Survival, growth and metabolic parameters of silver catfish, Rhamdia quelen, juveniles exposed to different waterborne nitrite levels

Ronaldo L. de Lima Neiva Braun Daiani Kochhann Rafael Lazzari João Radünz Neto Bibiana S. Moraes Vania L. Loro Bernardo Baldisserotto About the authors

High nitrite (NO2-) levels may develop in aquaculture systems due to high fish density, but studies of lethal concentration values and the effect of NO2- on metabolic parameters and growth are scarce. Consequently, in this study was verified the lethal concentration at 96 h (LC50-96h) for (NO2-) in juvenile silver catfish, Rhamdia quelen and the effect of four waterborne NO2- concentrations (0.06, 0.46, 1.19, and 1.52 mg.L-1) on growth, and hepatic and muscular lactate, glucose, glycogen and protein. Nitrite LC50-96h was 20.46 (confidence interval: 16.10-23.68) mg.L-1. In the growth experiment, exposure to NO2- did not affect weight, length or specific growth rate, but due to mortality (66.7% and 100% after 20 and 40 days, respectively), biomass of juveniles exposed to 1.52 mg.L-1 NO2- was significantly lower than the biomass of juveniles exposed to other treatments. Therefore, the safe level of nitrite for growth of silver catfish juveniles is below 1.19 mg.L-1 (2% of LC50-96h). Exposure of silver catfish to NO2- for 40 days reduced lactate levels in muscle, but lactate levels increased in liver tissue of fish maintained at 1.19 mg.L-1 NO2-. In addition, glucose levels in muscle and liver tissues were significantly lower in silver catfish exposed to the highest NO2- level. These results indicate that chronic NO2- exposure causes anaerobic substrate oxidation to meet energy demand.

Nitrogenous compound; Jundiá; Glucose; Lactate


Sociedade Brasileira de Ictiologia Universidade Estadual de Maringá, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura/Coleção Ictiologia, Av. Colombo, 5790, 87020-900 Maringá, PR, Brasil, Tel.: (55 44)3011 4632 - Maringá - PR - Brazil
E-mail: neoichth@nupelia.uem.br