Immediate Effects of Prescribed Burning on Chemical Properties of the Cerrado Soil

Sandra Ruth Saavedra Magallanes Marcos Giongo Edmar Vinícius de Carvalho Eliane Aparecida Rotili Ana Claudia Fernandes Jader Nunes Cachoeira Gil Rodrigues dos Santos About the authors

Abstract

The Cerrado biome increasingly suffers from the environmental impacts of human action. Burning is known as an action used to destroy native vegetation and to clean areas mainly with the purpose of growing soybeans, corn, or raising cattle. In this study we aimed to investigate the influence of low-intensity burning on the chemical composition of a Red-Yellow Latosol in a region characterized as Cerrado sensu stricto. A total of 14 parcels of land were demarcated. In order to analyze the effects of fire on the soil chemical properties, soil samples were collected before and within 24 hours of the burning by means of the same methodology. An increase in organic matter and in the levels of Ca2+, Mg2+, K+, Mn2+, Zn2+, B+, S, as well in the ratios characterizing the soil (CECt, SB, Ca+/T, Ca+/Mg+, V, and Ca+/K+), was observed. Variables that determine the acidity of the soil, such as pH and H + Al, presented changes, although not significant (p > 0.05).

Keywords:
fire; micronutrients; soil acidity

1. INTRODUCTION AND OBJECTIVES

The Brazilian Cerrado represents the largest area of savanna in America, spanning approximately 2 million km2 in Central Brazil (Castro et al., 2017Castro AHF, Alvarenga AA, Barbosa JPRAD, Mansur TOF, Paula ACCFF. Avaliação sazonal da atividade da fenilalanina amônia-liase e dos teores de fenóis e taninos totais em Stryphnodendron adstringens (Mart.) Coville. Ciência Florestal 2017; 27(3): 1037-1048. 10.5902/1980509828679
https://doi.org/10.5902/1980509828679...
). Cerrado is characterized by different types of vegetation - pastures, open tree canopies, and dense forests - where spatial distribution is determined by many factors such as soil type and topography, and fire frequency and intensity (Batista et al., 2018Batista EKL, Russell-Smith J, França H, Figueira JEC. An evaluation of contemporary savanna fire regimes in the Canastra National Park, Brazil: outcomes of fire suppression policies. Journal of Environmental Management 2018; 205: 40-49. 10.1016/j.jenvman.2017.09.053
https://doi.org/10.1016/j.jenvman.2017.0...
; Meira et al., 2017Meira MS Jr, Pereira IM, Machado ELM, Mota SLL, Ribeiro PSSP, Otoni TJO. Impacto do fogo em campo sujo no Parque Estadual do Biribiri, Minas Gerais, Brasil. Floresta e Ambiente 2017; 24: e00110814. 10.1590/2179-8087.110814
https://doi.org/10.1590/2179-8087.110814...
).

Soil is a basic component of the forest ecosystem and it is subject to changes by fire. However, its effects - which may alter edaphic factors - are still scarcely studied. According to Resende et al. (2017Resende FC, Cardozo FS, Pereira G. Análise ambiental da ocorrência das queimadas na porção nordeste do Cerrado. Revista do Departamento de Geografia 2017; 34: 31-42. 10.11606/rdg.v34i0.131917
https://doi.org/10.11606/rdg.v34i0.13191...
), although the Cerrado ecosystem is adapted to fire, it can lead to loss of nutrients, compaction, and erosion - a problem that affects vast areas of land. Conversely, when correctly used, controlled burning is known to be a useful tool in preventing high-magnitude fire events, since dry biomass accumulation contributes to increase the occurrence of fire (Batista et al., 2013Batista AC, Beutling A, Pereira JF. Estimativa do comportamento do fogo em queimas experimentais sob povoamentos de Pinus elliottii. Revista Árvore 2013; 37(5): 779-787. 10.1590/S0100-67622013000500001
https://doi.org/10.1590/S0100-6762201300...
; Camargos et al., 2015Camargos VL, Ribeiro GA, Silva AF, Martins SV, Carmo FMS. Estudo do comportamento do fogo em um trecho de floresta estacional semidecídua no município de Viçosa, Minas Gerais. Ciência Florestal 2015; 25(3): 537-545. 10.5902/1980509819605
https://doi.org/10.5902/1980509819605...
).

Effects on the chemical composition of the soil chiefly results from burn severity, which consists of peak temperatures and duration of the fire (Abraham et al., 2018Abraham J, Dowling K, Florentine S. Controlled burn and immediate mobilization of potentially toxic elements in soil, from a legacy mine site in Central Victoria, Australia. Science of the Total Environment 2018; 616-617: 1022-1034. 10.1016/j.scitotenv.2017.10.216
https://doi.org/10.1016/j.scitotenv.2017...
; Certini, 2005Certini G. Effects of fire on properties of forest soils: a review. Oecologia 2005; 143(1): 1-10. 10.1007/s00442-004-1788-8
https://doi.org/10.1007/s00442-004-1788-...
). Thus, soil transformation is directly proportional to the intensity of the fires in the area (Lorenzon et al., 2014Lorenzon SA, Brianezi D, Valdetaro EB, Souza CM, Martins SV, Ribeiro CAAS et al. Análise química de um solo florestal após ocorrência de fogo. Revista Brasileira de Agropecuária Sustentável 2014; 4(2): 142-147. 10.21206/rbas.v4i2.269
https://doi.org/10.21206/rbas.v4i2.269...
).

Following the fire, essential nutrients, such as phosphorus, magnesium, calcium, and potassium, can be released by the ashes (Alcañiz et al., 2018Alcañiz M, Outeiro L, Francos M, Úbeda X. Effects of prescribed fires on soil properties: a review. Science of the Total Environment 2018; 613-614(1): 944-957. 10.1016/j.scitotenv.2017.09.144
https://doi.org/10.1016/j.scitotenv.2017...
). Therefore, burning may favor an increase in fertility - although ephemeral, it is crucial for plant regeneration. However, according to Knicker (2007Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007; 85(1): 91-118. 10.1007/s10533-007-9104-4
https://doi.org/10.1007/s10533-007-9104-...
), the benefits of nutrient mineralization catalyzed by burning can be depleted in the medium term when burning is carried out during the dry season. This is because rain may cause the leaching of nutrients, which results in lower concentrations that may even be inferior to the ones observed in unburned soils.

Although it is a common practice in Brazil, the need for studies whose authors investigate the effects of burning on soil properties is evident, in such a way to improve the management of areas reserved for livestock activities aiming at reducing potential soil damages and contributing to its conservation.

The state of Tocantins represents an important agricultural border area in the country. Few studies have been carried out in Cerrado areas of municipalities in Tocantins measuring the impacts of burning on the chemical properties of the soil. This practice has also been widely used by most producers and pastoralists in the region.

Taking this into consideration, we aimed to determine the immediate effects of fire intensity on the superficial layer of the soil in a Cerrado sensu stricto area in the state of Tocantins, Brazil.

2. MATERIALS AND METHODS

The study was conducted in Fazenda Verdes Mares, in the municipality of Sucupira - state of Tocantins - located at a latitude of 11° 59’ 36” South and longitude of 48° 58’ 15” West, at 257 meters above sea level. According to the Köppen’s classification, it is characterized by a tropical wet-dry climate (Aw) (tropical with wet summer and dry winter), and the average annual precipitation is 1,500 mm. The soil is heterogeneous, with variations among Red-Yellow Latosol, Plinthosol, and Cambisol. Nevertheless, the soil of the experimental area has been described as Red-Yellow Latosol. It is worth noting that the study farm holds soy crops and pastures for cattle; however, the parcels of land composing the experimental area were unchanged, i.e., composed of natural vegetation. The study area is classified according to Ribeiro & Walter’s (1998Ribeiro JF, Walter BMT. Fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP, editores. Cerrado: ambiente e flora. Planaltina: Embrapa-CPAC; 1998. p. 89-166.) category of Cerrado sensu stricto. This savanna-like formation is chiefly characterized by an herb layer, predominantly covered by grasses, and a layer of trees and bushes, with irregular and twisted branches and coverage between 10 and 60% (Eiten, 1994Eiten G. Vegetação do cerrado. In: Pinto MN, editor. Cerrado: caracterização, ocupação e perspectivas. Brasília, DF: Editora UnB; 1994. p. 17-73.).

Prescribed burning was carried out by the team of Centro de Monitoramento Ambiental e Manejo do Fogo (CeMAF) in October 2015 between 11:05 a.m. and 6:05 p.m. A total of 14 parcels of land with 200 m2 in area - 10-m wide and 20-m long - was delimited. The area was marked at its length in 2-meter intervals for measurements of the fire propagation speed (m.s-1) and height. Before and after burning, the combustible material was randomly collected from each parcel in order to determine the available amount of fuel, humidity, and combustible material consumed by the fire.

Prior to burning, the average air temperature (°C), relative humidity (%), and average wind speed (m.s-1) were measured by a portable meteorological station (Kestrel® 4000) located near the experimental area.

Fire behavior parameters, expressed by the fire line propagation speed (m.s-1), flame height (m), and fire intensity (kcal.m-1s-1), have also been determined. Intensity was obtained from the Byram’s equation (1959Byram GM. Combustion of forest fuels. In: Davis KP, editor. Forest fire: control and use. New York: McGraw Hill; 1959. p.61-89.), considering the calorific value of 3,705 kcal.kg-1 determined by Pivello et al. (2010Pivello VR, Oliveras I, Miranda HS, Haridasan M, Sato MN, Meirelles ST. Effect of fires on soil nutrient availability in an open savanna in Central Brazil. Plant and Soil 2010; 337(1-2): 111-123. 10.1007/s11104-010-0508-x
https://doi.org/10.1007/s11104-010-0508-...
) for savanna areas.

Soil chemical properties were determined before and after burning (24 hours). For this purpose, three sampling points were used in each one of the 14 parcels of land for collecting samples composed of the first 5 cm of the superficial layer. Samples were sent to a private laboratory, where the following chemical properties of the soil would be determined: pH (CaCl2): potential of hydrogen; H + Al: potential acidity (cmolc.kg-1); P: available phosphorus (mg.kg-1); S SO4 -2: sulfur (sulphates) (mg.kg-1); K+: available potassium (mg.kg-1); Ca2+: exchangeable calcium (cmolc.kg-1); Mg2+: exchangeable magnesium (cmolc.kg-1); Al3+: exchangeable aluminum or acidity (cmolc.kg-1); OM: organic matter (g.kg-1); OC: organic carbon (g.kg-1); B+: boron (mg.kg-1); Cu2+: copper (mg.kg-1); Fe2+: iron (mg.kg-1); Mn2+: manganese (mg.kg-1); and Zn2+: zinc (mg.kg-1).

Afterwards, we estimated the SB: sum of bases (cmolc.kg-1); CECt: effective cation exchange capacity (cmolc.kg-1); V: percent base saturation (%); m: percent aluminum saturation (%); Ca+/T: calcium saturation in cation exchange capacity (CEC) (%); Mg+/T: magnesium saturation in CEC (%); K+/T: Potassium saturation in CEC (%); Ca+/Mg+: calcium magnesium ratios; Ca+/K+: calcium potassium ratios; Mg+/K+: magnesium potassium ratios. Lastly, values were classified as very low, low, medium, and high, according to the methodology described by Sousa & Lobato (2004Sousa DMG, Lobato E, editores. Cerrado: correção do solo e adubação. 2nd ed. Planaltina: Embrapa Cerrados; 2004.).

All variables were processed in Microsoft Excel (2010) spreadsheets and analyzed by the XLSTAT software, version 19.01 (2017). T-tests (p > 0.05) and the Pearson’s correlation were used for data analysis and comparison.

3. RESULTS AND DISCUSSION

On the day of the burning, the average air temperature was 41.82 °C; relative humidity, 15.74%; and wind speed, 0.40 m.s-1 (Table 1). These meteorological variables changed throughout the day, which impacted variables of the fire behavior. According to Soares & Batista (2007Soares RV, Batista AC. Incêndios florestais: controle, efeitos e uso do fogo. Curitiba: Independentes; 2007.), air temperature varies both in time and in space, whereas the maximum temperature is observed after midday.

Table 1
Description of environmental variables during prescribed burning.

According to our results, and based on McArthur & Cheney’s (1966McArthur AG, Cheney NP. The characterization of fire in relation to ecological studies. Australian Forest Research 1966; 2(3): 36-45.) classification, the burning intensity was very low, accounting for a mean of 84.42 kcal.m-1s-1 with a standard deviation of 72.429 (Table 2). Nevertheless, it was not significantly related to the chemical variables.

Table 2
Variables of the fire behavior.

However, the percentage of combustible material consumed by the fire (CMC) (Table 3), 55.70%, was the only burning-related variable presenting a significant correlation (p < 0.05) with soil chemical properties. These variables consist in the content of Ca2+, Fe2+, CO, SB, and the Ca+/T ratio (Table 4).

Table 3
Description of the quantity of combustible material in the study area.
Table 4
Significant correlations (p < 0.05) between chemical variables and the combustible material consumed.

Oliveira et al. (2005Oliveira IP, Santos KJG, Araujo AA, Oliveira LC. Queimadas e suas consequências na região Centro-Oeste. Revista Eletrônica Faculdade Montes Belos 2005; 1(2): 88-103.) reported that the action of fire with temperatures above 400 °C may cause the loss of P and N in the Cerrado environment, which affects the quality of the soil. Some authors have pointed out that when the fire consumes the initial biomass, its ashes return a significant amount of nutrients to the soil when compared with burned areas without biomass. This indicates to which extent the vegetation cover is important for the soil (Sampaio et al., 2003Sampaio FAR, Fontes LEF, Costa LM, Jucksch I. Balanço de nutrientes e da fitomassa em um argissolo amarelo sob floresta tropical amazônica após a queima e cultivo com arroz. Revista Brasileira de Ciência do Solo 2003; 27(6): 1161-1170. 10.1590/S0100-06832003000600020.
https://doi.org/10.1590/S0100-0683200300...
; Simon et al. 2016Simon CA, Ronqui MB, Roque CG, Desenso PAZ, Souza MAV, Kühn IE et al. Efeitos da queima de resíduos do solo sob atributos químicos de um latossolo vermelho distrófico do cerrado. Nativa 2016; 4(4): 217-221. 10.14583/2318-7670.v04n04a06
https://doi.org/10.14583/2318-7670.v04n0...
).

Before burning, the chemical variables (Table 5) found in the soil of the experimental parcels of land presented very high acidity, with pH below 4.5, and potential acidity (H + Al) and exchangeable acidity (Al3+) on the medium scale. However, aluminum saturation (m) was high, whereas CECt and base saturation (V) presented low levels.

Table 5
Mean chemical variables before and after prescribed burning.

The soil presented an average of 13.5 g.kg-1 of organic matter and 11.14 g.kg-1 of organic content. Considering the macronutrient parameters presented by Sousa & Lobato (2004Sousa DMG, Lobato E, editores. Cerrado: correção do solo e adubação. 2nd ed. Planaltina: Embrapa Cerrados; 2004.), contents of S, P, Ca2+, and Mg2+ were very low, although K+ was at a medium level. The micronutrient variables were found between the very low (Zn2+), low (B+ and Cu2+), medium (Mn2+), and high levels (Fe2+). Pivello et al. (2010Pivello VR, Oliveras I, Miranda HS, Haridasan M, Sato MN, Meirelles ST. Effect of fires on soil nutrient availability in an open savanna in Central Brazil. Plant and Soil 2010; 337(1-2): 111-123. 10.1007/s11104-010-0508-x
https://doi.org/10.1007/s11104-010-0508-...
) observed that, during the dry season, after burning in a Cerrado campo sujo area, the pH was below 4.5 and the potential acidity, above 70%. On the other hand, during the rainy season, the availability of nutrients was higher, including the organic matter content.

In our study, after burning, the organic matter (OM) content increased by 45.7%, followed by the organic carbon (OC), which increased by 20%. Pomianoski et al. (2006Pomianoski DJW, Dedecek RA, Vilcahuaman LJM. Efeito do fogo nas características químicas e biológicas do solo no sistema agroflorestal da Bracatinga. Boletim de Pesquisa Florestal 2006; (52): 93-118. 10.4336/2012.pfb.52.93
https://doi.org/10.4336/2012.pfb.52.93...
) observed the effects of fire on the soil OM in an agroforestry system, and concluded that, after prescribed burning, the availability of organic matter increased by 37% on the first layer (0-5 cm). According to Oyedeji et al. (2016Oyedeji S, Onuche FJ, Animasaun DA, Ogunkunle CO, Agboola OO, Isichei AO. Short-term effects of early-season fire on herbaceous composition, dry matter production and soil fertility in Guinea savanna, Nigeria. Archives of Biological Sciences 2016; 68(1): 7-16. 10.2298/ABS150526002O
https://doi.org/10.2298/ABS150526002O...
), fire quickly accelerates the mineralization of soil organic matter.

Variables that determine soil acidity, such as pH and H + Al, changed, although not significantly. However, aluminum saturation (m) significantly decreased; nevertheless, Al3+ reduced by 26% (Table 5). Faria et al. (2011Faria ABC, Blum TC, Chitsondzo C, Lombardi KC, Batista AC. Efeitos da intensidade da queima controlada sobre o solo e diversidade da vegetação de campo em Irati - PR, Brasil. Revista Brasileira de Ciências Agrárias 2011; 6(3): 489-494. 10.5039/agraria.v6i3a932
https://doi.org/10.5039/agraria.v6i3a932...
) found a slight increase in the pH and exchangeable acidity variables (Al3+) after burning, whereas the potential soil acidity (H + Al) presented significantly lower values. Conversely, Batista & Soares (1995Batista AC, Soares RV. Avaliação do comportamento do fogo em queimas controladas sob povoamentos de Pinus taeda no norte do Paraná. Floresta 1995; 25(1-2): 31-42. 10.5380/rf.v25i12.6443
https://doi.org/10.5380/rf.v25i12.6443...
) did not find a significant difference in characteristics related to soil acidity in a Pinus taeda plantation after burning.

We observed an increase in the saturation of micronutrients K+, Ca2+, Mg2+, S, and P (Table 5), although only the available phosphorus had no significant difference in the analysis. According to Lorenzon et al. (2014Lorenzon SA, Brianezi D, Valdetaro EB, Souza CM, Martins SV, Ribeiro CAAS et al. Análise química de um solo florestal após ocorrência de fogo. Revista Brasileira de Agropecuária Sustentável 2014; 4(2): 142-147. 10.21206/rbas.v4i2.269
https://doi.org/10.21206/rbas.v4i2.269...
), who aimed to determine the consequent effects of fire on Red-Yellow Latosol, there was an increase in the content of P, from 1.61 to 4.19 mg.dm-3; Ca2+, from 3.08 to 6.23 cmolc.dm-3; K, from 42.40 to 44.40 mg.dm-3; and Mg2+, from 0.65 to 1.24 cmolc.dm-3. Rheinheimer et al. (2003Rheinheimer DS, Santos JCP, Fernandes VBB, Mafra AL, Almeida JA. Modificações nos atributos químicos de solo sob campo nativo submetido à queima. Ciência Rural 2003; 33(1): 49-55. 10.1590/S0103-84782003000100008
https://doi.org/10.1590/S0103-8478200300...
) also observed an increase in the content of P after burning. However, they have also observed a sharp decrease of this nutrient on the superficial layer up to 60 days after burning. Yet, the soil presented higher K+ values in the burned parcels of land than in the unburned ones. Simon et al. (2016Simon CA, Ronqui MB, Roque CG, Desenso PAZ, Souza MAV, Kühn IE et al. Efeitos da queima de resíduos do solo sob atributos químicos de um latossolo vermelho distrófico do cerrado. Nativa 2016; 4(4): 217-221. 10.14583/2318-7670.v04n04a06
https://doi.org/10.14583/2318-7670.v04n0...
), upon studying the effects of burning in the Cerrado soil, verified that, in the 0.0-0.5 m depth layer, the Ca+/Mg+ ratio presented higher availability of these nutrients after burning.

Regarding changes in the content of micronutrients, we observed a significant increase in availability of Zn2+, Mn2+, and B+ contents (Table 5). Couto et al. (2006Couto EG, Cunha LACCN, Loureiro MF. Estudo sobre o impacto do fogo na disponibilidade de nutrientes, no banco de sementes e na biota de solos da RPPN Sesc Pantanal. Rio de Janeiro: Sesc; 2006. (Conhecendo o Pantanal; vol. 2).) studied the impact of fire on the availability of soil nutrients in the Pantanal region, and according to their results, there were no changes in Mg2+, B+, and Fe2+ values. Additionally, they found a slight increase in Cu2+ values.

According to the statistical analyses, we found a significant increase in the CECt, SB, and Ca+/T ratios (Table 5). However, the K+/T and Mg+/T ratios significantly decreased (Table 5). Simon et al. (2016Simon CA, Ronqui MB, Roque CG, Desenso PAZ, Souza MAV, Kühn IE et al. Efeitos da queima de resíduos do solo sob atributos químicos de um latossolo vermelho distrófico do cerrado. Nativa 2016; 4(4): 217-221. 10.14583/2318-7670.v04n04a06
https://doi.org/10.14583/2318-7670.v04n0...
) verified that, after burning, the superficial layer (0-5 cm) presented higher CEC values. This result was justified by the increase in availability of bases in the soil, besides the organic matter mineralization after burning. Thus, CEC increased due to the increase in bases and negative loads in the soil, which allowed these elements to be retained. Similar results have also been observed by other authors (e.g., Dick et al., 2008Dick DP, Martinazzo R, Dalmolin RSD, Jacques AVA, Mielniczuk J, Rosa AS. Impacto da queima nos atributos químicos do solo, na composição da matéria orgânica e na vegetação. Pesquisa Agropecuária Brasileira 2008; 43(5): 633-640.; Rheinheimer et al., 2003Rheinheimer DS, Santos JCP, Fernandes VBB, Mafra AL, Almeida JA. Modificações nos atributos químicos de solo sob campo nativo submetido à queima. Ciência Rural 2003; 33(1): 49-55. 10.1590/S0103-84782003000100008
https://doi.org/10.1590/S0103-8478200300...
). According to these authors, the increase in cation concentration (Ca2+ and Mg2+) may be related to the release of oxides from the ashes.

4. CONCLUSIONS

Burning releases nutrients over a period of 24 hours and causes a number of chemical changes to the soil. These changes may be beneficial or harmful to chemical properties, and the degree of variation of their benefit or harm depends on several factors such as the use and type of burned soil, combustible material, time of day, duration, intensity, and frequency.

Low-to-moderate fire intensity may promote an increase in the availability of organic matter and other nutrients, such as Ca2+, Mg2+, K+, Mn2+, Zn2+, B+, and S, as well as in the ratios characterizing the soil, CECt, SB, Ca+/T, Ca+/Mg+, V, and Ca+/K+.

ACKNOWLEDGEMENTS

The authors thank Universidade Federal do Tocantins (UFT), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes).

REFERENCES

  • Abraham J, Dowling K, Florentine S. Controlled burn and immediate mobilization of potentially toxic elements in soil, from a legacy mine site in Central Victoria, Australia. Science of the Total Environment 2018; 616-617: 1022-1034. 10.1016/j.scitotenv.2017.10.216
    » https://doi.org/10.1016/j.scitotenv.2017.10.216
  • Alcañiz M, Outeiro L, Francos M, Úbeda X. Effects of prescribed fires on soil properties: a review. Science of the Total Environment 2018; 613-614(1): 944-957. 10.1016/j.scitotenv.2017.09.144
    » https://doi.org/10.1016/j.scitotenv.2017.09.144
  • Batista AC, Beutling A, Pereira JF. Estimativa do comportamento do fogo em queimas experimentais sob povoamentos de Pinus elliottii Revista Árvore 2013; 37(5): 779-787. 10.1590/S0100-67622013000500001
    » https://doi.org/10.1590/S0100-67622013000500001
  • Batista AC, Soares RV. Avaliação do comportamento do fogo em queimas controladas sob povoamentos de Pinus taeda no norte do Paraná. Floresta 1995; 25(1-2): 31-42. 10.5380/rf.v25i12.6443
    » https://doi.org/10.5380/rf.v25i12.6443
  • Batista EKL, Russell-Smith J, França H, Figueira JEC. An evaluation of contemporary savanna fire regimes in the Canastra National Park, Brazil: outcomes of fire suppression policies. Journal of Environmental Management 2018; 205: 40-49. 10.1016/j.jenvman.2017.09.053
    » https://doi.org/10.1016/j.jenvman.2017.09.053
  • Byram GM. Combustion of forest fuels. In: Davis KP, editor. Forest fire: control and use New York: McGraw Hill; 1959. p.61-89.
  • Camargos VL, Ribeiro GA, Silva AF, Martins SV, Carmo FMS. Estudo do comportamento do fogo em um trecho de floresta estacional semidecídua no município de Viçosa, Minas Gerais. Ciência Florestal 2015; 25(3): 537-545. 10.5902/1980509819605
    » https://doi.org/10.5902/1980509819605
  • Castro AHF, Alvarenga AA, Barbosa JPRAD, Mansur TOF, Paula ACCFF. Avaliação sazonal da atividade da fenilalanina amônia-liase e dos teores de fenóis e taninos totais em Stryphnodendron adstringens (Mart.) Coville. Ciência Florestal 2017; 27(3): 1037-1048. 10.5902/1980509828679
    » https://doi.org/10.5902/1980509828679
  • Certini G. Effects of fire on properties of forest soils: a review. Oecologia 2005; 143(1): 1-10. 10.1007/s00442-004-1788-8
    » https://doi.org/10.1007/s00442-004-1788-8
  • Couto EG, Cunha LACCN, Loureiro MF. Estudo sobre o impacto do fogo na disponibilidade de nutrientes, no banco de sementes e na biota de solos da RPPN Sesc Pantanal Rio de Janeiro: Sesc; 2006. (Conhecendo o Pantanal; vol. 2).
  • Dick DP, Martinazzo R, Dalmolin RSD, Jacques AVA, Mielniczuk J, Rosa AS. Impacto da queima nos atributos químicos do solo, na composição da matéria orgânica e na vegetação. Pesquisa Agropecuária Brasileira 2008; 43(5): 633-640.
  • Eiten G. Vegetação do cerrado. In: Pinto MN, editor. Cerrado: caracterização, ocupação e perspectivas Brasília, DF: Editora UnB; 1994. p. 17-73.
  • Faria ABC, Blum TC, Chitsondzo C, Lombardi KC, Batista AC. Efeitos da intensidade da queima controlada sobre o solo e diversidade da vegetação de campo em Irati - PR, Brasil. Revista Brasileira de Ciências Agrárias 2011; 6(3): 489-494. 10.5039/agraria.v6i3a932
    » https://doi.org/10.5039/agraria.v6i3a932
  • Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007; 85(1): 91-118. 10.1007/s10533-007-9104-4
    » https://doi.org/10.1007/s10533-007-9104-4
  • Lorenzon SA, Brianezi D, Valdetaro EB, Souza CM, Martins SV, Ribeiro CAAS et al. Análise química de um solo florestal após ocorrência de fogo. Revista Brasileira de Agropecuária Sustentável 2014; 4(2): 142-147. 10.21206/rbas.v4i2.269
    » https://doi.org/10.21206/rbas.v4i2.269
  • McArthur AG, Cheney NP. The characterization of fire in relation to ecological studies. Australian Forest Research 1966; 2(3): 36-45.
  • Meira MS Jr, Pereira IM, Machado ELM, Mota SLL, Ribeiro PSSP, Otoni TJO. Impacto do fogo em campo sujo no Parque Estadual do Biribiri, Minas Gerais, Brasil. Floresta e Ambiente 2017; 24: e00110814. 10.1590/2179-8087.110814
    » https://doi.org/10.1590/2179-8087.110814
  • Oliveira IP, Santos KJG, Araujo AA, Oliveira LC. Queimadas e suas consequências na região Centro-Oeste. Revista Eletrônica Faculdade Montes Belos 2005; 1(2): 88-103.
  • Oyedeji S, Onuche FJ, Animasaun DA, Ogunkunle CO, Agboola OO, Isichei AO. Short-term effects of early-season fire on herbaceous composition, dry matter production and soil fertility in Guinea savanna, Nigeria. Archives of Biological Sciences 2016; 68(1): 7-16. 10.2298/ABS150526002O
    » https://doi.org/10.2298/ABS150526002O
  • Pivello VR, Oliveras I, Miranda HS, Haridasan M, Sato MN, Meirelles ST. Effect of fires on soil nutrient availability in an open savanna in Central Brazil. Plant and Soil 2010; 337(1-2): 111-123. 10.1007/s11104-010-0508-x
    » https://doi.org/10.1007/s11104-010-0508-x
  • Pomianoski DJW, Dedecek RA, Vilcahuaman LJM. Efeito do fogo nas características químicas e biológicas do solo no sistema agroflorestal da Bracatinga. Boletim de Pesquisa Florestal 2006; (52): 93-118. 10.4336/2012.pfb.52.93
    » https://doi.org/10.4336/2012.pfb.52.93
  • Resende FC, Cardozo FS, Pereira G. Análise ambiental da ocorrência das queimadas na porção nordeste do Cerrado. Revista do Departamento de Geografia 2017; 34: 31-42. 10.11606/rdg.v34i0.131917
    » https://doi.org/10.11606/rdg.v34i0.131917
  • Rheinheimer DS, Santos JCP, Fernandes VBB, Mafra AL, Almeida JA. Modificações nos atributos químicos de solo sob campo nativo submetido à queima. Ciência Rural 2003; 33(1): 49-55. 10.1590/S0103-84782003000100008
    » https://doi.org/10.1590/S0103-84782003000100008
  • Ribeiro JF, Walter BMT. Fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP, editores. Cerrado: ambiente e flora Planaltina: Embrapa-CPAC; 1998. p. 89-166.
  • Sampaio FAR, Fontes LEF, Costa LM, Jucksch I. Balanço de nutrientes e da fitomassa em um argissolo amarelo sob floresta tropical amazônica após a queima e cultivo com arroz. Revista Brasileira de Ciência do Solo 2003; 27(6): 1161-1170. 10.1590/S0100-06832003000600020.
    » https://doi.org/10.1590/S0100-06832003000600020
  • Simon CA, Ronqui MB, Roque CG, Desenso PAZ, Souza MAV, Kühn IE et al. Efeitos da queima de resíduos do solo sob atributos químicos de um latossolo vermelho distrófico do cerrado. Nativa 2016; 4(4): 217-221. 10.14583/2318-7670.v04n04a06
    » https://doi.org/10.14583/2318-7670.v04n04a06
  • Soares RV, Batista AC. Incêndios florestais: controle, efeitos e uso do fogo Curitiba: Independentes; 2007.
  • Sousa DMG, Lobato E, editores. Cerrado: correção do solo e adubação 2nd ed. Planaltina: Embrapa Cerrados; 2004.

  • FINANCIAL SUPPORT Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Publication Dates

  • Publication in this collection
    18 May 2020
  • Date of issue
    2020

History

  • Received
    05 June 2018
  • Accepted
    24 Nov 2018
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro Rodovia BR 465 Km 7, CEP 23897-000, Tel.: (21) 2682 0558 | (21) 3787-4033 - Seropédica - RJ - Brazil
E-mail: floram@ufrrj.br