Acessibilidade / Reportar erro

Genetic connectivity in the spotted rose snapper Lutjanus guttatus (Lutjaniformes: Lutjanidae) between Mexico and Panama throughout the Tropical Eastern Pacific

Abstract

The spotted rose snapper, Lutjanus guttatus, is an important fishery species with high potential for aquaculture. Genetic characterization of its natural populations is necessary to avoid stock collapse and loss of genetic diversity. Previous studies carried out in the Tropical Eastern Pacific (TEP), however, have shown contrasting results in the genetic structure of fish populations, particularly in species of Lutjanidae. Therefore, to understand the genetic structure of spotted rose snapper in the TEP, twelve microsatellite loci were used to assess the genetic diversity and explore the hypothesis of population genetic structure in samples of the species collected throughout the TEP. Fin clips from 186 sampled individuals (27 to 49 per site) were analyzed from five sites in the three regional biogeographic provinces, delimited by shoreline reef habitat breaks: La Paz (Cortez province), Colima and Oaxaca (Mexican province), Chiriqui and Port of Panama (Panamic province). Results of global Analysis of Molecular Variance (AMOVA), population pairwise FST, hierarchical AMOVA, and a discriminant analysis of principal components (DAPC) reflected a panmictic population involving the entire set of sampled sites. The role of larval dispersal, post-recruitment migration, and marine current dynamics as drivers of genetic connectivity in this species is discussed.

Keywords:
Biogeographic province; Gene flow; Microsatellites; Population genetic structure

Resumen

El pargo lunarejo, Lutjanus guttatus, es una importante especie pesquera, con alto potencial para la acuicultura. La caracterización genética de sus poblaciones naturales es necesaria para evitar el colapso del stock y la pérdida de diversidad genética. Sin embargo, estudios previos realizados en el Pacífico Oriental Tropical (TEP), han mostrado resultados contrastantes en la estructura genética de poblaciones de peces, particularmente en especies de Lutjanidae. Por lo tanto, para entender la estructura genética del pargo lunarejo en el TEP, se usaron 12 loci microsatélites para evaluar la diversidad genética y explorar la hipótesis de estructura genética poblacional en muestras de la especie colectada a lo largo del TEP. Se analizaron fragmentos de aletas de 186 individuos (27 a 49 por sitio) de cinco localidades en las tres provincias biogeográficas regionales, delimitadas por las discontinuidades de hábitat de arrecife costero: La Paz (Provincia de Cortés), Colima y Oaxaca (Provincia Mexicana), Chiriquí y Puerto de Panamá (Provincia Panámica). Los resultados del Análisis de Varianza Molecular (AMOVA) global, FST de poblaciones pareadas, AMOVA jerárquico y un análisis discriminante de componentes principales (DAPC) reflejaron una población panmíctica que involucraba todo el conjunto de sitios muestreados. Se discute el papel de la dispersión larvaria, migración post-reclutamiento y la dinámica de las corrientes marinas como propulsores de la conectividad genética en esta especie.

Palabras clave:
clave: Estructura genética poblacional; Flujo genético; Microsatélites; Provincia biogeográfica

INTRODUCTION

The spotted rose snapper, Lutjanus guttatus (Steindachner, 1869), is distributed throughout the Tropical Eastern Pacific (TEP) from the Gulf of California, Mexico, to Peru, including oceanic islands. It is an important food and recreational fishery species with a high market price of US$6-8 per kg (Sarabia-Méndez et al., 2010Sarabia-Méndez M, Gallardo-Cabello M, Espino-Barr E, Anislado-Tolentino V. Characteristics of population dynamics of Lutjanus guttatus (Pisces: Lutjanidae) in Bufadero Bay, Michoacan, Mexico. Hidrobiológica. 2010; 20(2):147–57.; Ibarra-Castro et al., 2012Ibarra-Castro L, Alvarez-Lajonchére L, García-Aguilar N, Abdo de la Parra MI, Rodríguez-Ibarra LE. Generation cycle closure of the spotted rose snapper, Lutjanus guttatus, in captivity. Rev Biol Mar Oceanog. 2012; 47(2):333–37. http://dx.doi.org/10.4067/S0718-19572012000200015
http://dx.doi.org/10.4067/S0718-19572012...
) and a high potential for aquaculture in Mexico (García-Ortega et al., 2005García-Ortega A, Abdo-de la Parra I, Duncan NJ, Rodríguez-Ibarra E, Velasco G, González-Rodríguez B, Puello-Cruz A, Martinez I. Larval rearing of Spotted Rose Snapper Lutjanus guttatus under experimental conditions. In: Hendry CI, Van Stappen G, Wille M, Sorgeloos P, editors. Larvi 05 – Fish & Shellfish Larviculture Symposium. Oostende: European Aquaculture Society; 2005. p.172–75.). Despite its great economic importance, there are few studies that use molecular techniques to identify stocks in L. guttatus, critical information for the to managing exploitation of mixed or locally discrete stocks and avoiding loss of genetic diversity and possible stock collapse (Pauly et al., 1996Pauly D, Arreguín-Sánchez F, Munro JL, Balgos MC. Biology, fisheries and culture of Snappers and Groupers: workshop conclusions and updates to 1996. In: Arreguín-Sánchez F, Munro JL, Balgos MC, Pauly D, editors. Biology, fisheries and culture of tropical groupers and snappers. Manila: ICLARM; 1996. p.1–10.).

The TEP is a region that extends along 2,500 km from the equator north to the southernmost tip of the Baja California Peninsula (Kessler, 2006Kessler WS. The circulation of the eastern tropical Pacific: a review. Prog Oceanogr. 2006; 69:181–217. https://doi.org/10.1016/j.pocean.2006.03.009
https://doi.org/10.1016/j.pocean.2006.03...
). The TEP coast is a highly dynamic environment, with sea temperatures ranging from warm to temperate, upwelling systems and various large gyres, alternating currents, and large rocky-habitat discontinuities that may greatly influence the genetic connectivity of populations (Robertson, Cramer, 2009Robertson DR, Cramer KL. Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Mar Ecol Prog Ser. 2009; 380:1–17. https://doi.org/10.3354/meps07925
https://doi.org/10.3354/meps07925...
; Sandoval-Huerta et al., 2019Sandoval-Huerta ER, Beltrán-López RG, Pedraza-Marrón CR, Paz-Velásquez MA, Angulo A, Robertson DR, Espinoza E, Domínguez-Domínguez O. The evolutionary history of the goby Elacatinus puncticulatus in the tropical eastern pacific: Effects of habitat discontinuities and local environmental variability. Mol Phylogenet Evol. 2019; 130:269–85. https://doi.org/10.1016/j.ympev.2018.10.020
https://doi.org/10.1016/j.ympev.2018.10....
). These physical characteristics can affect distributions of species with narrow environmental tolerances and influence the dispersal of pelagic larvae, resulting in variable gene flow (from reproductive isolation to high connectivity) between adjacent populations (García-De León et al., 2018García-De León FJ, Galván-Tirado C, Sánchez-Velasco L, Silva-Segundo CA, Hernández-Guzmán R, Barriga-Sosa IA, Díaz-Jaimes P, Canino M, Cruz-Hernández P. Role of oceanography in shaping the genetic structure in the North Pacific hake Merluccius productus. PLoS ONE. 2018; 13:1–26. https://doi.org/10.1371/journal.pone.0194646
https://doi.org/10.1371/journal.pone.019...
; Sandoval-Huerta et al., 2019Sandoval-Huerta ER, Beltrán-López RG, Pedraza-Marrón CR, Paz-Velásquez MA, Angulo A, Robertson DR, Espinoza E, Domínguez-Domínguez O. The evolutionary history of the goby Elacatinus puncticulatus in the tropical eastern pacific: Effects of habitat discontinuities and local environmental variability. Mol Phylogenet Evol. 2019; 130:269–85. https://doi.org/10.1016/j.ympev.2018.10.020
https://doi.org/10.1016/j.ympev.2018.10....
).

There are several hypotheses about biogeographic partitioning in the TEP, where environmental and ecological differences have promoted speciation in the absence of isolation of diverging populations (Briggs, Bowen, 2012Briggs JC, Bowen BW. A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr. 2012; 39(1):12–30. https://doi.org/10.1111/j.1365-2699.2011.02613.x
https://doi.org/10.1111/j.1365-2699.2011...
). Robertson, Cramer, (2009)Robertson DR, Cramer KL. Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Mar Ecol Prog Ser. 2009; 380:1–17. https://doi.org/10.3354/meps07925
https://doi.org/10.3354/meps07925...
determined that three biogeographic provinces exist: the Cortez (Gulf of California and the southernmost Pacific Baja California), the Panamic (southward) and the Island province. However, Walker, (1960)Walker BW. The distribution and affinities of the marine fish fauna of the Gulf of California. Syst Zool. 1960; 9(3–4):123–33. https://doi.org/10.2307/2411961
https://doi.org/10.2307/2411961...
had previously defined two provinces in Mexico based on the distribution of locally endemic reef fishes: a Cortez Province from the Pacific coast of Baja California below 25° N, including the Gulf of California, and a Mexican province for the remainder. Within the TEP, there are also two major breaks in the distribution of shoreline reef habitats, consistent with shoreline extensions of sand and mud, named the Sinaloan Gap (370 km in the SE Gulf of California), and the Central American Gap (around 1000 km, from the Gulf of Tehuantepec, Mexico, to El Salvador). These gaps separated three mainland provinces (Cortez, Mexican, and Panamic) defined by Hastings, (2000)Hastings PA. Biogeography of the tropical eastern Pacific: distribution and phylogeny of chaenopsid fishes. Zool J Linn Soc Lond. 2000; 128(3):319–35. https://doi.org/10.1111/j.1096-3642.2000.tb00166.x
https://doi.org/10.1111/j.1096-3642.2000...
. Finally, the TEP was split into two provinces, the Galapagos and the remainder of the region, by Spalding et al., (2007)Spalding MD, Fox HE, Allen GR, Davidson N, Fierdaña ZA, Finlayson M et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience. 2007; 57(7):573–83. https://doi.org/10.1641/B570707
https://doi.org/10.1641/B570707...
.

Many studies carried out in the TEP have obtained measures of gene flow to explore levels of population genetic differentiation and evaluate the influence of habitat gaps and oceanographic processes, with contrasting results. Gene flow rates among coral and North Pacific hake (Merluccius productus (Ayres, 1855)) populations along coast are high, although populations at the northernmost and the southernmost peripheries appear to be more genetically isolated (Lessios, Baums, 2017Lessios HA, Baums LB. Gene flow in coral reef organisms of the Tropical Eastern Pacific. In: Glynn PW, Derek PM, Ian CE, editors. Coral Reefs of the Eastern Tropical Pacific, Coral Reefs of the World 8: Springer Dordrecht; 2017. p.477–99. https://doi.org/10.1007/978-94-017-7499-4
https://doi.org/10.1007/978-94-017-7499-...
; García-De León et al., 2018García-De León FJ, Galván-Tirado C, Sánchez-Velasco L, Silva-Segundo CA, Hernández-Guzmán R, Barriga-Sosa IA, Díaz-Jaimes P, Canino M, Cruz-Hernández P. Role of oceanography in shaping the genetic structure in the North Pacific hake Merluccius productus. PLoS ONE. 2018; 13:1–26. https://doi.org/10.1371/journal.pone.0194646
https://doi.org/10.1371/journal.pone.019...
). Strong subdivisions between populations of the goby Elacatinus puncticulatus (Ginsburg, 1938) were better explained by local oceanographic processes than the largest habitat discontinuities (Sandoval-Huerta et al., 2019Sandoval-Huerta ER, Beltrán-López RG, Pedraza-Marrón CR, Paz-Velásquez MA, Angulo A, Robertson DR, Espinoza E, Domínguez-Domínguez O. The evolutionary history of the goby Elacatinus puncticulatus in the tropical eastern pacific: Effects of habitat discontinuities and local environmental variability. Mol Phylogenet Evol. 2019; 130:269–85. https://doi.org/10.1016/j.ympev.2018.10.020
https://doi.org/10.1016/j.ympev.2018.10....
). Meanwhile, basin-wide connectivity and shallow population structure in the olive ridley sea turtle (Lepidochelys olivacea (Eschscholtz, 1829)) seems due, in part, to their low nesting site fidelity and broad foraging ranges (Silver-Gorges et al., 2020Silver-Gorges I, Koval J, Rodriguez-Zarate CJ, Paladino FV, Jordan M. Large-scale connectivity, cryptic population structure, and relatedness in Eastern Pacific Olive ridley sea turtles (Lepidochelys olivacea). Ecol Evol. 2020; 10(16):8688–704. https://doi.org/10.1002/ece3.6564
https://doi.org/10.1002/ece3.6564...
).

Recently, three studies of population genetics in different snapper species (Lutjanidae) in the TEP were completed. The first study carried out using sequencing of the mtDNA control region on Lutjanus peru (Nichols & Murphy, 1922) (~800 bp) and L. guttatus (576 bp) found high overall levels of genetic diversity and a lack of genetic differentiation for both species (Hernández-Álvarez et al., 2020Hernández-Álvarez C, Bayona-Vásquez NJ, Domínguez-Domínguez O, Uribe-Alcocer M, Díaz-Jaimes P. Phylogeography of the pacific red snapper (Lutjanus peru) and spotted rose snapper (Lutjanus guttatus) in the inshore Tropical Eastern Pacific. Copeia. 2020; 108(1):61–71. https://doi.org/10.1643/CG-18-157
https://doi.org/10.1643/CG-18-157...
). These results indicate that equatorial and subtropical residents display high levels of connectivity and highlight that no significant effect of environmental differences between Cortez and Panamic provinces exist. In contrast, a study using 13 microsatellite loci on L. peru and 11 microsatellite loci on L. argentiventris (Peters, 1869) evaluated genetic diversity across 10 and five locations, respectively (Reguera-Rouzaud et al., 2021Reguera-Rouzaud N, Díaz-Viloria N, Pérez-Enríquez R, Espino-Barr E, Rivera-Lucero MI, Munguía-Vega A. Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical eastern Pacific. J Fish Biol. 2021; 98(5):1267–80. https://doi.org/10.1111/jfb.14656
https://doi.org/10.1111/jfb.14656...
). Significant genetic structure was identified in both species, but the pattern of genetic structure differed between species. These authors suggested two possible drivers, including isolation by distance (IBD) at a spatial scale of more than 2,500 km and the presence of potential barriers to gene flow at smaller scales (< 250 km). The most recent study of L. guttatus, covering nearly all its distributional area, used 2003 single nucleotide polymorphisms (SNPs); including neutral loci (1858 SNPs) and outlier loci (145 SNPs) to assess genetic variation and population genetic structure (Mar-Silva et al., 2023Mar-Silva A, Diaz-Jaimes P, Domínguez-Mendoza C, Domínguez-Domínguez O, Valdiviezo-Rivera J, Espinoza-Herrera E. Genomic assessment reveals signal of adaptive selection in populations of the Spotted rose snapper Lutjanus guttatus from the Tropical Eastern Pacific. PeerJ. 2023; 11:e15029 http://doi.org/10.7717/peerj.15029
http://doi.org/10.7717/peerj.15029...
). For neutral loci (NL), no differences were found, but with outlier loci (OL) two clusters were found dividing at the Gulf of Panama, suggesting the role of selection in generating genetic differences in L. guttatus.

Because microsatellites are assumed to be neutral markers, codominant with Mendelian inheritance, have higher mutation rates than mtDNA (Liu, Cordes, 2004Liu ZJ, Cordes JF. DNA marker technologies and their applications in aquaculture genetics. Aquaculture. 2004; 238:1–37. https://doi.org/10.1016/j.aquaculture.2004.05.027
https://doi.org/10.1016/j.aquaculture.20...
; Hernández-Álvarez et al., 2020Hernández-Álvarez C, Bayona-Vásquez NJ, Domínguez-Domínguez O, Uribe-Alcocer M, Díaz-Jaimes P. Phylogeography of the pacific red snapper (Lutjanus peru) and spotted rose snapper (Lutjanus guttatus) in the inshore Tropical Eastern Pacific. Copeia. 2020; 108(1):61–71. https://doi.org/10.1643/CG-18-157
https://doi.org/10.1643/CG-18-157...
), and higher levels of genetic diversity in number of alleles per locus (NA) and heterozygosities (HO and HE) than SNPs (Mar-Silva et al., 2023Mar-Silva A, Diaz-Jaimes P, Domínguez-Mendoza C, Domínguez-Domínguez O, Valdiviezo-Rivera J, Espinoza-Herrera E. Genomic assessment reveals signal of adaptive selection in populations of the Spotted rose snapper Lutjanus guttatus from the Tropical Eastern Pacific. PeerJ. 2023; 11:e15029 http://doi.org/10.7717/peerj.15029
http://doi.org/10.7717/peerj.15029...
), they are better suited to studying mutation-drift equilibrium and gene flow among populations. The hypothesis of the existence of population genetic structure in L. guttatus in the TEP was therefore retested using a set of 12 mostly tetranucleotide microsatellite loci to explore genetic diversity and neutral population genetic structure among five sites distributed throughout the TEP.

MATERIAL AND METHODS

Sampling. Fin clips were collected from 30–50 individuals from each of five locations across the three putative mainland provinces in the TEP (three from Mexico and two from Panama) and preserved in ethanol (80%) (Fig. 1; Tab. 1). Note that this study did not include specimens from the Galapagos Islands, an island province where the species is also reported (Robertson, Allen, 2015Robertson DR, Allen GR. Shorefishes of the Tropical Eastern Pacific: online information system version 2.0. Smithsonian Tropical Research Institute [Internet]. Balboa; 2015. Available from: www.stri.org/sftep), because originally was focused on the three mainland provinces scheme. Captures of L. guttatus at every site were supported by commercial fishermen.

FIGURE 1 |
Sampling sites for adult Lutjanus guttatus along the Tropical Eastern Pacific. La Paz (PAZ), Colima (COL), and Oaxaca (OAX) are in Mexican waters and Chiriquí (CHI) and Panama Port (PAN) are in Panama.

TABLE 1 |
Lutjanus guttatus tissue collections. Samples sizes (n), mean standard lengths (centimeters), standard deviations (inside parentheses), collection dates, and biogeographic province of origin in the Tropical Eastern Pacific.

DNA extraction and PCR. Genomic DNA was obtained by a salt extraction technique from Aljanabi, Martinez, (1997)Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1997; 25(22):4692–93. https://doi.org/10.1093/nar/25.22.4692
https://doi.org/10.1093/nar/25.22.4692...
that contained a modified homogenizing buffer (5M NaCl, 1M Tris-HCl, 0.5M EDTA, 10% SDS, pH 8.0), and DNA extracts were standardized to 30 ng/µl. A set of 12 microsatellite loci were selected based on their numbers of alleles (moderate to high polymorphism) and general conformation to Hardy Weinberg Equilibrium (HWE) expectations (Perez-Enriquez et al., 2020Perez-Enriquez R, Valadez-Rodríguez JA, Max-Aguilar A, Dumas S, Díaz-Viloria N. Parental contribution in a cultivated stock for the spotted rose snapper Lutjanus guttatus (Steindachner, 1869) estimated by newly developed microsatellite markers. Lat Am J Aquat Res. 2020; 48(2):247–56. http://dx.doi.org/10.3856/vol48-issue2-fulltext-2424
http://dx.doi.org/10.3856/vol48-issue2-f...
; Tab. 2). The PCR was carried out following Schuelke, (2000)Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol. 2000; 18:233–34. https://doi.org/10.1038/72708
https://doi.org/10.1038/72708...
in an 11 μl volume containing 1 μl of DNA (30 ng/μl), Taq Buffer (1×), MgCl2 (1.5 mM), dNTPs (0.25 mM), forward primer (0.1 μM), reverse primer (0.4 μM), M13+dye (0.4 μM; 6-FAM, VIC, NED, or PET (Applied Biosystems; Tab. 2), and Taq polymerase (0.04 U/μl). The PCR thermal cycling conditions were as follows: 94ºC for 5 min; 30 cycles at 94ºC for 30 sec, annealing temperature (Tab. 2) for 45 sec, and 72ºC for 45 sec; eight cycles at 94ºC for 30 sec and 53ºC for 45 sec; and a final extension at 72ºC for 10 min. The PCR products were mixed in poolplex (Tab. 2), and 2.0 μl of every poolplex were used in fragment analyses on an ABI3130 automated DNA sequencer (Applied Biosystems) at the University of Arizona Genetics Core. Fragments sizes were obtained relative to the GeneScan 500 LIZ Size Standard (Applied Biosystems).

TABLE 2 |
The twelve microsatellite loci selected for population genetic analysis on Lutjanus guttatus. Three poolplexes were combined using amplicons from four loci having similar annealing temperatures and tagged with different flouorescent dyes.

Microsatellite genotyping and data analysis. Alleles were sized using the GeneMarker version 2.4.0 (Softgenetics, 2012Softgenetics. Software power tools for genetic analysis [Internet]. 2012. Available from: https://softgenetics.com
https://softgenetics.com...
). Individuals with more than 15% missing data were removed (two from Colima, one from Oaxaca, and one from Port of Panama), and 186 individual L. guttatus were retained for further analysis (Tab. S1). Binning within each allelic class was carried out with Flexibin version 2.0 (Amos et al., 2007Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, Hill AVS. Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes. 2007; 7(1):10–14. https://doi.org/10.1111/j.1471-8286.2006.01560.x
https://doi.org/10.1111/j.1471-8286.2006...
), with all 186 retained individuals successfully genotyped at all 12 loci (2,232 genotypes). Allelic frequencies and null allele frequencies were obtained with Arlequin version 3.5 (Excoffier, Lischer, 2010Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010; 10(3):564–67. https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1111/j.1755-0998.2010...
) and FreeNA (Chapuis, Estoup, 2007Chapuis MP, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol. 2007; 24(3):621–31. https://doi.org/10.1093/molbev/msl191
https://doi.org/10.1093/molbev/msl191...
), respectively. To test if the alleles were drawn from the same distribution in all populations, Fisher exact tests were carried out using Genepop version 4.7 (Raymond, Rousset, 1995Raymond M, Rousset F. GENEPOP version 1.2: population genetics software for exact tests and ecumenicism. J Hered. 1995; 86(3):248–49. https://doi.org/10.1093/oxfordjournals.jhered.a111573
https://doi.org/10.1093/oxfordjournals.j...
; Rousset, 2008Rousset F. GENEPOP’ 007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour. 2008; 8(1):103–06. https://doi.org/10.1111/j.1471-8286.2007.01931.x
https://doi.org/10.1111/j.1471-8286.2007...
). Genetic diversity indices, including the number of alleles (NA), effective number of alleles (NEA), number of private alleles (NPA), and observed and expected heterozygosities (HO and HE), were assessed with GenAlEx ver. 6.5 (Peakall, Smouse, 2012Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012; 28(19):2537–39. https://doi.org/10.1093/bioinformatics/bts460
https://doi.org/10.1093/bioinformatics/b...
). Kruskal-Wallis tests for NA, NEA, HO, and HE looking for differences among locations were performed with STATISTICA version 8 (StatSoft. Inc., Tulsa, OK, USA). The HWE and Linkage disequilibrium (LD) were evaluated through exact tests with Arlequin, and sequential Bonferroni adjustment at α = 0.05 was carried out to control the effects of multiple testing (Rice, 1989Rice WER. Analyzing tables of statistical tests. Evolution. 1989; 43(1):223–25. https://doi.org/10.2307/2409177
https://doi.org/10.2307/2409177...
).

The statistical power to find genetic differentiation among populations was tested with POWSIM version 4.1 (Ryman, Palm, 2006Ryman N, Palm S. POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes. 2006; 6(3):600–02. https://doi.org/10.1111/j.1471-8286.2006.01378.x
https://doi.org/10.1111/j.1471-8286.2006...
) with the following parameters: sample size from 29 to 49 individuals (based on mean n, Tab. S2) and one to 12 loci, with ~20 alleles each. In addition, a predefined FST = 0.0025 was employed, representing the lower non-significant FST value found in this study. Although, in L. peru (FST = 0.0159, P = 0) and L. argentiventris (FST = 0.019, P = 0) the significant FST values were higher (Reguera-Rouzaud et al., 2021Reguera-Rouzaud N, Díaz-Viloria N, Pérez-Enríquez R, Espino-Barr E, Rivera-Lucero MI, Munguía-Vega A. Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical eastern Pacific. J Fish Biol. 2021; 98(5):1267–80. https://doi.org/10.1111/jfb.14656
https://doi.org/10.1111/jfb.14656...
). Finally, interaction/permutation factors for the Fisher’s exact test (10,000, 1,000, 10,000), five populations, an effective population size of 2,000, 10 generations under drift, and 1,000 runs were also included in simulations.

Genetic population structure was evaluated through a global Analysis of Molecular Variance (AMOVA), pairwise FST, and a hierarchical AMOVA using Arlequin. Three groups were created for the hierarchical AMOVA: 1) La Paz, 2) Colima and Oaxaca, and 3) Chiriqui, and Port of Panama. The significance of the covariance components associated with the different possible levels of genetic structure (within populations, within groups of populations, among groups) was tested using non-parametric permutation procedures (10,100 permutations). These three groups were in agreement with the biogeographic provinces proposed by Hasting (2000). A phylogenetic tree was constructed using Nei genetic distances, the UPGMA method, and 10,000 bootstrap replicates with PHYLIP (Felsenstein, 2005Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences University of Washington [Internet]; Seattle, 2005. Available from: http://evolution.gs.washington.edu/phylip.html
http://evolution.gs.washington.edu/phyli...
). Statistical support was obtained by bootstrap percentages in every branch.

Discriminant Analysis of Principal Components (DAPC) was performed in R (R Development Core Team, 2011R Development Core Team. R A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2011. Available from: https://www.r-project.org/
https://www.r-project.org/...
) package adegenet (Jombart, 2008Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008; 24(11):1403–05. https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1093/bioinformatics/b...
) to explore clustering in the data (Jombart, Collins, 2021Jombart T, Collins C. A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.1.3. [Internet]. London: MRC Centre for Outbreak Analysis and Modelling; 2021. Available from: https://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf
https://adegenet.r-forge.r-project.org/f...
). The data were transformed through a PCA and a discriminant analysis was applied to the retained principal components to minimize intra-group variability while maximizing inter-group variability (Jombart, Collins, 2021Jombart T, Collins C. A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.1.3. [Internet]. London: MRC Centre for Outbreak Analysis and Modelling; 2021. Available from: https://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf
https://adegenet.r-forge.r-project.org/f...
). First, genotype data were imported using import2genind, using a genetix file (.gtx). Second, the best number of K clusters was determined de novo using find.clusters, we keep all the information, specifying to retain 200 PCs. After obtaining the graph of Bayesian information criterion (BIC), and no clear elbow was observed, the best number of K clusters was obtained by the difference of Ki+1-Ki. Third, DAPC was run with dapc(obj, grp$pop), 80 PCs and four discriminant functions retained, accounting for 82% of variance. Each DAPC was cross-validated and rerun with suggested PCs according to the best proportion of successful outcome prediction. Two STRUCTURE-like plots with membership of all individuals and with mixed individuals having no more than 0.5 probability of membership were created using compoplot in adegenet.

Gene flow estimates (Nm) were inferred from FST, in agreement with Wright, (1969)Wright S. Evolution and the genetics of populations, vol. 2. The theory of gene frequencies. Chicago: University of Chicago Press; 1969., as implemented in Genetix ver. 4.05.2 (Belkhir et al., 2004Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05 logiciel sous Windows TM pour la génétique des populations [Internet]. Montpellier: Laboratoire Génome, Populations Interactions Université de Montpellier II; 2004. Available from: http://www.genetix.univ-montp2.fr/genetix/genetix.htm
http://www.genetix.univ-montp2.fr/geneti...
) and using private alleles (Slatkin, 1985Slatkin M. Rare alleles as indicators of gene flow. Evolution. 1985; 39(1):53–65. https://doi.org/10.1111/j.1558-5646.1985.tb04079.x
https://doi.org/10.1111/j.1558-5646.1985...
). A Mantel test with 100,000 permutations was also performed using Genetix to assess if Reynold’s genetic distances (Weir, Cockerham, 1984Weir BS, Cockerham C. Estimating F-statistics for the analysis of population. Evolution. 1984; 38(6):1358–70. https://doi.org/10.2307/2408641
https://doi.org/10.2307/2408641...
) were correlated to geographical distances (km).

RESULTS

The allelic frequencies showed two patterns. First, most medium and low frequency alleles (< 10%) were present at most locations (data not shown). Second, there were frequency differences among locations for some of the most common alleles in nearly all loci. However, after Fisher exact tests, such differences in distribution of allelic frequencies were significant only for Lgut38 and Lgut44 (P < 0.05), and none were significant after sequential Bonferroni adjustment (P > 0.006).

Higher values in NA and NEA were found at the center of the species distribution range (Colima and Oaxaca, Mexico) than in locations at the extremes of the sampled range. The opposite was observed in HO, where higher values were found for La Paz and the Port of Panama than for the rest of locations (Fig. 2). Such results were an effect of the sample size per location (Tabs. 3, S2). However, after Kruskal-Wallis tests, no differences among locations were observed in NA (P = 0.28), NEA (P = 0.74), HO (P = 0.56), or HE (P = 0.99). Heterozygote deficits were observed but not significant (P > 0.006) in most loci except Lgut37, Lgut38, and Lgut44. These three loci had null allele frequencies greater than 0.05 and deviated from HWE in most locations. After sequential Bonferroni adjustment, however, zero loci showed significant HWE deviations (P < 0.004) (Tab. S2) or signs of linkage disequilibrium (LD) (P > 0.0005), through the five locations.

Statistical power testing showed that there was greater than 95% capacity to detect significant genetic structure with ten or more loci (Fig. 3). Yet, global AMOVA (FST = 0.00012, P = 1), population pairwise FST (Tab. 4), and hierarchical AMOVA (FCT = 0.00126, P = 0.1215) showed no evidence of population genetic structure. Exclusion of the three loci with high frequencies of null alleles (Lgut37, Lgut38, and Lgut44) did not change these results, and subsequent analyses therefore included all 12 loci. The topology of the UPGMA tree did group the sampled populations by their respective biogeographic provinces, but this result is tempered by low bootstrap support for Chiriquí-Port of Panama (Fig. 4).

FIGURE 2 |
Genetic diversity in Lutjanus guttatus from five sampled locations. Numbers of alleles (NA), effective alleles (NEA), and private alleles (NPA) and observed (HO) and unbiased expected heterozygosities (uHE).

FIGURE 3 |
Estimates of the statistical power (percent) for finding significant population genetic structure when using different numbers of microsatellite loci.

FIGURE 4 |
UPGMA dendrogram of Lutjanus guttatus from five sampled locations along the Pacific coast of Mexico (La Paz, Colima, Oaxaca) and Panama (Chiriquí, Port of Panama) based on Nei’s genetic distance (1972Nei M. Genetic distance between populations. Am Nat. 1972; 106(949):283–92. https://doi.org/10.1086/282771
https://doi.org/10.1086/282771...
). Numbers on the nodes indicate the percent of times the illustrated topology was found with 10,000 bootstrap replicates.

TABLE 3 |
Genetic diversity in Lutjanus guttatus from the five sample locations. Sample sizes (n), number of alleles (NA), observed (HO), and expected (HE) heterozygosities. Note that values with asterisk showed significant deviations from Hardy-Weinberg Equilibrium after Bonferroni adjustment (P < 0.004, Tab. S2).
TABLE 4 |
Pairwise FST values using 12 loci for sampled Lutjanus guttatus populations (above diagonal) and P values (below diagonal). Note that all comparisons were not significant (P > 0.05).

DAPC showed five mixed genetic groups (Fig. 5), and most individuals in each cluster were found to have a very high (90-100%) membership probability to their own group, despite a variable but lower proportion of samples exhibiting mixed memberships. No transitional zones with higher proportions of putatively admixed individuals were observed between pairs of neighboring sites (Fig. 6). Of 23 individuals with membership probabilities lower than 0.5, most exhibited membership to more than two clusters (Fig. 7).

FIGURE 5 |
Discriminant Analysis of Principal Components (DAPC) of Lutjanus guttatus from five sampled sites based on 12 microsatellite loci, 80 PCs, and four DA eigenvalues. Sampled locations include La Paz (LAP), Colima (COL), Oaxaca (OAX), Chiriquí (CHI), and Port of Panamá (PP).

FIGURE 6 |
STRUCTURE-like plot with estimated cluster memberships for all individuals derived from the DAPC. Sampled locations include La Paz (LAP), Colima (COL), Oaxaca (OAX), Chiriquí (CHI), and Port of Panama (PP).

FIGURE 7 |
STRUCTURE-like plot illustrating cluster membership for all admixed individuals having < 0.5 probability of membership to any group. Sampled locations include La Paz (LAP), Colima (COL), Oaxaca (OAX), Chiriquí (CHI), and Port of Panama (PP).

Gene flow was moderate to high (Nm: 121 - 1x10) between pairs of locations (Tab. 5), while estimates of gene flow obtained using private alleles were lower for La Paz (Nm = 16) and Chiriqui (Nm = 17) than Port of Panama (Nm = 21), Colima (Nm = 40), and Oaxaca (Nm = 37). Finally, a Mantel test did not support the presence of IBD (r = 0.108, P = 0.467) (Fig. 8).

TABLE 5 |
Estimates of gene flow (Nm; after Wright, 1969Wright S. Evolution and the genetics of populations, vol. 2. The theory of gene frequencies. Chicago: University of Chicago Press; 1969.) between sampled Lutjanus guttatus locations.

FIGURE 8 |
Mantel test of correlation between genetic (y-axis) and geographic distances (x-axis) among sampled locations. The black line represents the central tendency among the dots in the scatterplot.

DISCUSSION

Lutjanus guttatus did not show any evidence for genetic population structure by traditional analysis, such as global AMOVA, population pairwise FST, hierarchical AMOVA, and IBD. However, DAPC showed distinctive local genetic subunits of a large population but with no clear cuts among them. The presence of admixed individuals, with membership to more than one external clusters, could be outlining contemporary connectivity that both a) connects the closest sampled populations and b) spans the entire geographic range (e.g., the major cluster found in La Paz; Cluster LAP) is also found present in admixed individuals in Panama, where Cluster PP predominates), with c) no transitional zones of admixture. These results as well as the low membership probabilities of 23 individuals reflect panmixia involving the entire set of sampled populations including all three mainland provinces, which implies that long-distance connectivity is as prevalent as short-distance exchanges in L. guttatus. These results were in agreement with those reported for Epinephelus labriformis (Jenyns, 1840) (Craig et al., 2006Craig MT, Hastings PA, Pondella DJ, Robertson DR, Rosales-Casián JA. Phylogeography of the flag cabrilla Epinephelus labriformis (Serranidae): implications for the biogeography of the Tropical Eastern Pacific and the early stages of speciation in a marine shore fish. J Biogeogr. 2006; 33(6):969–79. https://doi.org/10.1111/j.1365-2699.2006.01467.x
https://doi.org/10.1111/j.1365-2699.2006...
), Nerita funiculata Menke, 1850 (Hurtado et al., 2007Hurtado LA, Frey M, Gaube P, Pfeiler E, Markow TA. Geographical subdivision, demographic history and gene flow in two sympatric species of intertidal snails, Nerita scabricosta and Nerita funiculata, from the tropical eastern Pacific. Mar Biol. 2007; 151:1863–73. https://doi.org/10.1007/s00227-007-0620-5
https://doi.org/10.1007/s00227-007-0620-...
), Lepidochelys olivacea (Silver-Gorges et al., 2020Silver-Gorges I, Koval J, Rodriguez-Zarate CJ, Paladino FV, Jordan M. Large-scale connectivity, cryptic population structure, and relatedness in Eastern Pacific Olive ridley sea turtles (Lepidochelys olivacea). Ecol Evol. 2020; 10(16):8688–704. https://doi.org/10.1002/ece3.6564
https://doi.org/10.1002/ece3.6564...
), Rhincodon typus Smith, 1829 (Guzmán et al., 2021Guzmán HM, Beaver CE, Díaz-Ferguson E. Novel insights in to the genetic population connectivity of transient whale sharks (Rhincodon typus) in Pacific Panama provide crucial data for conservation efforts. Front Mar Sci. 2021; 8: 744109. https://doi.org/10.3389/fmars.2021.744109
https://doi.org/10.3389/fmars.2021.74410...
), and earlier studies in L. guttatus (Hernández-Álvarez et al., 2020Hernández-Álvarez C, Bayona-Vásquez NJ, Domínguez-Domínguez O, Uribe-Alcocer M, Díaz-Jaimes P. Phylogeography of the pacific red snapper (Lutjanus peru) and spotted rose snapper (Lutjanus guttatus) in the inshore Tropical Eastern Pacific. Copeia. 2020; 108(1):61–71. https://doi.org/10.1643/CG-18-157
https://doi.org/10.1643/CG-18-157...
; Mar-Silva et al., 2023Mar-Silva A, Diaz-Jaimes P, Domínguez-Mendoza C, Domínguez-Domínguez O, Valdiviezo-Rivera J, Espinoza-Herrera E. Genomic assessment reveals signal of adaptive selection in populations of the Spotted rose snapper Lutjanus guttatus from the Tropical Eastern Pacific. PeerJ. 2023; 11:e15029 http://doi.org/10.7717/peerj.15029
http://doi.org/10.7717/peerj.15029...
) in the TEP. Nevertheless, they were also different from those reported in Nerita scabricosta (Hurtado et al., 2007Hurtado LA, Frey M, Gaube P, Pfeiler E, Markow TA. Geographical subdivision, demographic history and gene flow in two sympatric species of intertidal snails, Nerita scabricosta and Nerita funiculata, from the tropical eastern Pacific. Mar Biol. 2007; 151:1863–73. https://doi.org/10.1007/s00227-007-0620-5
https://doi.org/10.1007/s00227-007-0620-...
), Pavona gigantea (Verrill, 1869) (Saavedra-Sotelo et al., 2011Saavedra-Sotelo NC, Calderon-Aguilera LE, Reyes-Bonilla H, López-Pérez RA, Medina-Rosas P, Rocha-Olivares A. Limited genetic connectivity of Pavona gigantea in the Mexican Pacific. Coral Reefs. 2011; 30:677–86. https://doi.org/10.1007/s00338-011-0742-6
https://doi.org/10.1007/s00338-011-0742-...
), Sybiodinium glynnii Wham, LaJeunesse, 2017 (Pettay, LaJeunesse, 2013Pettay DT, LaJeunesse TC. Long-range dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PLoS ONE. 2013; 8(11):e79208. https://doi.org/10.1371/journal.pone.0079208
https://doi.org/10.1371/journal.pone.007...
), Merluccius productus (García-De Leon et al., 2018), Elacatinus puncticulatus (Sandoval-Huerta et al., 2019Sandoval-Huerta ER, Beltrán-López RG, Pedraza-Marrón CR, Paz-Velásquez MA, Angulo A, Robertson DR, Espinoza E, Domínguez-Domínguez O. The evolutionary history of the goby Elacatinus puncticulatus in the tropical eastern pacific: Effects of habitat discontinuities and local environmental variability. Mol Phylogenet Evol. 2019; 130:269–85. https://doi.org/10.1016/j.ympev.2018.10.020
https://doi.org/10.1016/j.ympev.2018.10....
), and L. peru and L. argentiventris (Reguera-Rouzaud et al., 2021Reguera-Rouzaud N, Díaz-Viloria N, Pérez-Enríquez R, Espino-Barr E, Rivera-Lucero MI, Munguía-Vega A. Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical eastern Pacific. J Fish Biol. 2021; 98(5):1267–80. https://doi.org/10.1111/jfb.14656
https://doi.org/10.1111/jfb.14656...
).

Notably, despite the lack of genetic population structure, the UPGMA tree showed three apparent genetic groups in L. guttatus, including La Paz, Colima with Oaxaca, and Chiriquí with Port of Panama, although this last grouping had low bootstrap support. Such apparent genetic groups were in good agreement with the Cortez, Mexican and Panamic provinces suggested by Hastings, (2000)Hastings PA. Biogeography of the tropical eastern Pacific: distribution and phylogeny of chaenopsid fishes. Zool J Linn Soc Lond. 2000; 128(3):319–35. https://doi.org/10.1111/j.1096-3642.2000.tb00166.x
https://doi.org/10.1111/j.1096-3642.2000...
.

Several factors may favor genetic differentiation in the TEP, such as IBD (e.g., Epinephelus clippertonensis Allen & Robertson, 1999, Merluccius productus, L. peru, and L. argentiventris; Craig et al., 2006Craig MT, Hastings PA, Pondella DJ, Robertson DR, Rosales-Casián JA. Phylogeography of the flag cabrilla Epinephelus labriformis (Serranidae): implications for the biogeography of the Tropical Eastern Pacific and the early stages of speciation in a marine shore fish. J Biogeogr. 2006; 33(6):969–79. https://doi.org/10.1111/j.1365-2699.2006.01467.x
https://doi.org/10.1111/j.1365-2699.2006...
; García-De Leon et al., 2018; Reguera-Rouzaud et al., 2021Reguera-Rouzaud N, Díaz-Viloria N, Pérez-Enríquez R, Espino-Barr E, Rivera-Lucero MI, Munguía-Vega A. Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical eastern Pacific. J Fish Biol. 2021; 98(5):1267–80. https://doi.org/10.1111/jfb.14656
https://doi.org/10.1111/jfb.14656...
), the vertical range of larvae distribution and dispersal effects of the currents (e.g., Nerita scabricosta Lamarck, 1822; Hurtado et al., 2007Hurtado LA, Frey M, Gaube P, Pfeiler E, Markow TA. Geographical subdivision, demographic history and gene flow in two sympatric species of intertidal snails, Nerita scabricosta and Nerita funiculata, from the tropical eastern Pacific. Mar Biol. 2007; 151:1863–73. https://doi.org/10.1007/s00227-007-0620-5
https://doi.org/10.1007/s00227-007-0620-...
), genetic drift in locations with low effective population sizes (e.g., Nerita scabricosta and Pavona gigantea; Hurtado et al., 2007Hurtado LA, Frey M, Gaube P, Pfeiler E, Markow TA. Geographical subdivision, demographic history and gene flow in two sympatric species of intertidal snails, Nerita scabricosta and Nerita funiculata, from the tropical eastern Pacific. Mar Biol. 2007; 151:1863–73. https://doi.org/10.1007/s00227-007-0620-5
https://doi.org/10.1007/s00227-007-0620-...
; Saavedra-Sotelo et al., 2011Saavedra-Sotelo NC, Calderon-Aguilera LE, Reyes-Bonilla H, López-Pérez RA, Medina-Rosas P, Rocha-Olivares A. Limited genetic connectivity of Pavona gigantea in the Mexican Pacific. Coral Reefs. 2011; 30:677–86. https://doi.org/10.1007/s00338-011-0742-6
https://doi.org/10.1007/s00338-011-0742-...
), the presence of upwelling (e.g., Pavona gigantean and Elacatinus puncticulatus; Saavedra-Sotelo et al., 2011Saavedra-Sotelo NC, Calderon-Aguilera LE, Reyes-Bonilla H, López-Pérez RA, Medina-Rosas P, Rocha-Olivares A. Limited genetic connectivity of Pavona gigantea in the Mexican Pacific. Coral Reefs. 2011; 30:677–86. https://doi.org/10.1007/s00338-011-0742-6
https://doi.org/10.1007/s00338-011-0742-...
; Sandoval-Huerta et al., 2019Sandoval-Huerta ER, Beltrán-López RG, Pedraza-Marrón CR, Paz-Velásquez MA, Angulo A, Robertson DR, Espinoza E, Domínguez-Domínguez O. The evolutionary history of the goby Elacatinus puncticulatus in the tropical eastern pacific: Effects of habitat discontinuities and local environmental variability. Mol Phylogenet Evol. 2019; 130:269–85. https://doi.org/10.1016/j.ympev.2018.10.020
https://doi.org/10.1016/j.ympev.2018.10....
), environmental gradients (e.g., Sybiodinium glynnii, Merluccius productus, Elacatinus puncticulatus, L. peru, and L. argentiventris; Pettay, LaJeunesse, 2013Pettay DT, LaJeunesse TC. Long-range dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PLoS ONE. 2013; 8(11):e79208. https://doi.org/10.1371/journal.pone.0079208
https://doi.org/10.1371/journal.pone.007...
; García-De Leon et al., 2018; Sandoval-Huerta et al., 2019Sandoval-Huerta ER, Beltrán-López RG, Pedraza-Marrón CR, Paz-Velásquez MA, Angulo A, Robertson DR, Espinoza E, Domínguez-Domínguez O. The evolutionary history of the goby Elacatinus puncticulatus in the tropical eastern pacific: Effects of habitat discontinuities and local environmental variability. Mol Phylogenet Evol. 2019; 130:269–85. https://doi.org/10.1016/j.ympev.2018.10.020
https://doi.org/10.1016/j.ympev.2018.10....
; Reguera-Rouzaud et al., 2021Reguera-Rouzaud N, Díaz-Viloria N, Pérez-Enríquez R, Espino-Barr E, Rivera-Lucero MI, Munguía-Vega A. Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical eastern Pacific. J Fish Biol. 2021; 98(5):1267–80. https://doi.org/10.1111/jfb.14656
https://doi.org/10.1111/jfb.14656...
), and rocky reef habitat discontinuities (e.g., Elacatinus puncticulatus, L. peru, and L. argentiventris; Sandoval-Huerta et al., 2019Sandoval-Huerta ER, Beltrán-López RG, Pedraza-Marrón CR, Paz-Velásquez MA, Angulo A, Robertson DR, Espinoza E, Domínguez-Domínguez O. The evolutionary history of the goby Elacatinus puncticulatus in the tropical eastern pacific: Effects of habitat discontinuities and local environmental variability. Mol Phylogenet Evol. 2019; 130:269–85. https://doi.org/10.1016/j.ympev.2018.10.020
https://doi.org/10.1016/j.ympev.2018.10....
; Reguera-Rouzaud et al., 2021Reguera-Rouzaud N, Díaz-Viloria N, Pérez-Enríquez R, Espino-Barr E, Rivera-Lucero MI, Munguía-Vega A. Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical eastern Pacific. J Fish Biol. 2021; 98(5):1267–80. https://doi.org/10.1111/jfb.14656
https://doi.org/10.1111/jfb.14656...
). In contrast, there are also factors that may foster genetic connectivity in the TEP, like a long-lived larval stages with potential to long distance dispersal (e.g., 50 days in Epinephelus labriformis; Craig et al., 2006Craig MT, Hastings PA, Pondella DJ, Robertson DR, Rosales-Casián JA. Phylogeography of the flag cabrilla Epinephelus labriformis (Serranidae): implications for the biogeography of the Tropical Eastern Pacific and the early stages of speciation in a marine shore fish. J Biogeogr. 2006; 33(6):969–79. https://doi.org/10.1111/j.1365-2699.2006.01467.x
https://doi.org/10.1111/j.1365-2699.2006...
), the homogenizing effect of the complex surface currents (e.g., Sybiodinium glynnii; Pettay, LaJeunesse, 2013Pettay DT, LaJeunesse TC. Long-range dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PLoS ONE. 2013; 8(11):e79208. https://doi.org/10.1371/journal.pone.0079208
https://doi.org/10.1371/journal.pone.007...
), and nomadic-female migration due to limited fidelity to nesting sites or changes in high productivity areas (e.g., Lepidochelys olivacea and Rhincodon typus; Silver-Georges et al., 2020; Guzmán et al., 2021Guzmán HM, Beaver CE, Díaz-Ferguson E. Novel insights in to the genetic population connectivity of transient whale sharks (Rhincodon typus) in Pacific Panama provide crucial data for conservation efforts. Front Mar Sci. 2021; 8: 744109. https://doi.org/10.3389/fmars.2021.744109
https://doi.org/10.3389/fmars.2021.74410...
).

Several of these factors did not contribute to population genetic differentiation in L. guttatus, including IBD, genetic drift, the presence of upwelling, environmental differences, and rocky reef habitat discontinuities. Otherwise, reproductive characteristics (Grimes, 1987Grimes CB. Reproductive biology of the Lujanidae: a review. In: Polovina JJ, Ralston S, editors. Tropical snappers and groupers: biology and fisheries management. Boulder: Westview press; 1987. p.239–94.; Cruz-Romero et al., 1991Cruz-Romero M, Espino-Barr E, Mimbela-López J, García-Boa A, Obregón-Alcaraz LF, Girón-Botello E. Biología reproductiva en tres especies del género Lutjanus en la costa de Colima. México: Secretaría de Pesca Manzanillo; 1991.; Rojas, 1997Rojas MJR. Fecundidad y épocas de reproducción del “pargo mancha” Lutjanus guttatus (Pisces: Lutjanidae) en el Golfo de Nicoya, Costa Rica. Rev Biol Trop. 1997; 44:477–87.; Correa-Herrera, Jiménez-Segura, 2013Correa-Herrera T, Jiménez-Segura F. Biología reproductiva de Lutjanus guttatus (Perciformes: Lutjanidae) en el Parque Nacional Natural Utría, Pacífico colombiano. Rev Biol Trop. 2013; 61(2):829–40.; Vega et al., 2016aVega AJ, Maté JL, Yolani A, Robles P. First report of reproductive aggregations for Pacific red snappers Lutjanus peru (Nicholson y Murphy, 1992) and spotted rose snapper L. guttatus (Steindachner, 1869) in the Coiba National Park, Pacific of Panama. GCFI. 2016a; 68:112–17. ), in connection with marine currents in the TEP (Kessler, 2006Kessler WS. The circulation of the eastern tropical Pacific: a review. Prog Oceanogr. 2006; 69:181–217. https://doi.org/10.1016/j.pocean.2006.03.009
https://doi.org/10.1016/j.pocean.2006.03...
; Gómez-Valdivia et al., 2015Gómez-Valdivia F, Parés-Sierra A, Flores-Morales AL. The Mexican coastal current: A subsurface seasonal bridge that connects the tropical and subtropical Northeastern Pacific. Cont Shelf Res. 2015; 110:100–107. https://doi.org/10.1016/j.csr.2015.10.010
https://doi.org/10.1016/j.csr.2015.10.01...
), support the hypothesis of sufficient gene flow among populations, through larval dispersal, to explain the observed results in the Panamic, Mexican, and Cortez provinces.

The TEP is a region with suitable reef-fish habitat along the American continental coast and oceanic islands (Allen, Robertson, 1994Allen GR, Robertson DR. Fishes of the tropical eastern Pacific. Honolulu: University of Hawaii Press; 1994.; Glynn, Ault, 2000Glynn P, Ault J. A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs. 2000; 19:1–23. https://doi.org/10.1007/s003380050220
https://doi.org/10.1007/s003380050220...
; Zapata, Herrón, 2002Zapata FA, Herrón PA. Pelagic larval duration and geographic distribution of tropical eastern Pacific snappers (Pisces: Lutjanidae). Mar Ecol Prog Ser. 2002; 230:295–300. https://doi.org/10.3354/meps230295
https://doi.org/10.3354/meps230295...
). Results in L. guttatus were different from those reported in the related species L. peru and L. argentiventris (Reguera-Rouzaud et al., 2021Reguera-Rouzaud N, Díaz-Viloria N, Pérez-Enríquez R, Espino-Barr E, Rivera-Lucero MI, Munguía-Vega A. Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical eastern Pacific. J Fish Biol. 2021; 98(5):1267–80. https://doi.org/10.1111/jfb.14656
https://doi.org/10.1111/jfb.14656...
), despite similarities in reproductive characteristics, pelagic larval duration (PLD), and distribution ranges (Allen, 1995Allen GR. Lutjanidae Pargos. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH, editors. Guía FAO para la identificación de especies para los fines de la pesca, Pacífico Centro-Oriental, Volumen III, Vertebrados-Parte 2, Roma: Organización de las Naciones Unidas para la Agricultura y la Alimentación; 1995. p.1231–44.; Cruz et al., 1991Cruz-Romero M, Espino-Barr E, Mimbela-López J, García-Boa A, Obregón-Alcaraz LF, Girón-Botello E. Biología reproductiva en tres especies del género Lutjanus en la costa de Colima. México: Secretaría de Pesca Manzanillo; 1991.; Zapata, Herrón, 2002Zapata FA, Herrón PA. Pelagic larval duration and geographic distribution of tropical eastern Pacific snappers (Pisces: Lutjanidae). Mar Ecol Prog Ser. 2002; 230:295–300. https://doi.org/10.3354/meps230295
https://doi.org/10.3354/meps230295...
; Peña et al., 2017Peña R, Dumas S, Contreras-Olguin M. Organogenesis of the digestive system in Pacific red snapper (Lutjanus peru) larvae. Aquac Res. 2017; 48(4):1561–75. https://doi.org/10.1111/are.12991
https://doi.org/10.1111/are.12991...
). Such contrasting patterns of genetic structure between L. guttatus and related species are likely due to an ontogenetic habitat shift (Sala et al., 2003Sala E, Aburto-Oropeza O, Paredes G, Thompson G. Spawning aggregations and reproductive behavior of reef fishes in the Gulf of California. Bull Mar Sci. 2003; 72:103–121.; Aburto-Oropeza et al., 2009Aburto-Oropeza O, Domínguez-Guerreo I, Cota-Nieto J, Plomozo-Lugo T. Recruitment and ontogenetic habitat shifts of the yellow snapper (Lutjanus argentiventris) in the Gulf of California. Mar Biol. 2009; 156:2461–72. https://doi.org/10.1007/s00227-009-1271-5
https://doi.org/10.1007/s00227-009-1271-...
; Vega et al., 2015Vega AJ, Yolani A, Robles P, Kelvin G. El papel de los manglares como criaderos de pargo (Lutjanidae) en el Golfo de Chiriquí. Tecnociencia. 2015; 17(2):109–23.).

Juveniles of L. guttatus can use the soft bottoms adjacent to rocky reefs (Mariscal-Romero, Van der Heiden, 2006Mariscal-Romero J, Van der Heiden MA. Peces de importancia ecológica y comercial asociados a fondos blandos en la plataforma continental de Jalisco y Colima, México. In: Jiménez-Quiroz MC, Espino-Barr E, editors. Los recursos pesqueros y acuícolas de Jalisco, Colima y Michoacán. Manzanillo: SAGARPA-INP-CRIP; 2006. p.180–95.; Saucedo-Lozano et al., 2006Saucedo-Lozano M, Raymundo-Huizar AR, Valadez-González C. Comparación de los hábitos alimentarios de juveniles de Lutjanus peru y Lutjanus guttatus en la costa de Jalisco y Colima, México. In: Jiménez-Quiroz MC, Espino-Barr E, editors. Los recursos pesqueros y acuícolas de Jalisco, Colima y Michoacán. Manzanillo: SAGARPA-INP-CRIP; 2006. p.209–18.) or mangroves to feed (Allen, 1995Allen GR. Lutjanidae Pargos. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH, editors. Guía FAO para la identificación de especies para los fines de la pesca, Pacífico Centro-Oriental, Volumen III, Vertebrados-Parte 2, Roma: Organización de las Naciones Unidas para la Agricultura y la Alimentación; 1995. p.1231–44.; Gutierrez-Barreras, 1999Gutierrez-Barreras JA. Ictiofauna de fondos blandos de la bahía de Topolobampo, Sinaloa, México. [Master Dissertation]. La Paz B.C.S.: Instituto Politécnico Nacional-Centro interdisciplinario de Ciencias Marinas; 1999. Available from: http://repositoriodigital.ipn.mx/handle/123456789/14842
http://repositoriodigital.ipn.mx/handle/...
; Vega et al., 2015Vega AJ, Yolani A, Robles P, Kelvin G. El papel de los manglares como criaderos de pargo (Lutjanidae) en el Golfo de Chiriquí. Tecnociencia. 2015; 17(2):109–23.; 2016bVega AJ, Yolani A, Robles P, Maté JL. La pesca artesanal en el Parque Nacional Coiba y zona de influencia. Biología y pesquería de sus principales recursos, con recomendaciones de manejo. Ciudad de Panamá; Fundación MarViva; 2016b.; Medina-Contreras et al., 2021Medina-Contreras D, Cantera-Kints J, Sánchez A. Trophic structure of fish communities in mangrove systems subject to different levels of anthropogenic intervention, Tropical Eastern Pacific, Colombia. Env Sci Pollut Res. 2021; 29:61608–22. https://doi.org/10.1007/s11356-021-16814-x
https://doi.org/10.1007/s11356-021-16814...
). Such ecological adaptations to different environmental conditions in different habitats enable nomadic individuals of L. guttatus to migrate around habitat discontinuities that restrict movement in L argentiventris (absence of mangroves) and L. peru (absence of rocky reefs), possibly resulting in the connectivity between the Gulf of California-Colima and Oaxaca-Chiriquí and Port of Panama regions seen in this study.

Larval dispersal and possible migration of nomadic individuals were mentioned by Mar-Silva et al., (2023)Mar-Silva A, Diaz-Jaimes P, Domínguez-Mendoza C, Domínguez-Domínguez O, Valdiviezo-Rivera J, Espinoza-Herrera E. Genomic assessment reveals signal of adaptive selection in populations of the Spotted rose snapper Lutjanus guttatus from the Tropical Eastern Pacific. PeerJ. 2023; 11:e15029 http://doi.org/10.7717/peerj.15029
http://doi.org/10.7717/peerj.15029...
as mechanisms that may have differentially contributed to the high contemporary genetic connectivity seen among locations. Mar-Silva et al., (2023)Mar-Silva A, Diaz-Jaimes P, Domínguez-Mendoza C, Domínguez-Domínguez O, Valdiviezo-Rivera J, Espinoza-Herrera E. Genomic assessment reveals signal of adaptive selection in populations of the Spotted rose snapper Lutjanus guttatus from the Tropical Eastern Pacific. PeerJ. 2023; 11:e15029 http://doi.org/10.7717/peerj.15029
http://doi.org/10.7717/peerj.15029...
found no differences using neutral loci (dataset of 1858 SNPs) and genetic differences using outlier loci (dataset of 145 SNPs) suggesting the role of selection in this case. Results of the present study were in agreement with the conclusion of “no differences” or panmictic population, which is explained because microsatellite loci are assumed to be neutral markers. FST, when based on neutral genetic markers, estimates the degree to which populations have diverged from one another as a result of gene flow and genetic drift, without the selection effect in the equation (Freeland, 2006Freeland JR. Molecular ecology. Hoboken: John Wiley and Sons; 2006.).

If genetic connectivity is the result of larval dispersal or migration of juveniles, preadults, or adults of L. guttatus every generation, it may result in greater resilience to local extirpation because fishing areas could be recolonized relatively quickly (Craig et al., 2006Craig MT, Hastings PA, Pondella DJ, Robertson DR, Rosales-Casián JA. Phylogeography of the flag cabrilla Epinephelus labriformis (Serranidae): implications for the biogeography of the Tropical Eastern Pacific and the early stages of speciation in a marine shore fish. J Biogeogr. 2006; 33(6):969–79. https://doi.org/10.1111/j.1365-2699.2006.01467.x
https://doi.org/10.1111/j.1365-2699.2006...
). On the other hand, local extinction could modify the pattern of connectivity, increasing the relative geographic distance among populations (Saavedra-Sotelo et al., 2011Saavedra-Sotelo NC, Calderon-Aguilera LE, Reyes-Bonilla H, López-Pérez RA, Medina-Rosas P, Rocha-Olivares A. Limited genetic connectivity of Pavona gigantea in the Mexican Pacific. Coral Reefs. 2011; 30:677–86. https://doi.org/10.1007/s00338-011-0742-6
https://doi.org/10.1007/s00338-011-0742-...
). Nevertheless, additional research that includes more sites within the distribution range of the species, such as the Galapagos islands, which represents a province not assayed in this study, uses potentially adaptive genetic markers (e.g., SNPs), and adequate sample size per site (Flesch et al., 2018Flesch EP, Rotella JJ, Thomson JM, Graves TA, Garrott RA. Evaluating sample size to estimate genetic management metrics in the genomics era. Mol Ecol Resour. 2018; 18(5):1077–91. https://doi.org/10.1111/1755-0998.12898
https://doi.org/10.1111/1755-0998.12898...
) is required to both further improve our understanding of the population dynamics of L. guttatus in the TEP as well as the influence of environmental variables on its genetic makeup.

ACKNOWLEDGEMENTS

We thank Silvie Dumas who supported the research and synthesis of microsatellite loci in L. guttatus. We thank Oswaldo Morales-Pacheco (CRIP Salina Cruz), “Mariscos Baja Sur”, “SPP Manuel Cabrera SC de RL”, to the fishermen of the ports of Remedios, Playa el Arenal, the Fiscal dock of Panama and J. A. Clarós (UMIP) for providing support during tissue sampling. This research was partially supported by grants from Consejo Nacional de Ciencia y Tecnología (CONACyT) (CB-2015-01, No. 257019) and IPN-SIP (20180339, 20195461, 20201032, 20210196) to Noé Díaz-Viloria, who is an EDI-IPN fellow. We thank to Kristen Gruenthal, who reviewed and improved the English edition of this manuscript. Thanks to the input of reviewers to improve the quality of the manuscript.

REFERENCES

  • Aburto-Oropeza O, Domínguez-Guerreo I, Cota-Nieto J, Plomozo-Lugo T. Recruitment and ontogenetic habitat shifts of the yellow snapper (Lutjanus argentiventris) in the Gulf of California. Mar Biol. 2009; 156:2461–72. https://doi.org/10.1007/s00227-009-1271-5
    » https://doi.org/10.1007/s00227-009-1271-5
  • Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1997; 25(22):4692–93. https://doi.org/10.1093/nar/25.22.4692
    » https://doi.org/10.1093/nar/25.22.4692
  • Allen GR. Lutjanidae Pargos. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH, editors. Guía FAO para la identificación de especies para los fines de la pesca, Pacífico Centro-Oriental, Volumen III, Vertebrados-Parte 2, Roma: Organización de las Naciones Unidas para la Agricultura y la Alimentación; 1995. p.1231–44.
  • Allen GR, Robertson DR Fishes of the tropical eastern Pacific. Honolulu: University of Hawaii Press; 1994.
  • Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, Hill AVS. Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes. 2007; 7(1):10–14. https://doi.org/10.1111/j.1471-8286.2006.01560.x
    » https://doi.org/10.1111/j.1471-8286.2006.01560.x
  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05 logiciel sous Windows TM pour la génétique des populations [Internet]. Montpellier: Laboratoire Génome, Populations Interactions Université de Montpellier II; 2004. Available from: http://www.genetix.univ-montp2.fr/genetix/genetix.htm
    » http://www.genetix.univ-montp2.fr/genetix/genetix.htm
  • Briggs JC, Bowen BW. A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr. 2012; 39(1):12–30. https://doi.org/10.1111/j.1365-2699.2011.02613.x
    » https://doi.org/10.1111/j.1365-2699.2011.02613.x
  • Chapuis MP, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol. 2007; 24(3):621–31. https://doi.org/10.1093/molbev/msl191
    » https://doi.org/10.1093/molbev/msl191
  • Correa-Herrera T, Jiménez-Segura F. Biología reproductiva de Lutjanus guttatus (Perciformes: Lutjanidae) en el Parque Nacional Natural Utría, Pacífico colombiano. Rev Biol Trop. 2013; 61(2):829–40.
  • Craig MT, Hastings PA, Pondella DJ, Robertson DR, Rosales-Casián JA Phylogeography of the flag cabrilla Epinephelus labriformis (Serranidae): implications for the biogeography of the Tropical Eastern Pacific and the early stages of speciation in a marine shore fish. J Biogeogr. 2006; 33(6):969–79. https://doi.org/10.1111/j.1365-2699.2006.01467.x
    » https://doi.org/10.1111/j.1365-2699.2006.01467.x
  • Cruz-Romero M, Espino-Barr E, Mimbela-López J, García-Boa A, Obregón-Alcaraz LF, Girón-Botello E. Biología reproductiva en tres especies del género Lutjanus en la costa de Colima. México: Secretaría de Pesca Manzanillo; 1991.
  • Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010; 10(3):564–67. https://doi.org/10.1111/j.1755-0998.2010.02847.x
    » https://doi.org/10.1111/j.1755-0998.2010.02847.x
  • Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences University of Washington [Internet]; Seattle, 2005. Available from: http://evolution.gs.washington.edu/phylip.html
    » http://evolution.gs.washington.edu/phylip.html
  • Flesch EP, Rotella JJ, Thomson JM, Graves TA, Garrott RA. Evaluating sample size to estimate genetic management metrics in the genomics era. Mol Ecol Resour. 2018; 18(5):1077–91. https://doi.org/10.1111/1755-0998.12898
    » https://doi.org/10.1111/1755-0998.12898
  • Freeland JR. Molecular ecology. Hoboken: John Wiley and Sons; 2006.
  • García-De León FJ, Galván-Tirado C, Sánchez-Velasco L, Silva-Segundo CA, Hernández-Guzmán R, Barriga-Sosa IA, Díaz-Jaimes P, Canino M, Cruz-Hernández P. Role of oceanography in shaping the genetic structure in the North Pacific hake Merluccius productus PLoS ONE. 2018; 13:1–26. https://doi.org/10.1371/journal.pone.0194646
    » https://doi.org/10.1371/journal.pone.0194646
  • García-Ortega A, Abdo-de la Parra I, Duncan NJ, Rodríguez-Ibarra E, Velasco G, González-Rodríguez B, Puello-Cruz A, Martinez I. Larval rearing of Spotted Rose Snapper Lutjanus guttatus under experimental conditions. In: Hendry CI, Van Stappen G, Wille M, Sorgeloos P, editors. Larvi 05 – Fish & Shellfish Larviculture Symposium. Oostende: European Aquaculture Society; 2005. p.172–75.
  • Glynn P, Ault J. A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs. 2000; 19:1–23. https://doi.org/10.1007/s003380050220
    » https://doi.org/10.1007/s003380050220
  • Gómez-Valdivia F, Parés-Sierra A, Flores-Morales AL. The Mexican coastal current: A subsurface seasonal bridge that connects the tropical and subtropical Northeastern Pacific. Cont Shelf Res. 2015; 110:100–107. https://doi.org/10.1016/j.csr.2015.10.010
    » https://doi.org/10.1016/j.csr.2015.10.010
  • Grimes CB. Reproductive biology of the Lujanidae: a review. In: Polovina JJ, Ralston S, editors. Tropical snappers and groupers: biology and fisheries management. Boulder: Westview press; 1987. p.239–94.
  • Gutierrez-Barreras JA. Ictiofauna de fondos blandos de la bahía de Topolobampo, Sinaloa, México. [Master Dissertation]. La Paz B.C.S.: Instituto Politécnico Nacional-Centro interdisciplinario de Ciencias Marinas; 1999. Available from: http://repositoriodigital.ipn.mx/handle/123456789/14842
    » http://repositoriodigital.ipn.mx/handle/123456789/14842
  • Guzmán HM, Beaver CE, Díaz-Ferguson E. Novel insights in to the genetic population connectivity of transient whale sharks (Rhincodon typus) in Pacific Panama provide crucial data for conservation efforts. Front Mar Sci. 2021; 8: 744109. https://doi.org/10.3389/fmars.2021.744109
    » https://doi.org/10.3389/fmars.2021.744109
  • Hastings PA. Biogeography of the tropical eastern Pacific: distribution and phylogeny of chaenopsid fishes. Zool J Linn Soc Lond. 2000; 128(3):319–35. https://doi.org/10.1111/j.1096-3642.2000.tb00166.x
    » https://doi.org/10.1111/j.1096-3642.2000.tb00166.x
  • Hernández-Álvarez C, Bayona-Vásquez NJ, Domínguez-Domínguez O, Uribe-Alcocer M, Díaz-Jaimes P. Phylogeography of the pacific red snapper (Lutjanus peru) and spotted rose snapper (Lutjanus guttatus) in the inshore Tropical Eastern Pacific. Copeia. 2020; 108(1):61–71. https://doi.org/10.1643/CG-18-157
    » https://doi.org/10.1643/CG-18-157
  • Hurtado LA, Frey M, Gaube P, Pfeiler E, Markow TA. Geographical subdivision, demographic history and gene flow in two sympatric species of intertidal snails, Nerita scabricosta and Nerita funiculata, from the tropical eastern Pacific. Mar Biol. 2007; 151:1863–73. https://doi.org/10.1007/s00227-007-0620-5
    » https://doi.org/10.1007/s00227-007-0620-5
  • Ibarra-Castro L, Alvarez-Lajonchére L, García-Aguilar N, Abdo de la Parra MI, Rodríguez-Ibarra LE. Generation cycle closure of the spotted rose snapper, Lutjanus guttatus, in captivity. Rev Biol Mar Oceanog. 2012; 47(2):333–37. http://dx.doi.org/10.4067/S0718-19572012000200015
    » http://dx.doi.org/10.4067/S0718-19572012000200015
  • Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008; 24(11):1403–05. https://doi.org/10.1093/bioinformatics/btn129
    » https://doi.org/10.1093/bioinformatics/btn129
  • Jombart T, Collins C. A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.1.3. [Internet]. London: MRC Centre for Outbreak Analysis and Modelling; 2021. Available from: https://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf
    » https://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf
  • Kessler WS. The circulation of the eastern tropical Pacific: a review. Prog Oceanogr. 2006; 69:181–217. https://doi.org/10.1016/j.pocean.2006.03.009
    » https://doi.org/10.1016/j.pocean.2006.03.009
  • Lessios HA, Baums LB. Gene flow in coral reef organisms of the Tropical Eastern Pacific. In: Glynn PW, Derek PM, Ian CE, editors. Coral Reefs of the Eastern Tropical Pacific, Coral Reefs of the World 8: Springer Dordrecht; 2017. p.477–99. https://doi.org/10.1007/978-94-017-7499-4
    » https://doi.org/10.1007/978-94-017-7499-4
  • Liu ZJ, Cordes JF. DNA marker technologies and their applications in aquaculture genetics. Aquaculture. 2004; 238:1–37. https://doi.org/10.1016/j.aquaculture.2004.05.027
    » https://doi.org/10.1016/j.aquaculture.2004.05.027
  • Mar-Silva A, Diaz-Jaimes P, Domínguez-Mendoza C, Domínguez-Domínguez O, Valdiviezo-Rivera J, Espinoza-Herrera E. Genomic assessment reveals signal of adaptive selection in populations of the Spotted rose snapper Lutjanus guttatus from the Tropical Eastern Pacific. PeerJ. 2023; 11:e15029 http://doi.org/10.7717/peerj.15029
    » http://doi.org/10.7717/peerj.15029
  • Mariscal-Romero J, Van der Heiden MA. Peces de importancia ecológica y comercial asociados a fondos blandos en la plataforma continental de Jalisco y Colima, México. In: Jiménez-Quiroz MC, Espino-Barr E, editors. Los recursos pesqueros y acuícolas de Jalisco, Colima y Michoacán. Manzanillo: SAGARPA-INP-CRIP; 2006. p.180–95.
  • Medina-Contreras D, Cantera-Kints J, Sánchez A. Trophic structure of fish communities in mangrove systems subject to different levels of anthropogenic intervention, Tropical Eastern Pacific, Colombia. Env Sci Pollut Res. 2021; 29:61608–22. https://doi.org/10.1007/s11356-021-16814-x
    » https://doi.org/10.1007/s11356-021-16814-x
  • Nei M. Genetic distance between populations. Am Nat. 1972; 106(949):283–92. https://doi.org/10.1086/282771
    » https://doi.org/10.1086/282771
  • Pauly D, Arreguín-Sánchez F, Munro JL, Balgos MC. Biology, fisheries and culture of Snappers and Groupers: workshop conclusions and updates to 1996. In: Arreguín-Sánchez F, Munro JL, Balgos MC, Pauly D, editors. Biology, fisheries and culture of tropical groupers and snappers. Manila: ICLARM; 1996. p.1–10.
  • Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012; 28(19):2537–39. https://doi.org/10.1093/bioinformatics/bts460
    » https://doi.org/10.1093/bioinformatics/bts460
  • Peña R, Dumas S, Contreras-Olguin M. Organogenesis of the digestive system in Pacific red snapper (Lutjanus peru) larvae. Aquac Res. 2017; 48(4):1561–75. https://doi.org/10.1111/are.12991
    » https://doi.org/10.1111/are.12991
  • Perez-Enriquez R, Valadez-Rodríguez JA, Max-Aguilar A, Dumas S, Díaz-Viloria N. Parental contribution in a cultivated stock for the spotted rose snapper Lutjanus guttatus (Steindachner, 1869) estimated by newly developed microsatellite markers. Lat Am J Aquat Res. 2020; 48(2):247–56. http://dx.doi.org/10.3856/vol48-issue2-fulltext-2424
    » http://dx.doi.org/10.3856/vol48-issue2-fulltext-2424
  • Pettay DT, LaJeunesse TC. Long-range dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PLoS ONE. 2013; 8(11):e79208. https://doi.org/10.1371/journal.pone.0079208
    » https://doi.org/10.1371/journal.pone.0079208
  • R Development Core Team. R A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2011. Available from: https://www.r-project.org/
    » https://www.r-project.org/
  • Raymond M, Rousset F. GENEPOP version 1.2: population genetics software for exact tests and ecumenicism. J Hered. 1995; 86(3):248–49. https://doi.org/10.1093/oxfordjournals.jhered.a111573
    » https://doi.org/10.1093/oxfordjournals.jhered.a111573
  • Reguera-Rouzaud N, Díaz-Viloria N, Pérez-Enríquez R, Espino-Barr E, Rivera-Lucero MI, Munguía-Vega A. Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical eastern Pacific. J Fish Biol. 2021; 98(5):1267–80. https://doi.org/10.1111/jfb.14656
    » https://doi.org/10.1111/jfb.14656
  • Rice WER. Analyzing tables of statistical tests. Evolution. 1989; 43(1):223–25. https://doi.org/10.2307/2409177
    » https://doi.org/10.2307/2409177
  • Robertson DR, Allen GR. Shorefishes of the Tropical Eastern Pacific: online information system version 2.0. Smithsonian Tropical Research Institute [Internet]. Balboa; 2015. Available from: www.stri.org/sftep
  • Robertson DR, Cramer KL. Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Mar Ecol Prog Ser. 2009; 380:1–17. https://doi.org/10.3354/meps07925
    » https://doi.org/10.3354/meps07925
  • Rojas MJR. Fecundidad y épocas de reproducción del “pargo mancha” Lutjanus guttatus (Pisces: Lutjanidae) en el Golfo de Nicoya, Costa Rica. Rev Biol Trop. 1997; 44:477–87.
  • Rousset F. GENEPOP’ 007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour. 2008; 8(1):103–06. https://doi.org/10.1111/j.1471-8286.2007.01931.x
    » https://doi.org/10.1111/j.1471-8286.2007.01931.x
  • Ryman N, Palm S. POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes. 2006; 6(3):600–02. https://doi.org/10.1111/j.1471-8286.2006.01378.x
    » https://doi.org/10.1111/j.1471-8286.2006.01378.x
  • Saavedra-Sotelo NC, Calderon-Aguilera LE, Reyes-Bonilla H, López-Pérez RA, Medina-Rosas P, Rocha-Olivares A. Limited genetic connectivity of Pavona gigantea in the Mexican Pacific. Coral Reefs. 2011; 30:677–86. https://doi.org/10.1007/s00338-011-0742-6
    » https://doi.org/10.1007/s00338-011-0742-6
  • Sala E, Aburto-Oropeza O, Paredes G, Thompson G. Spawning aggregations and reproductive behavior of reef fishes in the Gulf of California. Bull Mar Sci. 2003; 72:103–121.
  • Sandoval-Huerta ER, Beltrán-López RG, Pedraza-Marrón CR, Paz-Velásquez MA, Angulo A, Robertson DR, Espinoza E, Domínguez-Domínguez O. The evolutionary history of the goby Elacatinus puncticulatus in the tropical eastern pacific: Effects of habitat discontinuities and local environmental variability. Mol Phylogenet Evol. 2019; 130:269–85. https://doi.org/10.1016/j.ympev.2018.10.020
    » https://doi.org/10.1016/j.ympev.2018.10.020
  • Sarabia-Méndez M, Gallardo-Cabello M, Espino-Barr E, Anislado-Tolentino V. Characteristics of population dynamics of Lutjanus guttatus (Pisces: Lutjanidae) in Bufadero Bay, Michoacan, Mexico. Hidrobiológica. 2010; 20(2):147–57.
  • Saucedo-Lozano M, Raymundo-Huizar AR, Valadez-González C. Comparación de los hábitos alimentarios de juveniles de Lutjanus peru y Lutjanus guttatus en la costa de Jalisco y Colima, México. In: Jiménez-Quiroz MC, Espino-Barr E, editors. Los recursos pesqueros y acuícolas de Jalisco, Colima y Michoacán. Manzanillo: SAGARPA-INP-CRIP; 2006. p.209–18.
  • Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol. 2000; 18:233–34. https://doi.org/10.1038/72708
    » https://doi.org/10.1038/72708
  • Silver-Gorges I, Koval J, Rodriguez-Zarate CJ, Paladino FV, Jordan M. Large-scale connectivity, cryptic population structure, and relatedness in Eastern Pacific Olive ridley sea turtles (Lepidochelys olivacea). Ecol Evol. 2020; 10(16):8688–704. https://doi.org/10.1002/ece3.6564
    » https://doi.org/10.1002/ece3.6564
  • Slatkin M. Rare alleles as indicators of gene flow. Evolution. 1985; 39(1):53–65. https://doi.org/10.1111/j.1558-5646.1985.tb04079.x
    » https://doi.org/10.1111/j.1558-5646.1985.tb04079.x
  • Softgenetics. Software power tools for genetic analysis [Internet]. 2012. Available from: https://softgenetics.com
    » https://softgenetics.com
  • Spalding MD, Fox HE, Allen GR, Davidson N, Fierdaña ZA, Finlayson M et al Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience. 2007; 57(7):573–83. https://doi.org/10.1641/B570707
    » https://doi.org/10.1641/B570707
  • Vega AJ, Yolani A, Robles P, Kelvin G. El papel de los manglares como criaderos de pargo (Lutjanidae) en el Golfo de Chiriquí. Tecnociencia. 2015; 17(2):109–23.
  • Vega AJ, Maté JL, Yolani A, Robles P. First report of reproductive aggregations for Pacific red snappers Lutjanus peru (Nicholson y Murphy, 1992) and spotted rose snapper L. guttatus (Steindachner, 1869) in the Coiba National Park, Pacific of Panama. GCFI. 2016a; 68:112–17.
  • Vega AJ, Yolani A, Robles P, Maté JL. La pesca artesanal en el Parque Nacional Coiba y zona de influencia. Biología y pesquería de sus principales recursos, con recomendaciones de manejo. Ciudad de Panamá; Fundación MarViva; 2016b.
  • Walker BW. The distribution and affinities of the marine fish fauna of the Gulf of California. Syst Zool. 1960; 9(3–4):123–33. https://doi.org/10.2307/2411961
    » https://doi.org/10.2307/2411961
  • Weir BS, Cockerham C. Estimating F-statistics for the analysis of population. Evolution. 1984; 38(6):1358–70. https://doi.org/10.2307/2408641
    » https://doi.org/10.2307/2408641
  • Wright S. Evolution and the genetics of populations, vol. 2. The theory of gene frequencies. Chicago: University of Chicago Press; 1969.
  • Zapata FA, Herrón PA. Pelagic larval duration and geographic distribution of tropical eastern Pacific snappers (Pisces: Lutjanidae). Mar Ecol Prog Ser. 2002; 230:295–300. https://doi.org/10.3354/meps230295
    » https://doi.org/10.3354/meps230295

ADDITIONAL NOTES

  • HOW TO CITE THIS ARTICLE

    Díaz-Viloria N, Max-Aguilar A, Rivera-Lucero MI, Espino-Barr E, Reguera-Rouzaud N, Casaucao-Aguilar A, Perez-Enriquez R. Genetic connectivity in the spotted rose snapper Lutjanus guttatus (Lutjaniformes: Lutjanidae) between Mexico and Panama throughout the Tropical Eastern Pacific. Neotrop Ichthyol. 2023; 21(2):e220113. https://doi.org/10.1590/1982-0224-2022-0113

Edited-by

Guillermo Ortí

Publication Dates

  • Publication in this collection
    08 May 2023
  • Date of issue
    2023

History

  • Received
    08 Apr 2022
  • Accepted
    13 Apr 2023
Sociedade Brasileira de Ictiologia Neotropical Ichthyology, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá., Av. Colombo, 5790, 87020-900, Phone number: +55 44-3011-4632 - Maringá - PR - Brazil
E-mail: neoichth@nupelia.uem.br