evol. 113:49-58.; plants: Meyer et al. 2021MEYER, F.S.; REGINATO, M.; SMIDT, E.C.; DE SANTIAGO GOMEZ, J.R.; MICHELANGELI, F.A. & GOLDENBERG, R. 2021. Phylogenetic relationships in Brachyotum and allies (Melastomataceae, Melastomateae): a reassessment of the limits of the genera. Bot. J. Linn. Soc. 197: 170-189.). For instance, the spatial distributions of genetic lineages of three lizard species suggest that ancestral Amazonian populations synchronously colonized the AF, and, for a well-sampled species, genomic data indicate that an eastern Amazonia ancestral population colonized the AF (Prates et al. 2016aPRATES, I.; RIVERA, D.; RODRIGUES, M.T. & CARNAVAL, A.C. 2016a. A mid-Pleistocene rainforest corridor enabled synchronous invasions of the Atlantic Forest by Amazonian anole lizards. Mol. Ecol. 25: 5174., bPRATES, I.; XUE, A.; BROWN, J.L.; ALVARADO-SERRANO, D.F.; RODRIGUES, M.T.; HICKERSON, M.J. & CARNAVAL, A.C. 2016b. Inferring responses to climate dynamics from historical demography in Neotropical forest lizards. P. Natl. Acad. Sci. USA 113: 7978-7985.). A study of speleothems from a cave in the state of Mato Grosso do Sul (city of Bonito), when compared to other records in South America, revealed that the LGM was wetter than the early- and mid-Holocene and produced a precipitation (monsoon) belt from the Andes to southeastern Brazil (Novello et al. 2017NOVELLO, V.F.; CRUZ, F.W.; VUILLE, M.; STRÍKIS, N.M.; EDWARDS, R.L.; CHENG, H.; EMERICK, S.; SAITO DE PAULA, M.; LI, X.; BARRETO, E.S.; KARMANN, I.; SANTOS, R.V. 2017. A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Sci. Rep. 7: 44267., 2019NOVELLO, V. F.; CRUZ, F.W.; MCGLUE, M.M.; WONG, C.I.; WARD, B.M.; VUILLE, M.; SANTOS, R.A.; JAQUETO, P.; PESSENDA, L.C.R.; ATORRE, T.; RIBEIRO, L.M.A.L.; KARMANN, I.; BARRETO, E.S.; CHENG, H.; EDWARDS, R.L.; PAULA, M.S. & SCHOLZ, D. 2019. Vegetation and environmental changes in tropical South America from the last glacial to the Holocene documented by multiple cave sediment proxies. Earth Planet. Sci. Lett. 524: 115717.). This finding is congruent with paleovegetation reconstructions that suggest that forests expanded in southern and central Amazonia in this period. Moreover, two phylogeographic studies of bird species tested whether past connections between the AF and the humid Andean forest occurred through the Cerrado (savannah-like biome in the South American open vegetation diagonal) or the Chaco (further south). The results indicated that connections were recurrent and that were more probable through the Cerrado and/or at the transition of Cerrado and Chaco (Trujillo-Arias et al. 2018TRUJILLO-ARIAS; N.; CALDERÓN, L.; SANTOS, F.R.; MIYAKI, C.Y.; ALEIXO, A.; WITTF, C.C.; TUBARO, P.L. & CABANNE, G.S. 2018. Forest corridors between the central Andes and the southern Atlantic Forest enabled dispersal and peripatric diversification without niche divergence in a passerine. Mol. Phylogenet. Evol. 128: 221-232., 2020TRUJILLO-ARIAS, N.; RODRÍGUEZ-CAJARVILLE, M.J.; SARI, E.; MIYAKI, C.Y.; SANTOS, F.R.; WITT, C.C.; BARREIRA, A.S.; GÓMEZ, I.; NAOKI, K.; TUBARO, P.L. & CABANNE, G.S. 2020. Evolution between forest macrorefugia is linked to discordance between genetic and morphological variation in Neotropical passerines. Mol. Phylogenet. Evol. 149: 106849.). In another study focused on two montane lizard species, our phylogenetic results indicated colonization of the AF from western South America (Andes and Guiana shield) through the intervening lowlands (Prates et al. 2017PRATES, I.; MELO-SAMPAIO, P.R.; DRUMMOND, L.O.; TEIXEIRA, M.; RODRIGUES, M.T. & CARNAVAL A.C. 2017. Biogeographic links between the southern Atlantic Forest and western South America: rediscovery, re-description, and phylogenetic relationships of two rare montane anole lizards from Brazil. Mol. Phylogenet. Evol. 113:49-58.).

  9. In spite of the fact that the Atlantic Forest has been relatively well sampled compared to other Neotropical biomes, we also showed that certain areas are in much need of further exploration, particularly northern Espírito Santo and southern Bahia (Bacci et al. 2018BACCI, L. F., REGINATO, M., BOCHORNY, T., MICHELANGELI, F. A., AMORIM, A. M. & GOLDENBERG, R. 2018. Increased sampling in under-collected areas sheds new light on the diversity and distribution of Bertolonia, an Atlantic Forest endemic genus. Syst. Bot. 43: 767-792.). This is particularly important as this area presents high levels of endemism, and species turnover for both plants and animals (e.g. Carnaval et al. 2014CARNAVAL, A.C.; WALTARI, E.; RODRIGUES, M.T.; ROSAUER, D.; VANDERWAL, J.; DAMASCENO, R.; PRATES, I.; STRANGAS, M.; SPANOS, Z.; RIVERA, D.; PIE, M.R.; FIRKOWSKI, C.R.; BORNSCHEIN, M.R.; RIBEIRO, L.F. & MORITZ, C. 2014. Prediction of phylogeographic endemism in an environmentally complex biome. P. Roy. Soc. Lon. B. Bio. 281: 20141461.; Nogueira et al. 2019aNOGUEIRA, A.A.; BRAGAGNOLO, C.; DASILVA, M.B.; CARVALHO, L.S.; BENEDETTI, A.R. & PINTO-DA-ROCHA, R. (2019a) Spatial variation in phylogenetic diversity of communities of Atlantic Forest harvestmen (Opiliones, Arachnida). Insect Conserv. Diver. 12: 414-426., 2019bNOGUEIRA, A.A.; BRAGAGNOLO, C.; DASILVA, M.B.; MARTINS, T.; PERBICHE-NEVES, G. & PINTO-DA-ROCHA, R. 2019b. Historical signatures in the alpha and beta diversity patterns of Atlantic Forest harvestman communities (Opiliones-Arachnida). Can. J. Zool. 97: 631-643.; Reginato & Michelangeli 2020; Bacci et al. 2021BACCI, L. F., AMORIM, A. M., MICHELANGELI, F. A. & GOLDENBERG, R. 2021. Biogeographic breaks in the Atlantic Forest: evidence for Oligocene/Miocene diversification in Bertolonia (Melastomataceae). Bot. J. Linn. Soc. DOI: 10.1093/botlinnean/boab099
    https://doi.org/10.1093/botlinnean/boab0...
    ).

The collaborative nature of the AF BIOTA project enabled several high impact publications. Among other journals, our findings have been published in Scientific Reports (Azevedo et al. 2019AZEVEDO, V.; STRÍKIS, N.M.; SANTOS, R.A.; SOUZA, J.G.; AMPUERO, A.; CRUZ, F.W.; OLIVEIRA, P.; IRIARTE, J.; STUMPF, C.F.; VUILLE, M.; MENDES, V.R.; CHENG, H. & EDWARDS, R.L. 2019. Medieval climate variability in the eastern Amazon-Cerrado regions and its archeological implications. Sci. Rep. 9: 1-10., De-Silva et al. 2017DE-SILVA, D.L.; MOTA, L.L.; CHAZOT, N.; MALLARINO, R.; SILVA-BRANDÃO, K.L.; GÓMEZ-PIÑEREZ, L.M.; FREITAS, A.V.L.; LAMAS, G.; JORON, M.; MALLET, J.; GIRALDO, C.E.; URIBE, S.; SÄRKINEN, T.; KNAPP, S.; JIGGINS, C.D.; WILLMOT, K.R. & ELIAS, M. 2017. North Andean origin and diversification of the largest Ithomiine butterfly genus. Sci. Rep. 7: 45966., Novello et al. 2016NOVELLO, V.F.; VUILLE, M.; CRUZ, F.W.; STRÍKIS, N.M.; PAULA, M.S.; EDWARDS, R.L.; CHENG, H.; KARMANN, I.; JAQUETO, P.F.; TRINDADE, R.I.; HARTMANN, G.A. & MOQUET, J.S. 2016. Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites. Sci. Rep. 6: 24762., 2017NOVELLO, V.F.; CRUZ, F.W.; VUILLE, M.; STRÍKIS, N.M.; EDWARDS, R.L.; CHENG, H.; EMERICK, S.; SAITO DE PAULA, M.; LI, X.; BARRETO, E.S.; KARMANN, I.; SANTOS, R.V. 2017. A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Sci. Rep. 7: 44267., Pinaya et al. 2019PINAYA, J.L.D.; CRUZ, F.W.; CECCANTINI, G.C. T.; CORRÊA, P.L.P.; PITMAN, N.; VEMADO, F.; LOPEZ, M.C.S.; PEREIRA FO., A.J.; GROHMANN, C.H.; CHIESSI, C.M.; STRÍKIS, N.M.; HORÁK-TERRA, I.; PINAYA, W.H.L.; MEDEIROS, V.B.; SANTOS, R.A.; AKABANE, T.K.; SILVA, M.A.; CHEDDADI, R.; BUSH, M.; HENROT, A.-J.; FRANÇOIS, L.; HAMBUCKERS, A.; BOYER, F.; CARRÉ, M.; COISSAC, E.; et al. 2019. Brazilian montane rainforest expansion induced by Heinrich Stadial 1 event. Sci. Rep. 9: 1-14., Rodríguez-Zorro et al. 2020RODRÍGUEZ-ZORRO, P.A.; LEDRU, M.-P.; BARD, E.; AQUINO-ALFONSO, O.; CAMEJO, A.; DANIAU, A.-L.; FAVIER, C.; GARCIA, M.; MINELLI, T.D.; ROSTEK, F.; RICARDI-BRANCO, F.; SAWAKUCHI, A.O.; SIMON, Q.; TACHIKAWA, K. & THOUVENY, N. 2020. Shut down of the South American summer monsoon during the penultimate glacial. Sci. Rep. 10: 6275- 6288., Utida et al. 2019UTIDA, G.; CRUZ JR, F.W.; ETOURNEAU, J.; BOULOUBASSI, I.; SCHEFUSS, E.; VUILLE, M.; NOVELLO, V. F.; PRADO, L.F.; SIFEDDINE, A.; KLEIN, V.; ZULAR, A.; VIANA, J.C. C. & TURCQ, B. 2019. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Sci. Rep. 9: 1.), Nature Communications (Deininger et al. 2020DEININGER, M.; MCDERMOTT, F.; CRUZ, FRANCISCO W.; BERNAL, J.P.; MUDELSEE, M,; VONHOF, H.; MILLO, C.; SPÖTL, C.; TREBLE, P.C.; PICKERING, R. & SCHOLZ, D. 2020. Inter-hemispheric synchroneity of Holocene precipitation anomalies controlled by Earth’s latitudinal insolation gradients. Nat. Commun. 11: 5447., Thom et al. 2021THOM, G.; GEHARA, M.; SMITH, B.T.; MIYAKI, C.Y. & AMARAL, F.R. 2021. Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest. Nat. Commun. 12: 6269.), Science Advances (Rozendaal et al. 2019ROZENDAAL, D.M.A.; BONGERS, F.; AIDE, T. M.; ALVAREZ-DÁVILA, E.; ASCARRUNZ, N.; BALVANERA, P.; BECKNELL, J.M.; BENTOS, T.V.; BRANCALION, P.H.S.; CABRAL, G.A.L.; CALVO- RODRIGUEZ, S.; CHAVE, J.; CÉSAR, R.G.; CHAZDON, R.L.; CONDIT,R.; DALLINGA, J.; ALMEIDA-CORTEZ, J.S.; FORESTA, H.; JONG, B.; OLIVEIRA, A.; DENSLOW, J.S.; DENT, D.H.; DEWALT, S.J.; DUPUY, J.M.; DURÁN, S.M.; DUTRIEUX, L.P.; ESPÍRITO-SANTO, M.M.; FANDINO, M.C.; FERNANDES, G.W.; FINEGAN, B.; GARCÍA, H.; GONZALEZ, N.; MOSER, V.G.; HALL, J.S.; HERNÁNDEZ- STEFANONI, J.L.; JAKOVAC, C.C.; HERNÁNDEZ, A.J.; HUBBELL, S.; JUNQUEIRA, A.B.; KENNARD, D.; LARPIN, D.; LETCHER, S.G.; LICONA, J.-C.; LEBRIJA-TREJOS, E.; MARÍN-SPIOTTA, E.; MARTÍNEZ-RAMOS, M.; MASSOCA, P.E.S.; MEAVE, J.A.; MESQUITA, R.C.G.; MOLINO, J.-F.; MORA, F.; MÜLLER, S.C.; MUÑOZ, R.; OLIVEIRA NETO, S.N.; NORDEN, N.; NUNES, Y.R. F.; OCHOA-GAONA, S.; ORTIZ-MALAVASSI, E.; OSTERTAG, R.; PEÑA-CLAROS, M.; PÉREZ-GARCÍA, E.A.; PIOTTO, D.; POWERS, J.S.; AGUILAR, J.R.; RODRÍGUEZ, S.; RODRÍGUEZ-VELAZQUEZ, J.; ROMERO-ROMERO, M.A.; RUÍZ,J.; SABATIER, D.; SANCHEZ-AZOFEIFA, A.; ALMEIDA, A.S.; SILVER, W.L.; SCHWARTZ, N.B.; THOMAS, W.; TOLEDO, M.; URIARTE, M.; SAMPAIO, E.V.S.; VAN BREUGEL, M.; VAN DER WAL, H.; MARTINS, S.V.; VELOSO, M.D.M.; VESTER, H.F.M.; VICENTINI, A.; VIEIRA, I.C.G.; VILLA, P.; WILLIAMSON, G.B.; ZANINI, K.J.; ZIMMERMAN, J. & POORTER, L. 2019. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5: eaau3114., Thom et al. 2020THOM, G.; XUE, A.T.; SAWAKUCHI, A.O.; RIBAS, C.C.; HICKERSON, M.J.; ALEIXO, A. & MIYAKI, C.Y. 2020. Quaternary climate changes as speciation drivers in the Amazon floodplains. Sci. Adv. 6: eaax4718.), Nature Ecology and Evolution (Poorter et al., 2019POORTER, L.; ROZENDAAL, D.M.A.; BONGERS, F.; ALMEIDA-CORTEZ, J.S.; ZAMBRANO, A.M.A.; ÁLVAREZ, F.S.; ANDRADE, J.L.; VILLA, L.F.A.; BALVANERA, P.; BECKNELL, J.M.; BENTOS, T.V.; BHASKAR, R.; BOUKILI, V.; BRANCALION, P.H.S.; BROADBENT, E.N.; CÉSAR, R.G.; CHAVE, J.; CHAZDON, R.L.; DALLA COLLETTA, G.; CRAVEN, D.; DE JONG, B.H.J.; DENSLOW, J.S.; DENT, D.H.; DEWALT, S.J.; GARCÍA, E.D.; DUPUY, J.M; DURÁN, S.M.; ESPÍRITO SANTO, M.M.; FANDIÑO, M.C.; FERNANDES, G.W.; FINEGAN, B.; MOSER, V.G.; HALL, J.S.; HERNÁNDEZ-STEFANONI, J.L.; JAKOVAC, C.C.; JUNQUEIRA, A.B.; KENNARD, D.; LEBRIJA-TREJOS, E.; LETCHER, S.G.; LOHBECK, M.; LOPEZ, O.R.; MARÍN-SPIOTTA, E.; MARTÍNEZ-RAMOS, M.; MARTINS, S.V.; MASSOCA, P.E.S.; MEAVE, J.A.; MESQUITA, R.; MORA, F.; MORENO, V.S.; MÜLLER, S.C.; MUÑOZ, R.; MUSCARELLA, R.; OLIVEIRA NETO, S.N.; NUNES, Y.R.F.; OCHOA-GAONA, S.; PAZ, H.; PEÑA-CLAROS, M.; PIOTTO, D.; RUÍZ, J.; SANAPHRE-VILLANUEVA, L.; SANCHEZ-AZOFEIFA, A.; SCHWARTZ, N.B.; STEININGER, M.K.; THOMAS, W.W.; TOLEDO, M.; URIARTE, M.; UTRERA, L.P.; VAN BREUGEL, M.; VAN DER SANDE, M.T.; VAN DER WAL, H.; VELOSO, M.D.M.; VESTER, H.F.M.; VIEIRA, I.C. G.; VILLA, P.M.; WILLIAMSON, G.B.; WRIGHT, S.J.; ZANINI, K.J.; ZIMMERMAN, J.K. & WESTOBY, M. 2019. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3: 928–934.), Proceedings of the National Academy of Science of the United States of America (Cheng et al. 2020CHENG, H. ZHANG, H.; SPÖTL, C.; BAKER, J.; SINHA, A.; LI, H.; BARTOLOMÉ, M.; MORENNO, A.; KATHYAT, G.; ZHAO, J.; DONG, X.; LI, Y.; NING, Y.; JIA, X.; ZONG, B.; AIT BRAHIM, Y.; PÉREZ-MEJÍAS, C.; CAI, Y.; NOVELLO, V.F.; CRUZ, F.W.; SEVERINGHAUS, J.P.; AN, Z.; & EDWARDS, L.R. 2020. Timing and structure of the Younger Dryas event and its underlying climate dynamics. P. Natl. Acad. Sci. USA 117: 202007869., Prates et al. 2016 bPRATES, I.; XUE, A.; BROWN, J.L.; ALVARADO-SERRANO, D.F.; RODRIGUES, M.T.; HICKERSON, M.J. & CARNAVAL, A.C. 2016b. Inferring responses to climate dynamics from historical demography in Neotropical forest lizards. P. Natl. Acad. Sci. USA 113: 7978-7985., Stríkis et al. 2018STRÍKIS, N. M.; CRUZ, F.W.; BARRETO, E.A. S.; NAUGHTON, F.; VUILLE, M.; CHENG, H.; VOELKER, A.H. L.; ZHANG, H.; KARMANN, I.; EDWARDS, R. L.; AULER, A.S.; SANTOS, .V. & SALES, H.R. (2018). South American monsoon response to iceberg discharge in the North Atlantic. P. Natl. Acad. Sci. USA. 115: 3788-3793.), Proceedings of the Royal Society of London (Carnaval et al. 2014CARNAVAL, A.C.; WALTARI, E.; RODRIGUES, M.T.; ROSAUER, D.; VANDERWAL, J.; DAMASCENO, R.; PRATES, I.; STRANGAS, M.; SPANOS, Z.; RIVERA, D.; PIE, M.R.; FIRKOWSKI, C.R.; BORNSCHEIN, M.R.; RIBEIRO, L.F. & MORITZ, C. 2014. Prediction of phylogeographic endemism in an environmentally complex biome. P. Roy. Soc. Lon. B. Bio. 281: 20141461.), and Evolution (Amaral et al. 2021AMARAL, F.R.; THOM, G.; LIMA-RIBEIRO, M.S.; ALVARADO-SERRANO, D.F.; MONTESANTI, J.A.C.; PELLEGRINO, K.C.M.; MIYAKI, C.Y.; HICKERSON, M.J. & MALDONADO-COELHO, M. 2021. Rugged relief and climate promote isolation and divergence between two neotropical cold-associated birds. Evolution 75: 2371-2387., Xue & Hickerson 2020XUE, A.T. & HICKERSON, M.J. 2020. Comparative phylogeographic inference with genome‐wide data from aggregated population pairs. Evolution 74: 808-830.).

Collectively, the AF BIOTA team published more than 400 peer-reviewed papers, contributed with 11 book chapters, and edited one book. We highlight the publication in 2021 of a special issue of the journal Molecular Phylogenetics and Evolution showcasing the evolution of the AF in 17 papers. Collaborators Amaral and Cabanne, US Co-PI Michelangeli, and Brazilian PI Miyaki edited this special issue. US PI Carnaval also co-edited a book on the topic of Neotropical Diversification (Rull and Carnaval, 2020RULL, V. & CARNAVAL, A.C. (eds). 2020. Neotropical Diversification: Patterns and Processes. Springer, Cham.). These results were also presented in scientific meetings as numerous seminars, plenary talks, posters, and oral presentations.

2. Unfolding

AF BIOTA has also impacted biodiversity scientists more broadly. Given the high number of engaged female students in the research group of the US PI A. Carnaval, a Women in Science group was funded at the City College of New York (CCNY WinS; http://ccnywins.wix.com/womeninscience), inspiring other students and postdocs in Brazil. CCNY WinS increases awareness about the status of Women in Science within the CCNY community (undergraduate and graduate students, postdocs, staff, early career and tenured faculty members) through meetings, training workshops, social gatherings, a peer mentoring program, and seminars. Carnaval has been engaged in empowering Latin-American women and early career biodiversity scientists and, along with students and collaborators, co-authored a paper published on the topic in Science (Bernal et al. 2019BERNAL, X.E.; ROJAS, B.; PINTO, M.A.; MENDOZA-HENAO, A.M.; HERRERA-MONTES, A.; … PAZ, A.; ….CARNAVAL, A.C.; et al. 2019. Empowering Latina scientists. Science 363: 825-826.). Moreover, inspired by a talk by US PI Carnaval on the multidisciplinary aspects of AF BIOTA, the City College Science Division received a $1,000,000 donation to jumpstart the creation of a multidisciplinary Center for the Study of Biodiversity and Environmental Change. The Center’s main aim will be to support biodiversity research by CCNY’s students – through seed and travel grants and training. Given the large number of underrepresented minorities and economically under-served students at CCNY, this can have broader impacts in New York and beyond.

3. Outreach

As part of its outreach mission, the AF BIOTA team also worked on multiple science communication projects, sharing findings with the general public through interviews, written notes, videos, and an exhibit at the New York Botanical Garden as part of a special exhibit on Roberto Burle-Marx. A video highlighting the work of AF BIOTA members was put together during the COVID19 pandemic and is available in the BIOTA FAPESP YouTube channel (https://www.biota.org.br/dimensoes-da-biodiversidade-na-floresta-atlantica/). Short videos made by Ph.D. and Master’s students associated with the project, which describe their work for the general public, are available in three languages (https://www.youtube.com/channel/UCF_n3stt5ImEoqv16L_Ndog).

4. Conservation policy implications

Several of our results and team members have helped conserve the AF biodiversity. For instance, our molecular phylogenetic and phylogeographic studies (Batalha Filho et al. 2014BATALHA-FILHO, H.; PESSOA, R.O.; FABRE, P-H.; FJELDSÅ, J.; IRESTEDT, M.; ERICSON, P.G.P.; SILVEIRA, L.F. & MIYAKI, C.Y. 2014. Phylogeny and historical biogeography of gnateaters (Passeriformes, Conopophagidae) in the South America forests. Mol. Phylogenet. Evol. 79: 422–432., Cabanne et al. 2007CABANNE, G.S., SANTOS, F.R. & MIYAKI, C.Y. 2007. Phylogeography of Xiphorhynchus fuscus (Passeriformes: Dendrocolaptidae): vicariance and recent demographic expansion in southern Atlantic forest. Biol. J. Linn. Soc. 91: 73-84., 2008CABANNE, G. S.; SARI, E.H. R.; SANTOS, F. R. & MIYAKI, C. Y. 2008. Nuclear and mitochondrial phylogeography of the Atlantic forest endemic Xiphorhynchus fuscus (Aves: Dendrocolaptidae): Biogeography and systematics implications. Mol. Phylogenet. Evol. 49: 760-773., d’Horta et al. 2013D’HORTA, F.M.; CUERVO, A.M.; RIBAS, C.C.; BRUMFIELD, R.T. & MIYAKI, C.Y. 2013. Phylogeny and comparative phylogeography of Sclerurus (Aves: Furnariidae) reveal constant and cryptic diversification in an old radiation of rain forest understorey specialists. J. Biogeogr. 40: 37-49.) were used to elevate former subspecies of three AF bird species to full species status (Xiphorhynchus atlanticus, Conopophaga cearae, and Sclerurus cearensis). With this information, three new globally endangered species were added to the Red List of Endangered Species (IUCN 2022IUCN (2022) The IUCN Red List of Threatened Species. Version 2021-3. <https://www.iucnredlist.org> (last access on08/01/2022).
https://www.iucnredlist.org...
). Moreover, biogeographic information produced by the team was used to help delimit conservation areas in the AF by the Brazilian Ministry of Environment, during a meeting to discuss Targets for the Conservation of the Atlantic Forest biodiversity in Atibaia, SP, 2018. The phylogenetic diversity of highly endemic species of arachnids of the order Opiliones has been suggested as of special importance to assess conservation value (Nogueira et al. 2019aNOGUEIRA, A.A.; BRAGAGNOLO, C.; DASILVA, M.B.; CARVALHO, L.S.; BENEDETTI, A.R. & PINTO-DA-ROCHA, R. (2019a) Spatial variation in phylogenetic diversity of communities of Atlantic Forest harvestmen (Opiliones, Arachnida). Insect Conserv. Diver. 12: 414-426.). US-based PI Carnaval edited the Americas Assessment Chapter at the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) and was the editor of the Brazilian Platform on Biodiversity and Ecosystem Services report. PI Miyaki joined various meetings organized by the Instituto Chico Mendes para a Conservação da Biodiversidade (ICMBIO) from the Brazilian Ministry of Environment, helping to plan conservation actions for various endangered species. PI Miyaki and postdoc Bertola joined the Conservation Genetics Specialist Group of the International Union for Conservation of Nature in 2017.

Conclusions

Amongst the lessons learned, we found that integration of data across different fields of knowledge was (and still is) a considerable challenge in projects of this nature. As an example, the comprehension of technical terms that are specific to Biology was sometimes a difficult task for geologists and engineers, and vice versa. This is reflected by the fact that we only succeeded to publish papers that involved true integration of fields and data five years after the onset of the grant, with several manuscripts still being produced. Because such projects are so challenging, it is important that these grants last for more than five years and allow for true convergence across research groups, as ours did. As young researchers (graduate students and postdocs) participated in our meetings and were in close contact with our diverse group of laboratories and more senior investigators, they had the opportunity to experience this exchange and cross this gap. This new generation of researchers will unquestionably be better prepared to navigate among different scientific fields.

Unfortunately, the preservation of biodiversity is not the priority of many governments worldwide. As of our publication date, is likewise not a priority of the Brazilian government. While the future of Brazilian biodiversity seems grim, the AF deserves to be conserved. Even with so little vegetation cover, it still holds an immense and telling diversity of life forms, providing ecological and evolutionary services to the country and the globe. Based on the success story of this project, we strongly recommend that FAPESP continues to support research focused on Brazilian biodiversity, in particular, on hotspots, such as the AF. To effectively conserve this precious biome, home to the majority of the Brazilian human population, and leverage the work done by AF BIOTA, it will be important to invest in studies that combine our understanding of the processes that generate, maintain and erode the AF biodiversity with the social, cultural, environmental and economic needs of the Brazilian people. This is the next level of integration that we are missing.

Acknowledgments

We thank our numerous collaborators (M.T.U. Rodrigues, L.G. Lohmann, P.T. Sano, M.P. Ledru, F.S.R. Amaral, C.H. Grohmann de Carvalho, C. Millo, N. Strikis, M.B. DaSilva, C. Bragagnolo, H. Batalha Filho, L.M. Svensson Coelho, M.M. Coelho, C.A. Joly, C.F.B. Haddad, C.M. Chiessi, G.S. Oliveira, M.R.V. Barbosa, R. Goldenberg, S.T. Hiruma, M. Cardoso, H. Cheng, R.L. Edwards, M. Vuille, A.V.L. Freitas, J.P. Bernal, T. Pedron, V. Montade, P. Roeser, A. Comejo, M. Maldonado-Coelho, G.Thom e Silva, R. Loyola, T. Silva, C. Moritz, J.L. Brown, M. Reginato, J. Aguirre-Santoro) who have been instrumental for our achievements as science is only successful when we collaborate. This project was jointly funded by BIOTA/FAPESP (2013/50297-0) and Dimensions of Biodiversity/NSF and NASA (DOB 1343578; 1343612). C.Y.M. thanks CNPq for the research productivity fellowship (306204/2019-3). We thank the Editor and two anonymous reviewers for their comments that improved the paper.

  • Ethics
    This study did not involve human beings and/or clinical trials that should be approved by one Institutional Committee.

Supplementary Material

The following online material is available for this article:

Supplementary 1 - List of Atlantic Forest new species described by members of the AF Biota project.

Supplementary 2 - List of papers published on phylogeography of Atlantic Forest taxa.

Supplementary 3 - List of papers published with phylogenies including taxa that occur in the Atlantic Forest.

References

  • AGUIRRE-SANTORO. J., STEVENSON, D. W. & MICHELANGELI, F. A. 2016. Molecular phylogenetics of the Ronnbergia Alliance (Bromeliaceae, Bromelioideae) and insights about its morphological evolution. Mol. Phylogenet. Evol. 100: 1-20.
  • AMARAL, F.R.; THOM, G.; LIMA-RIBEIRO, M.S.; ALVARADO-SERRANO, D.F.; MONTESANTI, J.A.C.; PELLEGRINO, K.C.M.; MIYAKI, C.Y.; HICKERSON, M.J. & MALDONADO-COELHO, M. 2021. Rugged relief and climate promote isolation and divergence between two neotropical cold-associated birds. Evolution 75: 2371-2387.
  • AZEVEDO, V.; STRÍKIS, N.M.; SANTOS, R.A.; SOUZA, J.G.; AMPUERO, A.; CRUZ, F.W.; OLIVEIRA, P.; IRIARTE, J.; STUMPF, C.F.; VUILLE, M.; MENDES, V.R.; CHENG, H. & EDWARDS, R.L. 2019. Medieval climate variability in the eastern Amazon-Cerrado regions and its archeological implications. Sci. Rep. 9: 1-10.
  • BACCI, L. F., REGINATO, M., BOCHORNY, T., MICHELANGELI, F. A., AMORIM, A. M. & GOLDENBERG, R. 2018. Increased sampling in under-collected areas sheds new light on the diversity and distribution of Bertolonia, an Atlantic Forest endemic genus. Syst. Bot. 43: 767-792.
  • BACCI, L. F., AMORIM, A. M., MICHELANGELI, F. A. & GOLDENBERG, R. 2021. Biogeographic breaks in the Atlantic Forest: evidence for Oligocene/Miocene diversification in Bertolonia (Melastomataceae). Bot. J. Linn. Soc. DOI: 10.1093/botlinnean/boab099
    » https://doi.org/10.1093/botlinnean/boab099
  • BATALHA-FILHO, H.; PESSOA, R.O.; FABRE, P-H.; FJELDSÅ, J.; IRESTEDT, M.; ERICSON, P.G.P.; SILVEIRA, L.F. & MIYAKI, C.Y. 2014. Phylogeny and historical biogeography of gnateaters (Passeriformes, Conopophagidae) in the South America forests. Mol. Phylogenet. Evol. 79: 422–432.
  • BERNAL, J.P.; CRUZ, F.W.; STRIKIS, N.M.; WANG, X; DEININGER, M.; CATUNDA, M.C.; ORTEGA-OBREGÓN, C.; CHENG, H.; EDWARDS, R.L & AULER, A.S. 2016. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil. Earth Planet. Sc. Lett. 450: 186-196.
  • BERNAL, X.E.; ROJAS, B.; PINTO, M.A.; MENDOZA-HENAO, A.M.; HERRERA-MONTES, A.; … PAZ, A.; ….CARNAVAL, A.C.; et al 2019. Empowering Latina scientists. Science 363: 825-826.
  • BRAGAGNOLO, C.; HARA, M.R. & PINTO-DA-ROCHA, R. (2015). A new family of Gonyleptoidea from South America (Opiliones, Laniatores). Zool. J. Lin. Soc., 173: 296-319.
  • BROWN, J.L.; PAZ, A.; REGINATO, M.; AMARO, R.C.; ASSIS, C.; LYRA, M.; CADDAH, M.K.; AGUIRRE-SANTORO, J.; D’HORTA, F.; AMARAL, F.R.; GOLDENBERG, R.; SILVA-BRANDÃO, K.L.; FREITAS, A.V.L.; RODRIGUES, M T.; MICHELANGELI, F.A.; MIYAKI, C.Y. & CARNAVAL, A.C. 2020. Seeing the forest through many trees: multi-taxon patterns of phylogenetic diversity in the Atlantic Forest hotspot. Divers. Distrib. 26:1160–1176.
  • BUSTAMANTE, M.G.; CRUZ, F.W.; VUILLE, M.; APAÉSTEGUI, J.; STRIKIS, N.M.; PANIZO, G.; NOVELLO, F.V.; DEININGER, M.; SIFEDDINE, A.; CHENG, H.; MOQUET, J.S.; GUYOT, J.L.; SANTOS, R.V.; SEGURA, H. & EDWARDS, R.L. 2016. Holocene changes in monsoon precipitation in the Andes of NE Peru based on δ18O speleothem records. Quaternary Sci. Rev. 146: 274-287.
  • CABANNE, G.S.; CALDERÓN, L.; TRUJILLO-ARIAS, N.; FLORES, P.; PESSOA, R.; D’HORTA, F.M. & MIYAKI, C.Y. 2016. Effects of Pleistocene climate changes on species ranges and evolutionary processes in the Neotropical Atlantic Forest. Biol. J. Linn. Soc. 119: 856–872.
  • CABANNE, G.S., SANTOS, F.R. & MIYAKI, C.Y. 2007. Phylogeography of Xiphorhynchus fuscus (Passeriformes: Dendrocolaptidae): vicariance and recent demographic expansion in southern Atlantic forest. Biol. J. Linn. Soc. 91: 73-84.
  • CABANNE, G. S.; SARI, E.H. R.; SANTOS, F. R. & MIYAKI, C. Y. 2008. Nuclear and mitochondrial phylogeography of the Atlantic forest endemic Xiphorhynchus fuscus (Aves: Dendrocolaptidae): Biogeography and systematics implications. Mol. Phylogenet. Evol. 49: 760-773.
  • CABANNE, G.S.; TRUJILLO-ARIAS, N.; CALDERÓN, L.; D’HORTA, F.M. & MIYAKI, C.Y. 2014. Phenotypic evolution of an Atlantic Forest passerine (Xiphorhynchus fuscus): biogeographic and systematic implications. Biol. J. Linn. Soc. 113: 1047–1066.
  • CAMACHO, A.; RUSCH, T.; RAY, G.; TELEMECO, R.S.; RODRIGUES, M.T. & ANGILLETA, M.J. 2018. Measuring behavioral thermal tolerance to address hot topics in ecology, evolution, and conservation. J. Therm. Biol. 73: 71-79.
  • CARNAVAL, A.C.; HICKERSON, M.J.; HADDAD, C.F.B.; RODRIGUES, M.T. & MORITZ, C. 2009. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323: 785-789.
  • CARNAVAL, A.C.; WALTARI, E.; RODRIGUES, M.T.; ROSAUER, D.; VANDERWAL, J.; DAMASCENO, R.; PRATES, I.; STRANGAS, M.; SPANOS, Z.; RIVERA, D.; PIE, M.R.; FIRKOWSKI, C.R.; BORNSCHEIN, M.R.; RIBEIRO, L.F. & MORITZ, C. 2014. Prediction of phylogeographic endemism in an environmentally complex biome. P. Roy. Soc. Lon. B. Bio. 281: 20141461.
  • CASTRO-PEREIRA, D.; PERES, E.A. & PINTO-DA-ROCHA, R. 2021. Systematics and phylogeography of the Brazilian Atlantic Forest endemic harvestmen Neosadocus Mello-Leitão, 1926 (Arachnida: Opiliones: Gonyleptidae). PLoS One 16: e0249746.
  • CHAN, Y.L.; SCHANZENBACH, D. & HICKERSON, M.J. 2014. Detecting concerted demographic response across community assemblages using hierarchical Approximate Bayesian Computation. Mol. Biol. Evol. 31: 2501–2515.
  • CHENG, H., SINHA, A., CRUZ, F.W., WANG, X., EDWARDS, R.L., D’HORTA, F.M., RIBAS, C.C., VUILLE, M., STOTT, L.D., AULER, A.S. 2013. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4: 1411.
  • CHENG, H. ZHANG, H.; SPÖTL, C.; BAKER, J.; SINHA, A.; LI, H.; BARTOLOMÉ, M.; MORENNO, A.; KATHYAT, G.; ZHAO, J.; DONG, X.; LI, Y.; NING, Y.; JIA, X.; ZONG, B.; AIT BRAHIM, Y.; PÉREZ-MEJÍAS, C.; CAI, Y.; NOVELLO, V.F.; CRUZ, F.W.; SEVERINGHAUS, J.P.; AN, Z.; & EDWARDS, L.R. 2020. Timing and structure of the Younger Dryas event and its underlying climate dynamics. P. Natl. Acad. Sci. USA 117: 202007869.
  • DANTAS, G.P.M.; SARI, E.H.R.; CABANNE, G.S.; PESSOA, R.O.; MARINI, M.A.; MIYAKI, C.Y. & SANTOS, F.R. 2014. Population genetic structure of the Atlantic Forest endemic Conopophaga lineata (Passeriformes: Conopophagidae) reveals a contact zone in the Atlantic Forest. J. Ornithol. 156: 85–99.
  • DEININGER, M.; MCDERMOTT, F.; CRUZ, FRANCISCO W.; BERNAL, J.P.; MUDELSEE, M,; VONHOF, H.; MILLO, C.; SPÖTL, C.; TREBLE, P.C.; PICKERING, R. & SCHOLZ, D. 2020. Inter-hemispheric synchroneity of Holocene precipitation anomalies controlled by Earth’s latitudinal insolation gradients. Nat. Commun. 11: 5447.
  • DE-SILVA, D.L.; MOTA, L.L.; CHAZOT, N.; MALLARINO, R.; SILVA-BRANDÃO, K.L.; GÓMEZ-PIÑEREZ, L.M.; FREITAS, A.V.L.; LAMAS, G.; JORON, M.; MALLET, J.; GIRALDO, C.E.; URIBE, S.; SÄRKINEN, T.; KNAPP, S.; JIGGINS, C.D.; WILLMOT, K.R. & ELIAS, M. 2017. North Andean origin and diversification of the largest Ithomiine butterfly genus. Sci. Rep. 7: 45966.
  • D’HORTA, F.M.; CUERVO, A.M.; RIBAS, C.C.; BRUMFIELD, R.T. & MIYAKI, C.Y. 2013. Phylogeny and comparative phylogeography of Sclerurus (Aves: Furnariidae) reveal constant and cryptic diversification in an old radiation of rain forest understorey specialists. J. Biogeogr. 40: 37-49.
  • GOLDENBERG, R.; REGINATO, M. & MICHELANGELI, F. A. 2018. Disentangling the infrageneric classification of megadiverse taxa from Mata Atlantica: phylogeny of Miconia section Chaenanthera (Melastomataceae. Miconieae). Taxon 67: 537-551.
  • IUCN (2022) The IUCN Red List of Threatened Species. Version 2021-3. <https://www.iucnredlist.org> (last access on08/01/2022).
    » https://www.iucnredlist.org
  • MEYER, F.S.; REGINATO, M.; SMIDT, E.C.; DE SANTIAGO GOMEZ, J.R.; MICHELANGELI, F.A. & GOLDENBERG, R. 2021. Phylogenetic relationships in Brachyotum and allies (Melastomataceae, Melastomateae): a reassessment of the limits of the genera. Bot. J. Linn. Soc. 197: 170-189.
  • MYERS, N.; MITTERMEIER, R.; MITTERMEIER, C.; FONSECA, G.A.B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.
  • NOGUEIRA, A.A.; BRAGAGNOLO, C.; DASILVA, M.B.; CARVALHO, L.S.; BENEDETTI, A.R. & PINTO-DA-ROCHA, R. (2019a) Spatial variation in phylogenetic diversity of communities of Atlantic Forest harvestmen (Opiliones, Arachnida). Insect Conserv. Diver. 12: 414-426.
  • NOGUEIRA, A.A.; BRAGAGNOLO, C.; DASILVA, M.B.; MARTINS, T.; PERBICHE-NEVES, G. & PINTO-DA-ROCHA, R. 2019b. Historical signatures in the alpha and beta diversity patterns of Atlantic Forest harvestman communities (Opiliones-Arachnida). Can. J. Zool. 97: 631-643.
  • NOVELLO, V. F.; CRUZ, F.W.; MCGLUE, M.M.; WONG, C.I.; WARD, B.M.; VUILLE, M.; SANTOS, R.A.; JAQUETO, P.; PESSENDA, L.C.R.; ATORRE, T.; RIBEIRO, L.M.A.L.; KARMANN, I.; BARRETO, E.S.; CHENG, H.; EDWARDS, R.L.; PAULA, M.S. & SCHOLZ, D. 2019. Vegetation and environmental changes in tropical South America from the last glacial to the Holocene documented by multiple cave sediment proxies. Earth Planet. Sci. Lett. 524: 115717.
  • NOVELLO, V.F.; CRUZ, F.W.; VUILLE, M.; STRÍKIS, N.M.; EDWARDS, R.L.; CHENG, H.; EMERICK, S.; SAITO DE PAULA, M.; LI, X.; BARRETO, E.S.; KARMANN, I.; SANTOS, R.V. 2017. A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Sci. Rep. 7: 44267.
  • NOVELLO, V.F.; VUILLE, M.; CRUZ, F.W.; STRÍKIS, N.M.; PAULA, M.S.; EDWARDS, R.L.; CHENG, H.; KARMANN, I.; JAQUETO, P.F.; TRINDADE, R.I.; HARTMANN, G.A. & MOQUET, J.S. 2016. Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites. Sci. Rep. 6: 24762.
  • PAZ, A.; BROWN, J.L.; CORDEIRO, C.L.O.; AGUIRRE-SANTORO, J.; ASSIS, C.; AMARO, R.C.; AMARAL, F.R.; BO-CHORNY, T.; BACCI, L.F.; CADDAH, M.K.; D’HORTA, F.; KAEHLER, M.; LYRA, M.; GROHMANN, C.H.; REGINATO, M.; SILVA-BRANDÃO, K.L.; FREITAS, A.V.L.; GOLDENBERG, R.; LOHMANN, L.G.; MICHELANGELI, F.A.; MIYAKI, C.; RODRIGUES, M.T.; SILVA, T.S. & CARNAVAL, A.C. 2021. Environmental correlates of taxonomic and phylogenetic diversity in the Atlantic Forest. J. Biogeogr. 48: 1377-1391.
  • PAZ, A.; REGINATO, M.; MICHELANGELI, F.A.; GOLDENBERG, R.; CADDAH, M.K.; AGUIRRE-SANTORO, J.; LOHMANN, L.G.; KAEHLER, M. & CARNAVAL, A. 2020. Predicting patterns of plant diversity and endemism in the tropics with remote sensing data sources – a study case from the Brazilian Atlantic rainforest. In Remote Sensing of Plant Biodiversity: Using Spectral Signals to Understand the Biology and Biodiversity of Plants, Communities, Ecosystems and the Tree of Life (J. Cavender-Bares, J. Gamon & P. Townsend, eds.). Springer, Cham, p. 255-266.
  • PELLEGRINO, K.C.M.; RODRIGUES, M.T.; WAITE, A.N.; MORANDO, M.; YASSUDA, Y.Y. E SITES, J.W. 2005. Phylogeography and species limits in the Gymnodactylus darwinii complex (Gekkonidae, Squamata): genetic structure coincides with river systems in the Brazilian Atlantic Forest. Biol. J. Linn. Soc. 85: 13-26.
  • PERES, E.A.; DASILVA, M.B.; ANTUNES, M. & PINTO-DA-ROCHA, R. 2017. A short-range endemic species from south-eastern Atlantic Rain Forest shows deep signature of historical events: phylogeography of harvestmen Acutisoma longipes (Arachnida: Opiliones). Syst. Biodivers. 16: 171-187.
  • PERES, E.A.; PINTO-DA-ROCHA R.; LOHMANN, L.G.; MICHELANGELI, F.A.; MIYAKI, C.Y. & CARNAVAL, A.C. 2020. Patterns of species and lineage diversity in the Atlantic rainforest of Brazil. In Neotropical Diversification: Patterns and Processes (V. Rull & A.C. Carnaval, eds). Springer, Cham, p.415-447.
  • PINAYA, J.L.D.; CRUZ, F.W.; CECCANTINI, G.C. T.; CORRÊA, P.L.P.; PITMAN, N.; VEMADO, F.; LOPEZ, M.C.S.; PEREIRA FO., A.J.; GROHMANN, C.H.; CHIESSI, C.M.; STRÍKIS, N.M.; HORÁK-TERRA, I.; PINAYA, W.H.L.; MEDEIROS, V.B.; SANTOS, R.A.; AKABANE, T.K.; SILVA, M.A.; CHEDDADI, R.; BUSH, M.; HENROT, A.-J.; FRANÇOIS, L.; HAMBUCKERS, A.; BOYER, F.; CARRÉ, M.; COISSAC, E.; et al 2019. Brazilian montane rainforest expansion induced by Heinrich Stadial 1 event. Sci. Rep. 9: 1-14.
  • POORTER, L.; ROZENDAAL, D.M.A.; BONGERS, F.; ALMEIDA-CORTEZ, J.S.; ZAMBRANO, A.M.A.; ÁLVAREZ, F.S.; ANDRADE, J.L.; VILLA, L.F.A.; BALVANERA, P.; BECKNELL, J.M.; BENTOS, T.V.; BHASKAR, R.; BOUKILI, V.; BRANCALION, P.H.S.; BROADBENT, E.N.; CÉSAR, R.G.; CHAVE, J.; CHAZDON, R.L.; DALLA COLLETTA, G.; CRAVEN, D.; DE JONG, B.H.J.; DENSLOW, J.S.; DENT, D.H.; DEWALT, S.J.; GARCÍA, E.D.; DUPUY, J.M; DURÁN, S.M.; ESPÍRITO SANTO, M.M.; FANDIÑO, M.C.; FERNANDES, G.W.; FINEGAN, B.; MOSER, V.G.; HALL, J.S.; HERNÁNDEZ-STEFANONI, J.L.; JAKOVAC, C.C.; JUNQUEIRA, A.B.; KENNARD, D.; LEBRIJA-TREJOS, E.; LETCHER, S.G.; LOHBECK, M.; LOPEZ, O.R.; MARÍN-SPIOTTA, E.; MARTÍNEZ-RAMOS, M.; MARTINS, S.V.; MASSOCA, P.E.S.; MEAVE, J.A.; MESQUITA, R.; MORA, F.; MORENO, V.S.; MÜLLER, S.C.; MUÑOZ, R.; MUSCARELLA, R.; OLIVEIRA NETO, S.N.; NUNES, Y.R.F.; OCHOA-GAONA, S.; PAZ, H.; PEÑA-CLAROS, M.; PIOTTO, D.; RUÍZ, J.; SANAPHRE-VILLANUEVA, L.; SANCHEZ-AZOFEIFA, A.; SCHWARTZ, N.B.; STEININGER, M.K.; THOMAS, W.W.; TOLEDO, M.; URIARTE, M.; UTRERA, L.P.; VAN BREUGEL, M.; VAN DER SANDE, M.T.; VAN DER WAL, H.; VELOSO, M.D.M.; VESTER, H.F.M.; VIEIRA, I.C. G.; VILLA, P.M.; WILLIAMSON, G.B.; WRIGHT, S.J.; ZANINI, K.J.; ZIMMERMAN, J.K. & WESTOBY, M. 2019. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3: 928–934.
  • PRATES, I.; MELO-SAMPAIO, P.R.; DRUMMOND, L.O.; TEIXEIRA, M.; RODRIGUES, M.T. & CARNAVAL A.C. 2017. Biogeographic links between the southern Atlantic Forest and western South America: rediscovery, re-description, and phylogenetic relationships of two rare montane anole lizards from Brazil. Mol. Phylogenet. Evol. 113:49-58.
  • PRATES, I.; RIVERA, D.; RODRIGUES, M.T. & CARNAVAL, A.C. 2016a. A mid-Pleistocene rainforest corridor enabled synchronous invasions of the Atlantic Forest by Amazonian anole lizards. Mol. Ecol. 25: 5174.
  • PRATES, I.; XUE, A.; BROWN, J.L.; ALVARADO-SERRANO, D.F.; RODRIGUES, M.T.; HICKERSON, M.J. & CARNAVAL, A.C. 2016b. Inferring responses to climate dynamics from historical demography in Neotropical forest lizards. P. Natl. Acad. Sci. USA 113: 7978-7985.
  • REGINATO, M. & MICHELANGELI, F. A. 2016. Untangling the phylogeny of Leandra sensu str. (Melastomataceae, Miconieae). Mol. Phylogenet. Evol. 96: 17-32.
  • RIBEIRO, M.C.; METZGER, J.P.; MARTENSEN, A.C.; PONZONI, F.J. & HIROTA, M.M. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142: 1141-1153.
  • RODRÍGUEZ-ZORRO, P.A.; LEDRU, M.-P.; BARD, E.; AQUINO-ALFONSO, O.; CAMEJO, A.; DANIAU, A.-L.; FAVIER, C.; GARCIA, M.; MINELLI, T.D.; ROSTEK, F.; RICARDI-BRANCO, F.; SAWAKUCHI, A.O.; SIMON, Q.; TACHIKAWA, K. & THOUVENY, N. 2020. Shut down of the South American summer monsoon during the penultimate glacial. Sci. Rep. 10: 6275- 6288.
  • ROZENDAAL, D.M.A.; BONGERS, F.; AIDE, T. M.; ALVAREZ-DÁVILA, E.; ASCARRUNZ, N.; BALVANERA, P.; BECKNELL, J.M.; BENTOS, T.V.; BRANCALION, P.H.S.; CABRAL, G.A.L.; CALVO- RODRIGUEZ, S.; CHAVE, J.; CÉSAR, R.G.; CHAZDON, R.L.; CONDIT,R.; DALLINGA, J.; ALMEIDA-CORTEZ, J.S.; FORESTA, H.; JONG, B.; OLIVEIRA, A.; DENSLOW, J.S.; DENT, D.H.; DEWALT, S.J.; DUPUY, J.M.; DURÁN, S.M.; DUTRIEUX, L.P.; ESPÍRITO-SANTO, M.M.; FANDINO, M.C.; FERNANDES, G.W.; FINEGAN, B.; GARCÍA, H.; GONZALEZ, N.; MOSER, V.G.; HALL, J.S.; HERNÁNDEZ- STEFANONI, J.L.; JAKOVAC, C.C.; HERNÁNDEZ, A.J.; HUBBELL, S.; JUNQUEIRA, A.B.; KENNARD, D.; LARPIN, D.; LETCHER, S.G.; LICONA, J.-C.; LEBRIJA-TREJOS, E.; MARÍN-SPIOTTA, E.; MARTÍNEZ-RAMOS, M.; MASSOCA, P.E.S.; MEAVE, J.A.; MESQUITA, R.C.G.; MOLINO, J.-F.; MORA, F.; MÜLLER, S.C.; MUÑOZ, R.; OLIVEIRA NETO, S.N.; NORDEN, N.; NUNES, Y.R. F.; OCHOA-GAONA, S.; ORTIZ-MALAVASSI, E.; OSTERTAG, R.; PEÑA-CLAROS, M.; PÉREZ-GARCÍA, E.A.; PIOTTO, D.; POWERS, J.S.; AGUILAR, J.R.; RODRÍGUEZ, S.; RODRÍGUEZ-VELAZQUEZ, J.; ROMERO-ROMERO, M.A.; RUÍZ,J.; SABATIER, D.; SANCHEZ-AZOFEIFA, A.; ALMEIDA, A.S.; SILVER, W.L.; SCHWARTZ, N.B.; THOMAS, W.; TOLEDO, M.; URIARTE, M.; SAMPAIO, E.V.S.; VAN BREUGEL, M.; VAN DER WAL, H.; MARTINS, S.V.; VELOSO, M.D.M.; VESTER, H.F.M.; VICENTINI, A.; VIEIRA, I.C.G.; VILLA, P.; WILLIAMSON, G.B.; ZANINI, K.J.; ZIMMERMAN, J. & POORTER, L. 2019. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5: eaau3114.
  • RULL, V. & CARNAVAL, A.C. (eds). 2020. Neotropical Diversification: Patterns and Processes. Springer, Cham.
  • SAITER, F.Z.; BROWN, J.L.; THOMAS, W.W.; OLIVEIRA-FILHO, A.T. & CARNAVAL, A.C. 2016. Environmental correlates of floristic regions and plant turnover in the Atlantic Forest hotspot. J. Biogeogr. 43: 2322-2331.
  • SIMON, Q.; LEDRU, M.P.; SAWAKUCHI, A.; FAVIER, C.; MINELLI, T.D.; BARD, E.; THOUVENY, N.; GARCIA, M.; TACHIKAWA, K.; GUEDES, M.; GROHMAN, C. & RODRIGUEZ-ZORRO, P. 2020. Chronostratigraphy of a 1.5±0.1 Ma composite sedimentary record from Colônia basin (SE Brazil): Bayesian modeling based on paleomagnetic, authigenic 10Be/9Be, radiocarbon and luminescence dating. Quat. Geochronol. 58: 101081.
  • STRANGAS, M.; NAVAS, C.A.; RODRIGUES, M.T., & CARNAVAL, A.C. 2019. Thermophysiology, microclimates, and species distributions of lizards in the mountains of the Brazilian Atlantic Forest. Ecography 42: 354-364.
  • STRÍKIS, N.M.; CHIESSI, C.M.; CRUZ, F.W.; VUILLE, M.; CHENG, H.; DE SOUZA BARRETO, E.A.; MOLLENHAUER, G.; KASTEN, S.; KARMANN, I.; EDWARDS, R. L.; BERNAL, J.P. & SALES, H.R. 2015. Timing and structure of Mega-SACZ events during Heinrich Stadial 1. Geophys. Res. Lett. 42: 1-8.
  • STRÍKIS, N. M.; CRUZ, F.W.; BARRETO, E.A. S.; NAUGHTON, F.; VUILLE, M.; CHENG, H.; VOELKER, A.H. L.; ZHANG, H.; KARMANN, I.; EDWARDS, R. L.; AULER, A.S.; SANTOS, .V. & SALES, H.R. (2018). South American monsoon response to iceberg discharge in the North Atlantic. P. Natl. Acad. Sci. USA. 115: 3788-3793.
  • THOM, G.; GEHARA, M.; SMITH, B.T.; MIYAKI, C.Y. & AMARAL, F.R. 2021. Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest. Nat. Commun. 12: 6269.
  • THOM, G.; XUE, A.T.; SAWAKUCHI, A.O.; RIBAS, C.C.; HICKERSON, M.J.; ALEIXO, A. & MIYAKI, C.Y. 2020. Quaternary climate changes as speciation drivers in the Amazon floodplains. Sci. Adv. 6: eaax4718.
  • TRUJILLO-ARIAS; N.; CALDERÓN, L.; SANTOS, F.R.; MIYAKI, C.Y.; ALEIXO, A.; WITTF, C.C.; TUBARO, P.L. & CABANNE, G.S. 2018. Forest corridors between the central Andes and the southern Atlantic Forest enabled dispersal and peripatric diversification without niche divergence in a passerine. Mol. Phylogenet. Evol. 128: 221-232.
  • TRUJILLO-ARIAS, N.; RODRÍGUEZ-CAJARVILLE, M.J.; SARI, E.; MIYAKI, C.Y.; SANTOS, F.R.; WITT, C.C.; BARREIRA, A.S.; GÓMEZ, I.; NAOKI, K.; TUBARO, P.L. & CABANNE, G.S. 2020. Evolution between forest macrorefugia is linked to discordance between genetic and morphological variation in Neotropical passerines. Mol. Phylogenet. Evol. 149: 106849.
  • UTIDA, G.; CRUZ JR, F.W.; ETOURNEAU, J.; BOULOUBASSI, I.; SCHEFUSS, E.; VUILLE, M.; NOVELLO, V. F.; PRADO, L.F.; SIFEDDINE, A.; KLEIN, V.; ZULAR, A.; VIANA, J.C. C. & TURCQ, B. 2019. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Sci. Rep. 9: 1.
  • XUE, A.T. & HICKERSON, M.J. 2020. Comparative phylogeographic inference with genome‐wide data from aggregated population pairs. Evolution 74: 808-830.

Publication Dates

  • Publication in this collection
    27 June 2022
  • Date of issue
    2022

History

  • Received
    04 Feb 2022
  • Accepted
    31 May 2022
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br
Accessibility / Report Error