Accessibility / Report Error

Do body mass index and fat volume influence vocal quality, phonatory range, and aerodynamics in females?

O índice de massa corporal e o volume de gordura influenciam a qualidade vocal, extensão fonatória e aerodinâmica em mulheres?

Abstracts

PURPOSE: To analyze the impact of body weight and body fat volume on selected parameters of vocal quality, phonatory range, and aerodynamics in females. METHODS: Based on measurements of body mass index in combination with body fat volume, 29 normophonic female subjects were classified as normal weight, underweight, and obese. Voice quality was investigated via auditory-perceptual ratings of breathiness, roughness, and overall dysphonia severity, via various acoustic measures and a multiparametric index. Phonatory range performance was examined using selected measures of the voice range profile and speech range profile. Measures of vocally relevant aerodynamics included vital capacity (i.e., VC), expected VC, phonation quotient, and maximum phonation time (i.e., MPT). RESULTS: Significant differences between the three weight groups were found across several measures of intensity, VC, MPT, and shimmer. As compared to the other groups, significantly higher values of maximum and minimum intensity levels, as well as sound pressure level during habitual running speech were observed for the obese group (all p-values<0.05); whereas, the underweight group had significantly lower values for VC and ratio of expected to measured VC (p-values<0.01). Furthermore, underweight subjects differed significantly as compared to normal weight subjects with lower MPT (p=0.025) and higher lowest-F0 (p=0.035). Finally the obese group showed significantly lower shimmer values than the normal weight subjects (p<0.05). CONCLUSION: Body weight and body fat volume appear to influence select objective measures of voice quality, vocal aerodynamics, and phonatory range performance.

Body mass index; Adipose tissue; Voice quality; Larynx; Air Analysis


OBJETIVO: Analisar o impacto do peso corporal e do volume de gordura corporal sobre parâmetros selecionados de qualidade vocal, tessitura fonatória e aerodinâmica em indivíduos do sexo feminino. MÉTODOS: Com base em medidas de índice de massa corporal e volume de gordura corporal, 29 indivíduos do sexo feminino, de aparelhos fônicos normais, foram distribuídos em grupos de peso normal, abaixo da média e obesos. A qualidade vocal foi investigada por meio de classificações auditório-perceptivas de soprosidade, rugosidade e severidade de disfonia por meio de várias medidas acústicas e índice multiparamétrico. O desempenho da tessitura fonatória foi examinado por meio do uso de medidas selecionadas do perfil de extensão vocal e perfil de extensão discursiva. As medidas de aerodinâmica vocalmente relevantes incluíram capacidade vital (CV), CV esperada, coeficiente fonatório e tempo de fonação máximo (TFM). RESULTADOS: Diferenças significativas entre os três grupos foram encontradas em relação a várias medidas de intensidade, CV, TFM e shimmer. Em comparação com os outros grupos, valores significativamente maiores de níveis de intensidade máxima e mínima e nível de pressão sonora durante discurso habitual foram observados no grupo obeso (todos os valores de p<0,05); já o grupo abaixo do peso apresentou valores significativamente menores para CV e para a proporção de CV esperada em relação à CV medida (valores de p<0,01). Além disso, indivíduos abaixo do peso diferiram significativamente quando comparados a indivíduos de peso normal com TFM menor (p=0,025) e F0 menor mais elevada (p=0,035). Por fim, o grupo obeso apresentou valores de shimmer significativamente menores do que os indivíduos com peso normal (p<0,05). CONCLUSÃO: O peso corporal e o volume de gordura corporal parecem influenciar certas medidas objetivas de qualidade vocal, aerodinâmica vocal e desempenho de tessitura fonatória.

Índice de massa corporal; Tecido adiposo; Qualidade da voz; Laringe; Análise do Ar


  • 1
    Sataloff RT. Professional voice: the science and art of clinical care. 3rd ed. San Diego, CA: Plural Publishing; 2005.
  • 2
    Da Cunha MG, Passerotti GH, Weber R, Zilberstein B, Cecconello I. Voice feature characteristic in morbid obese population. Obes Surg. 2011; 21(3):340-44.
  • 3
    Solomon NP, Helou LB, Dietrich-Burns K, Stojadinovic A. Do obesity and weight loss affect vocal function? Semin Speech Lang. 2011; 32(1):31-42.
  • 4
    Sapienza C, Ruddy BH. Voice disorders: a textbook. San Diego, CA: Plural Publishing; 2009.
  • 5
    Ferreira CP, Gama AC, Santos MA, Maia MO. Laryngeal and vocal analysis in bulimic patients. Braz J Otorhinolaryngol. 2010;76(4):469-77.
  • 6
    Hamdan AL, Sibai A, Rameh C. Effect of fasting on voice in women. J Voice. 2007;21(4):495-501.
  • 7
    Dejonckere PH, Bradley P, Clemente P, Cornut G, Crevier-Buchman L, Friedrich G, Van De Heyning P, Remacle M, Woisard V; Committee on Phoniatrics of the European Laryngological Society (ELS). A basic protocol for functional assessment of voice pathology, especially for investigating the efficacy of (phonosurgical) treatments and evaluating new assessment techniques. Guideline elaborated by the Committee on Phoniatrics of the European Laryngological Society (ELS). Eur Arch Otorhinolaryngol. 2001;258(2):77-82.
  • 8
    Cohen SM, Kim J, Roy N, Asche C, Courey M. Prevalence and causes of dysphonia in a large treatment-seeking population. Laryngoscope. 2012;122(2):343-8.
  • 9
    Vilkman E. Voice problems at work: a challenge for occupational safety and health arrangement. Folia Phoniatr Logop. 2000;52(1-3):120-5.
  • 10
    Belfasky PC, Postma N, Koufman JA. Validiy and reliability of the Reflux Symptom Index (RSI). J Voice. 2002;16(2):274-7.
  • 11
    WHO. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. WHO Technical Report Series 854. Geneva: World Health Organization; 1995.
  • 12
    Meeuwsen S, Horgan GW, Elia M. The relationship between BMI and percent body fat, measured by bioelectrical impedance, in a large adult sample is curvilinear and influenced by age and sex. Clin Nutr. 2010;29(5):560-6.
  • 13
    Jackson AS, Pollock ML. Practical assessment of body composition. Physician Sportsmed. 1985;13:76-90.
  • 14
    Siri WE. The gross composition of the body. Adv Biol Med Phys. 1956;4:239-80.
  • 15
    Heyward V, Wagner D. Applied body composition assessment. 2nd ed. Champaign, IL: Human Kinetics; 2004.
  • 16
    McArdle WD, Katch FI, Katch VL. Exercise physiology, International Edition: nutrition, energy, and human performance. 7th ed. Lippincott Williams & Wilkins, Philadelphia; 2009.
  • 17
    Boersma P, Weenink D. Praat: Doing phonetics by computer, Version 5.1.35 [computer program]. Amsterdam, The Netherlands: Institute of Phonetic Sciences. [cited 2011 Sep 25]. Available from: http://www.praat.org
  • 18
    Hillenbrand J. Speech Tool, Version 1.65 [computer program]. [cited 2011 Sep 25]. Available from: http://homepages.wmich.edu/~hillenbr/
  • 19
    Maryn Y, Corthals P, Van Cauwenberge P, Roy N, De Bodt M. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels. J Voice. 2010;24:540-55.
  • 20
    Barsties B, Maryn Y. Der Acoustic Voice Quality Index in Deutsch: Ein Messverfahren zur allgemeinen Stimmqualität. HNO. 2012;60:715-20.
  • 21
    Baldwin E, de Cournand FA, Richards DW Jr. Pulmonary insufficiency; physiological classification, clinical methods of analysis, standard values in normal subjects. Medicine. 1948;27:243-78.
  • 22
    Portney LG, Watkins MP. Foundations of clinical research: applications to practice. 2nd ed. Prentice Hall Inc, Upper Saddle River, New Jersey; 2000.
  • 23
    Saruç M, Aksoy EA, Vardereli E, Karaaslan M, Ciçek B, Ince U, et al. Risk factors for laryngopharyngeal reflux. Eur Arch Otorhinolaryngol. 2012;269(4):1189-94.
  • 24
    Ringel RL, Chodzko-Zajko WJ. Vocal indices of biological age. J Voice. 1987;1(1):31-7.
  • 25
    Chodzko-Zajko WJ, Ringel RL. Physiological fitness measures and sensory and motor performance in aging. Exp Gerontol. 1987;22(5):317-28.
  • 26
    Brockmann M, Drinnan MJ, Storck C, Carding PN. Reliable jitter and shimmer measurements in voice clinics: the relevance of vowel, gender, vocal intensity, and fundamental frequency effects in a typical clinical task. J Voice. 2011;25(1):44-53.
  • 27
    Kantarci F, Mihmanli I, Demirel MK, Harmanci K, Akman C, Aydogan F, et al. Normal diaphragmatic motion and the effects of body composition: determination with M-mode sonography. J Ultrasound Med. 2004;23(2):255-60.
  • 28
    Titze IR. Vocal fold mass is not a useful quantity for describing F0 in vocalization. J Speech Lang Hear Res. 2011;54(2):520-2.
  • 29
    Lan CC, Su CP, Chou LL, Yang MC, Lim CS, Wu YK. Association of body mass index with exercise cardiopulmonary responses in lung function-matched patients with chronic obstructive pulmonary disease. Heart Lung. 2012;41(4):374-81.
  • 30
    Solomon NP, Garlitz SJ, Milbrath RL. Respiratory and laryngeal contributions to maximum phonation duration. J Voice. 2000;14(3):331-40.

Publication Dates

  • Publication in this collection
    25 Sept 2013
  • Date of issue
    2013

History

  • Received
    20 Feb 2013
  • Accepted
    02 Aug 2013
Sociedade Brasileira de Fonoaudiologia Al. Jaú, 684, 7º andar, 01420-002 São Paulo - SP Brasil, Tel./Fax 55 11 - 3873-4211 - São Paulo - SP - Brazil
E-mail: revista@codas.org.br