Acessibilidade / Reportar erro

Stem density and growth of Attalea maripa and Astrocaryum aculeatum: implication for arborescent palms distribution across Amazonian forests

Abstracts

This study examines aspects of the stem density and growth of two large arborescent palms Attalea maripa and Astrocaryum aculeatum and discusses their implication for the palm trees distribution in Amazonia. Stem density and growth were investigated through both laboratory measurements and field estimates of growth rates. The densities of stem samples collected within one individual of each studied species were very distinct. The samples of A. maripa stem were more homogeneous in density than those of A. aculeatum, both from the internal to the external, and from the lower to the upper parts of the stem. Field estimates of stem growth rates revealed that A. maripa growth is also more constant through development in height. Short A. aculeatum palms had faster growth rates than A. maripa, as they get taller, stem growth rates are reduced and approach A. maripa rates. The implications for arborescent palms distribution across Amazonian forests are discussed.

Amazonia; Astrocaryum aculeatum; Attalea maripa; Distribution; Palms; Stem density


Este estudo examina aspectos da densidade do caule e crescimento de duas palmeiras arborescentes de grande porte Attalea maripa e Astrocaryum aculeatum e discute suas implicações para a distribuição de palmeiras arborescentes na Amazônia. Densidade dos caules e crescimento foram investigados através de uma combinação de medidas de laboratório e estimativas de campo de taxas de crescimento. As densidades de amostras do caule coletadas de um indivíduo de cada espécie foram muito distintas. As amostras do caulde de A. maripa foram mais homogêneas em densidade que aquelas de A. aculeatum, tanto das partes internas para externas, como inferiores para superiores dos caules. Estimativas de campo de crescimento do caule revelaram que o crescimento de A. maripa também é mais constante ao longo do desenvolvimento. Palmeiras A. aculeatum baixas tiveram crescimento mais rápido que A. maripa, palmeiras mais altas têm seu crescimento reduzido a níveis semelhantes ao de A. maripa. São discutidas as implicações para a distribuição de palmeiras na Amazônia.

Astrocaryum aculeatum; Attalea maripa; Densidade do caule; Distribuição; Palmeiras


ARTIGOS

Stem density and growth of Attalea maripa and Astrocaryum aculeatum: implication for arborescent palms distribution across Amazonian forests

Rodolfo Salm

School of Environmental Sciences University of East Anglia Norwich NR4 7TJ, United Kingdom e-mail: rodolfosalm@alternex.com.br

Send proofs to author's present address Send proofs to author's present address: Universidade Federal de São Carlos, Programa de Pós-graduação em Ecologia e Recursos Naturais Rododovia Washington Luís, km 235, Monjolinho CEP:13565-905, São Carlos, SP Brazil

ABSTRACT

This study examines aspects of the stem density and growth of two large arborescent palms Attalea maripa and Astrocaryum aculeatum and discusses their implication for the palm trees distribution in Amazonia. Stem density and growth were investigated through both laboratory measurements and field estimates of growth rates. The densities of stem samples collected within one individual of each studied species were very distinct. The samples of A. maripa stem were more homogeneous in density than those of A. aculeatum, both from the internal to the external, and from the lower to the upper parts of the stem. Field estimates of stem growth rates revealed that A. maripa growth is also more constant through development in height. Short A. aculeatum palms had faster growth rates than A. maripa, as they get taller, stem growth rates are reduced and approach A. maripa rates. The implications for arborescent palms distribution across Amazonian forests are discussed.

Key words: Amazonia, Astrocaryum aculeatum, Attalea maripa, Distribution, Palms, Stem density

RESUMO

Este estudo examina aspectos da densidade do caule e crescimento de duas palmeiras arborescentes de grande porte Attalea maripa e Astrocaryum aculeatum e discute suas implicações para a distribuição de palmeiras arborescentes na Amazônia. Densidade dos caules e crescimento foram investigados através de uma combinação de medidas de laboratório e estimativas de campo de taxas de crescimento. As densidades de amostras do caule coletadas de um indivíduo de cada espécie foram muito distintas. As amostras do caulde de A. maripa foram mais homogêneas em densidade que aquelas de A. aculeatum, tanto das partes internas para externas, como inferiores para superiores dos caules. Estimativas de campo de crescimento do caule revelaram que o crescimento de A. maripa também é mais constante ao longo do desenvolvimento. Palmeiras A. aculeatum baixas tiveram crescimento mais rápido que A. maripa, palmeiras mais altas têm seu crescimento reduzido a níveis semelhantes ao de A. maripa. São discutidas as implicações para a distribuição de palmeiras na Amazônia.

Palavras-chave: Astrocaryum aculeatum, Attalea maripa, Densidade do caule, Distribuição, Palmeiras.

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

5. Bibliographic References

Date Received: 06/27/2003

Revised: 09/25/2003

Accepted: 01/05/2004

  • 1.ALVAREZ BUYLLA, E.R. & GARAY, A.A. 1994. Population Genetic-Structure of Cecropia obtusifolia, a Tropical Pioneer Tree Species. Evolution 48:437-453.
  • 2.ALVAREZ BUYLLA, E.R., GARCIA BARRIOS, R., LARAMORENO, C. & MARTINEZ RAMOS, M. 1996. Demographic and Genetic Models in Conservation Biology: Applications and Perspectives for Tropical Rain Forest Tree Species. Annu. Rev. Ecol. Syst. 27:387-421.
  • 3.ANDERSON, A.B., MAY P. H., & BALICK M. 1991. The Subsidy from Nature. New York, Columbia University Press. http://www.biotaneotropica.org.br
  • 4.BAIDER, C. 2000. Demografia e ecologia de dispersão de frutos de Bertholletia excelsa Humb. 7 Bonpl. (Lecythidaceae) em castanhais silvestres da Amazônia Oriental. Tese de Doutorado. Departamento de Ecologia. São Paulo, Universidade de São Paulo, Brazil.
  • 5.BALLÉE, W. 1989. The Culture of Amazonian Forests. Adv. Econ. Bot. 7:1-21.
  • 6.BALLÉE, W., CAMBELL D. G. 1990. Evidence for the successional status of liana forest (Xingú river basin, Amazonian Brazil). Biotropica 22:36-47.
  • 7.BODMER, R.E. 1991. Strategies of Seed Dispersal and Seed Predation in Amazonian Ungulates. Biotropica 23:255-261.
  • 8.CAMPBELL, D. G., DALY, D. C.; PRANCE, G. T.; MACIEL, U. N. 1986. Quantitative ecological inventory of terra firme and Várzea tropical forest on the Rio Xingú, Brazilian Amazon. Brittonia 38:369-393.
  • 9.CONNELL, J.H. 1978. Diversity in Tropical Rain Forests and Coral Reefs. Science 199:1302-1310.
  • 10.CORNER, E.J.H. 1964. The Natural History of Palms. London, Weidenfeld & Nicolson.
  • 11.DE GRANVILLE, J. 1992. Life Forms and Growth Strategies of Guianan Palms as Related to their Ecology. Bull. I. Fr. Étud. And. 21:533-548.
  • 12.FEARNSIDE, P.M. 1997. Wood Density for Estimating Forest Biomass in Brazilian Amazonia. For. Ecol. Manage. 90:59-87.
  • 13.FRAGOSO, J.M.V. 1994. Large Mammals and the Community Dynamics of an Amazonian Rainforest. Florida, PhD thesis, University of Florida.
  • 14.FRAGOSO, J.M.V. 1997. Tapir-Generated Seed Shadows: Scale-Dependent Patchiness in the Amazon Rain Forest. J. Ecol. 85:519-529.
  • 15.FRAGOSO, J.M.V. 1998). Home Range and Movement Patterns of White-Lipped Peccary (Tayassu pecari) Herds in the Northern Brazilian Amazon. Biotropica 30:458-469.
  • 16.FRAGOSO, J.M.V. 1999. Perception of Scale and Resource Partitioning by Peccaries: Behavioral Causes and Ecological Implications. J. Mammal. 80:993-1003.
  • 17.GIVNISH, T.J. 1979. On the Adaptive Significance of Leaf Form. In Topics in plant population biology (O. T. Solbrig, S. Jain, G. B. Johnson & P. H. Raven eds.). Columbia University Press, New York, p. 375-407.
  • 18.GIVNISH, T.J. 1988. Adaptation to Sun and Shade: a Whole-Plant Perspective. Aust. J. Plant Physiol. 15:63-92.
  • 19.HENDERSON, A., GALEANO, G. & BERNAL, R. 1995. Field Guide to the Palms of the Americas. Princeton University Press, Princeton.
  • 20.KAHN, F. 1986. Life Forms of Amazonian Palms in Relation to Forest Structure and Dynamics. Biotropica 18:214-218.
  • 21.KAHN, F. 1987. The Distribution of Palms as a Function of Local Topography in Amazonian Terra Firme forests. Experientia 43:251-259.
  • 22.KAHN, F. & CASTRO, A. 1985. The Palm Community in a Forest of Central Amazonia, Brazil. Biotropica 20:266-269.
  • 23.KAHN, F. & GRANVILLE, J. 1992. Palms in forest Ecosystems of Amazonia. Springer Verlag, Heidelberg.
  • 24.KILLMANN, W. 1983. Some Physical Properties of the Coconut Palm Stem. Wood Sci. Tech. 17:167-185.
  • 25.PIÑERO, D., MARTINEZRAMOS, M. & SARUKHAN, J. 1984. A Population-Model of Astrocaryum-Mexicanum and a Sensitivity Analysis of Its Finite Rate of Increase. J. Ecol. 72:977-991.
  • 26.PIRES, J. M., PRANCE, G. T. 1985. Vegetation types of the Brazilian Amazonia. Amazonia. Prance, G. T. and Lovejoy, T. E. Oxford, Pergamon Press.
  • 27.RADAM 1974. Projeto RadamBrasil Folha SB22 Araguaia e parte da folha SC 22 Tocantins. Rio de Janeiro, Instituto Brasileiro de Geografia e Estatística.
  • 28.RICH, P.M. 1986. Mechanical Architecture of Arborescent Rain Forest Palms. Principes 30:117-131.
  • 29.RICH, P.M. 1987a. Developmental Anatomy of the Stem of Welfia georgii, Iriartea gigantea, and Other Arborescent Palms - Implications for Mechanical Support. Am. J. Bot. 74:792-802.
  • 30.RICH, P.M. 1987b. Mechanical Structure of the Stem of Arborescent Palms. Bot. Gaz. 148:42-50.
  • 31.RICHARDS, P.W. 1952. The tropical Rain Forest. Cambridge University Press, Cambridge.
  • 32.RICHARDS, P. & G.B. WILLIAMSON 1975. Treefalls and Patterns of Understorey Species in a Wet Lowland Forest. Ecology 56:1226-1129.
  • 33.RICHOLSON, J.M. & R. SWARUP 1977. The Anatomy, Morphology, and Physical Properties of the Mature Stem of Coconut Palm. In Proceedings of the Coconut Utilization Seminar held in Tonga 1976 (A. K. Familton, A. J. McQuire, J. A. Kininmonth & A. M. L. Bowles, eds.) Wellington, N.Z, Ministry of Foreign Affairs, Tonga.
  • 34.SALM, R. 2002. The ecology of large arborescent palms, Attalea maripa and Astrocaryum aculeatum in a seasonally-dry Amazonian forest. M.Sc. thesis. School of Environmental Sciences, University of East Anglia, Norwich.
  • 35.SARUKHAN, J. 1978. Studies on the Demography of Tropical Trees. In Tropical trees as living systems (P.B. Tomlinson & H. Zimmerman eds.). Cambridge University Press, Cambridge. http://www.biotaneotropica.org.br
  • 36.SAVAGE, A. J. & ASHTON, P. S. 1983. The Population Structure of the Double Coconut and some other Seychelles Palms. Biotropica 15:15-25.
  • 37.SOUZA, A.F. & MARTINS, F.R. 2002. Spatial distribution of na undergrowth palm in fragments of the Brazilian Atlantic Forest. Plant Ecol. 164:141-155.
  • 38.SOUZA, A.F. MARTINS, F.R. & BERNACCI, L.C. 2003. Clonal growth and repreoductive strategies of the understory tropical palm Geonoma brevispatha: an ontogenetic approach. Can. J. Bot. 81:101-112.
  • 39.SPRUCE, R. 1871. Palmae Amazonicae. Bot. J. Linn. Sc. 11:65-183.
  • 40.SUDO, S. 1980. Some Anatomical Properties and Density of the Stem of Coconut Cocos nucifera with Consideration of Pulp Quality. IAWA Bull. 1:161-171.
  • 41.SVENNING, J.-C. 1999. Recruitment of Tall Arborescent Palms in the Yasuni National Park, Amazonian Ecuador: are Large Treefall Gaps Important? J. Trop. Ecol. 15:355-366.
  • 42.SVENNING, J.-C. 2000. Growth Strategies of Clonal Palms (Arecaceae) in a Neotropical Rain Forest, Yasuní, Equador. Aust. J. Bot. 48:167-178.
  • 43.SVENNING, J.-C. 2001. On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). Bot. Rev. 67:1-53.
  • 44.TOMLINSON, P.B. 1961. Anatomy of Monocotyledons. II. Palmae. Claredon Press, Oxford.
  • 45.TOMLINSON, P.B. 1979. Systematic and Ecology of the Palmae. Annu. Rev. Ecol. Syst.10:85-107.
  • 46.TOMLINSON, P.B. 1990. The Structural Biology of Palms. Clarendon Press, Oxford.
  • 47.TOMLINSON, P.B. & ZIMMERMAN, M.H. 1967. The "Wood" of Monocotyledons. Bull. Int. Assoc. Wood Anat. 1967/2:4-24.
  • 48.UHL, C. & DRANSFIELD, J. 1987. Genera Palmarum.Allen Press, Kansas.
  • 49.WATERHOUSE, F.L.S. & QUINN, C.J. 1978. Growth Patterns in the Stem of the Palm Archontophoenix cunninghamiana Bot. J. Linn. Soc. 77:73-93.
  • 50.WHITMORE, T.C. 1975. Tropical rain forests of the Far East. Clarendon Press, Oxford.
  • 51.WHITMORE, T.C. 1984. Gap Size and Species Richness in Tropical Rain Forest Trees. Ecology 70:536-538.
  • 52.WHITMORE, T.C. 1989. Canopy gaps and the Two Major Groups of Forest Trees. Ecology 70:536-538.
  • 53.WILLIAMSON, G.B. 1984. Gradients in Species Richness and Wood Specific Gravity of Trees. Bull. Torrey Bot. Club 111:51-55.
  • 54.ZIMMERMANN, M.H. 1973. The Monocotyledons: their Evolution and Comparative Biology. IV. Transport Problems in Arborescent Monocotyledons. Q. Rev. Biol. 48:314-321.
  • Send proofs to author's present address:

    Universidade Federal de São Carlos, Programa de Pós-graduação em Ecologia e Recursos Naturais
    Rododovia Washington Luís, km 235, Monjolinho
    CEP:13565-905, São Carlos, SP Brazil
  • Publication Dates

    • Publication in this collection
      10 June 2013
    • Date of issue
      2004

    History

    • Accepted
      01 May 2004
    • Reviewed
      25 Sept 2003
    • Received
      27 June 2003
    Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
    E-mail: contato@biotaneotropica.org.br