Acessibilidade / Reportar erro

Neospora caninum in free-range chickens (Gallus gallus domesticus) from southern Brazil

Neospora caninum em galinhas de vida livre (Gallus gallus domesticus) do sul do Brasil

Abstract

Neospora caninum is an obligate intracellular parasite that can infect many domestic and wild animals, including birds. These animals are important sources for monitoring of environmental contamination, as they could become infected through sporulated oocysts; however, the real role of birds in the biological cycle of N. caninum remains uncertain. This study aimed to determine the prevalence of anti-N. caninum antibodies, evaluate associated factors, detect the parasite by molecular testing of free-range chickens from Brazil, and evaluate different techniques for its serological diagnosis. Blood samples of 366 chickens from 25 farms were collected for serological assays. The indirect fluorescent antibody test (IFAT) and the indirect enzyme-linked immunosorbent assay (ELISA) were used to detect anti-N. caninum antibodies. Chickens that tested seropositive by IFAT had their brain tissues and a pool of organs (heart, lung, and liver) submitted to PCR for molecular detection of the parasite. Out of 366 chickens, 65 (17.8%) and 163 (44.6%) were seropositive by IFAT and ELISA, respectively. Brain tissues (n=60) and the pools of organs (n=65) were negative in the PCR. Our results showed a high prevalence of antibodies in free-range chickens and that IFAT is the more sensitive technique for the detection of anti-N. caninum antibodies.

Keywords:
Free-range chicken; indirect fluorescent antibody test; enzyme-linked immunosorbent assay; polymerase chain reaction

Resumo

Neospora caninum é um parasita intracelular obrigatório que pode infectar vários animais domésticos e silvestres, incluindo as aves. Esses animais são importantes fontes para o monitoramento da contaminação ambiental, uma vez que eles podem se infectar por meio da ingestão de oocistos. Porém, o real papel das aves no ciclo biológico do N. caninum ainda é incerto. Este estudo teve como objetivos determinar a prevalência de anticorpos anti-N. caninum, avaliar fatores associados, detectar o parasita por meio de teste molecular em galinhas de vida livre do Brasil e avaliar diferentes técnicas para o diagnóstico sorológico. Amostras de sangue de 366 galinhas de 25 fazendas foram coletadas para testes sorológicos. A reação de imunofluorescência indireta (RIFI) e o ensaio de imunoabsorção enzimática (ELISA) foram utilizados para detectar anticorpos anti-N. caninum. As amostras de tecidos (cérebro, coração, pulmão e fígado) de galinhas soropositivas na RIFI foram coletadas e submetidas à PCR para detecção molecular do parasita. Das 366 galinhas, 65 (17,8%) e 163 (44,6%) foram soropositivas pela RIFI e ELISA, respectivamente. Nenhuma amostra foi positiva na PCR. Esses resultados demonstram uma elevada prevalência de anticorpos em galinhas de vida livre e que a RIFI é uma técnica mais sensível para a detecção de anticorpos anti-N. caninum.

Palavras-chave:
Galinhas de vida livre; imunofluorescência indireta; ensaio de imunoabsorção enzimática; reação em cadeia da polimerase

Introduction

Neospora caninum is an Apicomplexa protozoan, of worldwide distribution, capable of infecting many domestic and wild animals, including birds (Dubey & Schares, 2011Dubey JP, Schares G. Neosporosis in animals-The last five years. Vet Parasitol 2011; 180(1–2): 90-108. http://dx.doi.org/10.1016/j.vetpar.2011.05.031. PMid:21704458.
http://dx.doi.org/10.1016/j.vetpar.2011....
; Romero et al., 2016Romero DG, Sánchez GFD, Morales SE. Neospora caninum in free-range chickens of Central Mexico. Vet Parasitol Reg Stud Reports 2016; 5: 31-33. http://dx.doi.org/10.1016/j.vprsr.2016.08.006. PMid:31014534.
http://dx.doi.org/10.1016/j.vprsr.2016.0...
). The disease causes abortion in cattle and has considerable importance in cattle production, resulting in high economic losses worldwide (Reichel et al., 2013Reichel MP, Alejandra Ayanegui-Alcérreca M, Gondim LFP, Ellis JT. What is the global economic impact of Neospora caninum in cattle – The billion dollar question. Int J Parasitol 2013; 43(2): 133-142. http://dx.doi.org/10.1016/j.ijpara.2012.10.022. PMid:23246675.
http://dx.doi.org/10.1016/j.ijpara.2012....
). In dogs, the disease is usually asymptomatic, although clinical manifestations that include muscular and neurological disorders have been described in young dogs (Silva & Machado, 2016Silva RC, Machado G. Canine neosporosis: perspectives on pathogenesis and management. Vet Med (Auckl) 2016; 7: 59-70. http://dx.doi.org/10.2147/VMRR.S76969. PMid:30050838.
http://dx.doi.org/10.2147/VMRR.S76969...
).

In birds, serological evidence of N. caninum has been described in different species, including domestic and wild birds (Costa et al., 2008Costa KS, Santos SL, Uzêda RS, Pinheiro AM, Almeida MAO, Araújo FR, et al. Chickens (Gallus domesticus) are natural intermediate hosts of Neospora caninum. Int J Parasitol 2008; 38(2): 157-159. http://dx.doi.org/10.1016/j.ijpara.2007.10.008. PMid:18054356.
http://dx.doi.org/10.1016/j.ijpara.2007....
; Mineo et al., 2009Mineo TW, Carrasco AOT, Marciano JA, Werther K, Pinto AA, Machado RZ. Pigeons (Columba livia) are a suitable experimental model for Neospora caninum infection in birds. Vet Parasitol 2009; 159(2): 149-153. http://dx.doi.org/10.1016/j.vetpar.2008.10.024. PMid:19027237.
http://dx.doi.org/10.1016/j.vetpar.2008....
; Gondim et al., 2010Gondim LSQ, Abe-Sandes K, Uzêda RS, Silva MSA, Santos SL, Mota RA, et al. Toxoplasma gondii and Neospora caninum in sparrows (Passer domesticus) in the Northeast of Brazil. Vet Parasitol 2010; 168(1-2): 121-124. http://dx.doi.org/10.1016/j.vetpar.2009.09.055. PMid:19879051.
http://dx.doi.org/10.1016/j.vetpar.2009....
; Darwich et al., 2012Darwich L, Cabezón O, Echeverria I, Pabón M, Marco I, Molina-López R, et al. Presence of Toxoplasma gondii and Neospora caninum DNA in the brain of wild birds. Vet Parasitol 2012; 183(3-4): 377-381. http://dx.doi.org/10.1016/j.vetpar.2011.07.024. PMid:21831525.
http://dx.doi.org/10.1016/j.vetpar.2011....
; Salant et al., 2015Salant H, Mazuz ML, Savitsky I, Nasereddin A, Blinder E, Baneth G. Neospora caninum in crows from Israel. Vet Parasitol 2015; 212(3-4): 375-378. http://dx.doi.org/10.1016/j.vetpar.2015.08.019. PMid:26359640.
http://dx.doi.org/10.1016/j.vetpar.2015....
; De Barros et al., 2017de Barros LD, Taroda A, Martins TA, Miura AC, De Seixas M, Sammi AS, et al. Survey of Neospora caninum in eared doves (Zenaida auriculata) in Southern Brazil. Acta Trop 2017; 174: 132-135. http://dx.doi.org/10.1016/j.actatropica.2017.07.007. PMid:28716354.
http://dx.doi.org/10.1016/j.actatropica....
; Konell et al., 2019Konell AL, Sato AP, Stival M, Malaguini NP, Anjos A, Ferreira RF, et al. Serosurvey of Toxoplasma gondii, Sarcocystis sp. and Neospora caninum in geese (Anser sp.) from urban parks and captivity. Rev Bras Parasitol Vet 2019; 28(2): 221-228. http://dx.doi.org/10.1590/s1984-29612019042. PMid:31271639.
http://dx.doi.org/10.1590/s1984-29612019...
). A recent review showed that the seroprevalence in chickens (Gallus gallus domesticus) ranged from 7.2% to 83.6% according to the region (De Barros et al., 2018de Barros LD, Miura AC, Minutti AF, Vidotto O, Garcia JL. Neospora caninum in birds: a review. Parasitol Int 2018; 67(4): 397-402. http://dx.doi.org/10.1016/j.parint.2018.03.009. PMid:29614327.
http://dx.doi.org/10.1016/j.parint.2018....
). The eating habits of birds increases their exposure to these pathogens, and since birds may be predated by dogs, chickens could contribute to the epidemiology of the parasite. Moreover, previous studies have reported a positive correlation between the presence of birds on the farm and increased reproductive problems in cattle that could be related to N. caninum (Bartels et al., 1999Bartels CJM, Wouda W, Schukken YH. Risk factors for Neospora caninum-associated abortion storms in dairy herds in The Netherlands (1995 to 1997). Theriogenology 1999; 52(2): 247-257. http://dx.doi.org/10.1016/S0093-691X(99)00126-0. PMid:10734392.
http://dx.doi.org/10.1016/S0093-691X(99)...
; Otranto et al., 2003Otranto D, Llazari A, Testini G, Traversa D, Frangipane di Regalbono A, Badan M, et al. Seroprevalence and associated risk factors of neosporosis in beef and dairy cattle in Italy. Vet Parasitol 2003; 118(1-2): 7-18. http://dx.doi.org/10.1016/j.vetpar.2003.10.008. PMid:14651870.
http://dx.doi.org/10.1016/j.vetpar.2003....
).

Since the role of birds in the epidemiology of neosporosis is not fully understood, the present study aimed to detect N. caninum in free-range chickens from Brazil, and evaluate different techniques for its serological diagnosis.

Material and Methods

Sampling and animals

Tissue (heart, brain, lung, and liver) and blood samples of 366 free-range chickens were collected between 2012 and 2014 from 25 farms of Paraná state, south Brazil (Figure 1). For sample size calculation, we assumed a prevalence of 50%, a confidence level of 95%, and efficacy 5% by the Epi Info version 3.5.4. An epidemiological questionnaire was applied for each farmer to determine possible factors associated with exposure to N. caninum in chickens. All procedures involving animals were approved by the Ethics Committee of the State University of Londrina (protocol number 64/10).

Figure 1
Location of free-range farms in Paraná state, Brazil, selected for collection of the animals used in the present study.

Indirect fluorescent antibody test (IFAT)

Serum samples from chickens were tested by IFAT according to the methodology described previously (Conrad et al., 1993Conrad PA, Sverlow K, Anderson M, Rowe J, BonDurant R, Tuter G, et al. Detection of serum antibody responses in cattle with natural or experimental Neospora infections. J Vet Diagn Invest 1993; 5(4): 572-578. http://dx.doi.org/10.1177/104063879300500412. PMid:8286457.
http://dx.doi.org/10.1177/10406387930050...
). Tachyzoites of NC-1 strain of N. caninum were used as antigen, while anti-chicken IgY conjugate labeled with fluorescein isothiocyanate (FITC) (F8888 - Sigma-Aldrich, USA) was used as a secondary antibody. Serum samples from chickens experimentally inoculated with N. caninum (NC-1 strain) and non-infected chickens were used as the positive and negative control, respectively. Samples that showed fluorescence over the total contour of the tachyzoite were considered positive. Since there are is not an established cut-off for chickens, we used the cut-off ≥16 to improve the sensitivity of the test.

Enzyme-linked immunosorbent assay (ELISA)

The ELISA was performed according to the methodology described previously (Paré et al., 1995Paré J, Hietala SK, Thurmond MC. An enzyme-linked immunosorbent assay (ELISA) for serological diagnosis of Neospora sp. infection in cattle. J Vet Diagn Invest 1995; 7(3): 352-359. http://dx.doi.org/10.1177/104063879500700310. PMid:7578451.
http://dx.doi.org/10.1177/10406387950070...
) with few modifications. Tachyzoites of NC-1 strain grown in Vero cells were used to produce the total antigen. The tachyzoites obtained were passed through 27G needles, centrifuged at 10,000 g for 10 min, and the pellet was mixed with ceramic beads via vortexing three times for 10 min each. The resultant solution was centrifuged under the same conditions as described before, and the pellet was discarded. Finally, the protein concentration was quantified by a commercial kit (Pierce™ BCA, Thermo Fisher Scientific, USA), and the antigen was stored at -20°C until further analysis.

Flat-bottom 96-well polystyrene microtitration plates (Nunc-Immuno Plate Maxisorp, Denmark) were coated with 100 µl of crude antigen (2.5 µg/ml) diluted in 0.1 M carbonate buffer (pH 9.6) and incubated at 4ºC overnight. After incubation, the plates were washed three times with PBS-Tween 20 (50 mM Tris, 100 mM NaCl, and 0.05% Tween 20), blocked with carbonate buffer plus 8% nonfat dry milk and incubated at 37°C for one hour. Serum samples were diluted 1:100 in PBS-Tween 20% plus 5% nonfat dry milk, and 100 µl of this mixture were added in duplicate into the microplates and incubated for one hour at 37°C. After another washing cycle, 100 µl peroxidase-labeled anti-chicken IgY antibody (A9046; Sigma-Aldrich, USA) diluted in PBS-Tween 20% plus 5% nonfat dry milk was added in each well, followed by incubation for one hour at 37°C.

The plates were washed three times, and the peroxidase activity was revealed by adding 100 µl of tetramethylbenzidine solution (TMB Single Solution; Thermo Fisher Scientific, USA). Then, 50 µl of hydrochloric acid (1N) was used to stop the reaction, and the optical density (OD) was read at 450 nm through a microplate reader (iMark Microplate Absorbance Reader, Bio-Rad, USA). Serum samples from chickens experimentally inoculated with N. caninum (NC-1 strain) (positive control) and non-infected chickens (negative control) were added to all plates. The OD was corrected to control plate-to-plate variation, and the cut-off was calculated by the OD mean of the negative controls plus two times the standard deviation (Garcia et al., 2006bGarcia JL, Navarro IT, Vidotto O, Gennari SM, Machado RZ, da Luz Pereira AB, et al. Toxoplasma gondii: comparison of a rhoptry-ELISA with IFAT and MAT for antibody detection in sera of experimentally infected pigs. Exp Parasitol 2006b; 113(2): 100-105. http://dx.doi.org/10.1016/j.exppara.2005.12.011. PMid:16458299.
http://dx.doi.org/10.1016/j.exppara.2005...
). The corrected OD were grouped into nine levels, where each subsequent level was determined by an increment of 35% (Machado et al., 1997Machado RZ, Montassier HJ, Pinto AA, Lemos EG, Machado MRF, Valadão IFF, et al. An enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against Babesia bovis in cattle. Vet Parasitol 1997; 71(1): 17-26. http://dx.doi.org/10.1016/S0304-4017(97)00003-4. PMid:9231985.
http://dx.doi.org/10.1016/S0304-4017(97)...
).

Enzymatic digestion

Pooled organs (10 g of each tissue, including heart, lung, and liver) were digested as previously described (Dubey, 1998Dubey JP. Refinement of pepsin digestion method for isolation of Toxoplasma gondii from infected tissues. Vet Parasitol 1998; 74(1): 75-77. http://dx.doi.org/10.1016/S0304-4017(97)00135-0. PMid:9493311.
http://dx.doi.org/10.1016/S0304-4017(97)...
). Briefly, the organs were crushed in saline solution and added to artificial digestive fluid (0.78 g pepsin, 0.5 g NaCl, 0.7 ml HCl and 150 ml of distilled water) for one hour at 37ºC. The product of digestion was filtered and centrifuged at 1,200 g for 10 min. The supernatant was discarded, and the pellet neutralized with a sodium bicarbonate solution 1.2%. The solution was resuspended in physiological solution and centrifuged again. Then the supernatant was discarded, the solution was resuspended in 1 ml, with 1000 UI of penicillin and 100 µg of streptomycin per ml added and stored at -20ºC until molecular analysis.

DNA extraction

Animals considered positive by IFAT had their tissue samples submitted to polymerase chain reaction (PCR). Samples of 60 brains (25 mg) and 65 pools of organs (heart, lung, and liver) (300 µl of enzymatic digestion) were used for DNA extraction. The samples were homogenized and transferred to microtubes with an equal volume of extraction buffer (200 mM NaCl, 20 mM Tris, 50 mM EDTA, proteinase K 1 mg/ml and 2% SDS), followed by incubation at 56ºC for one hour. Then, with buffered phenol (300 µl) added, it was centrifuged at 13,000 g for 5 min. The supernatant was transferred for another microtube, and with phenol:chloroform:isoamyl alcohol added, it was centrifuged at 13,000 g for 5 min (Garcia et al., 2006aGarcia JL, Gennari SM, Machado RZ, Navarro IT. Toxoplasma gondii: detection by mouse bioassay, histopathology, and polymerase chain reaction in tissues from experimentally infected pigs. Exp Parasitol 2006a; 113(4): 267-271. http://dx.doi.org/10.1016/j.exppara.2006.02.001. PMid:16545804.
http://dx.doi.org/10.1016/j.exppara.2006...
). Then, DNA was precipitated by sodium acetate and ethanol (Sambrook et al., 1989Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.).

PCR

For the molecular detection of N. caninum, a conventional PCR, targeting the Nc5 gene, was performed using the primers Np6 plus (5’-CTCGCCAGTCAACCTACGTCTTCT-3’) and Np21 plus (5’-GGGTGTGCGTCCAATCCTGTAAC-3’), which amplify a fragment of 337 bp (Hughes et al., 2006Hughes JM, Williams RH, Morley EK, Cook DAN, Terry RS, Murphy RG, et al. The prevalence of Neospora caninum and co-infection with Toxoplasma gondii by PCR analysis in naturally occurring mammal populations. Parasitology 2006; 132(Pt 1): 29-36. http://dx.doi.org/10.1017/S0031182005008784. PMid:16393351.
http://dx.doi.org/10.1017/S0031182005008...
). The reaction was performed in 25 µl using 100 ng/µl of DNA, 25 mM MgCl2, 200 µM dNTP (Thermo Fisher Scientific, USA), 1 µM of each primer, 1x PCR buffer (20 mM Tris-HCl, 50 mM KCl, pH 8.4) 1.25 U of Taq-DNA polymerase (Thermo Fisher Scientific, USA) and ultrapure sterile H2O. The thermocycler program was run in appliance TC-512 (Techne, USA) according to the program: 95ºC for 5 min for initial denaturation, 35 cycles of 95ºC for 30 sec for denaturation, 63ºC for 30 sec for annealing, and 72ºC for 1 min for the extension. A final extension at 72ºC for 5 min was included. Positive and negative controls were added in all reactions. PCR products were submitted to electrophoresis in agarose gel 1.5% stained with Sybr® Safe DNA Gel Stain (Thermo Fisher Scientific, USA), visualized and photo-documented under UV (L – PIX EX, Loccus Biotechnology, Brazil).

Statistical analysis

The kappa coefficient was used to evaluate the agreement between the serological techniques, and the interpretation was performed as previously described (Landis & Koch, 1977Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33(1): 159-174. http://dx.doi.org/10.2307/2529310. PMid:843571.
http://dx.doi.org/10.2307/2529310...
). Sensitivity and specificity were calculated using IFAT as the gold standard (Casartelli-Alves et al., 2014Casartelli-Alves L, Boechat VC, Macedo-Couto R, Ferreira LC, Nicolau JL, Neves LB, et al. Sensitivity and specificity of serological tests, histopathology and immunohistochemistry for detection of Toxoplasma gondii infection in domestic chickens. Vet Parasitol 2014; 204(3-4): 346-351. http://dx.doi.org/10.1016/j.vetpar.2014.05.039. PMid:24953750.
http://dx.doi.org/10.1016/j.vetpar.2014....
). All the variables were analyzed by chi-square test or Fisher’s exact test using a computer software (GraphPad Prism, v.6.0), and p-values ≤ 0.05 were considered significant.

Results

Out of 366 serum samples, 65 (17.8%) were positive by IFAT (Table 1), with the following titers: 16 (86.2%), 64 (12.3%) and 256 (1.5%). The occurrence of anti-N. caninum antibodies on each farm ranged from 7% to 62%, while 72% (18/25) of the visited farms had at least one positive animal. According to the ELISA test, 163 (44.6%) samples were positive, with the most frequent OD level among the positive samples at level four (Table 2). A comparison between the serological techniques showed that ELISA had lower sensitivity and specificity than IFAT, presenting 49% and 56%, respectively. The kappa coefficient of 0.036 demonstrates a slight agreement between the techniques. Factors associated with exposure to N. caninum in chickens were slaughter above 90 days (p=0.02), contact with animal wastes (p=0.05), and chickens raised free all-day (p=0.005) (Table 3). Through PCR, no samples were considered positive.

Table 1
Results of serological tests (IFAT and ELISA) for the detection of Neospora caninum in free-range chickens from northern Paraná state, Brazil.
Table 2
Classification of positive animals for Neospora caninum in ELISA at different levels of optical density increasing by increments of 35%.
Table 3
Variables associated with Neospora caninum serum positive at IFAT in free-range chickens.

Discussion

We observed that 17.8% of free-range chickens from Paraná State from Brazil were seropositive for N. caninum, demonstrating that the parasite is circulating in this region, and chickens are exposed to parasitic stages. Previous studies on free-range chickens in Brazil have also described a similar prevalence by IFAT, in Bahia with 17 - 23.5% of seropositivity (Costa et al., 2008Costa KS, Santos SL, Uzêda RS, Pinheiro AM, Almeida MAO, Araújo FR, et al. Chickens (Gallus domesticus) are natural intermediate hosts of Neospora caninum. Int J Parasitol 2008; 38(2): 157-159. http://dx.doi.org/10.1016/j.ijpara.2007.10.008. PMid:18054356.
http://dx.doi.org/10.1016/j.ijpara.2007....
; Gonçalves et al., 2012Gonçalves IN, Uzêda RS, Lacerda GA, Moreira RRN, Araújo FR, Oliveira RHM, et al. Molecular frequency and isolation of cyst-forming coccidia from free ranging chickens in Bahia State, Brazil. Vet Parasitol 2012; 190(1-2): 74-79. http://dx.doi.org/10.1016/j.vetpar.2012.05.007. PMid:22673105.
http://dx.doi.org/10.1016/j.vetpar.2012....
), 36.5% in Rio Grande do Sul (Camillo et al., 2015Camillo G, Cadore GC, Ferreira MST, Braünig P, Maciel JF, Pivoto FL, et al. Toxoplasma gondii and Neospora caninum antibodies in backyard chickens in Rio Grande do Sul, Brazil. Rev Bras Cienc Avic 2015; 17(2): 263-265. http://dx.doi.org/10.1590/1516-635x1702263-265.
http://dx.doi.org/10.1590/1516-635x17022...
), and 20% in São Paulo (Martins et al., 2011Martins J, Kwok OCH, Dubey JP. Seroprevalence of Neospora caninum in free-range chickens (Gallus domesticus) from the Americas. Vet Parasitol 2011; 182(2-4): 349-351. http://dx.doi.org/10.1016/j.vetpar.2011.05.023. PMid:21676546.
http://dx.doi.org/10.1016/j.vetpar.2011....
). In other countries, the seroprevalence ranged from 23.1% to 41.5% (Martins et al., 2011Martins J, Kwok OCH, Dubey JP. Seroprevalence of Neospora caninum in free-range chickens (Gallus domesticus) from the Americas. Vet Parasitol 2011; 182(2-4): 349-351. http://dx.doi.org/10.1016/j.vetpar.2011.05.023. PMid:21676546.
http://dx.doi.org/10.1016/j.vetpar.2011....
; Feng et al., 2016Feng Y, Lu Y, Wang Y, Liu J, Zhang L, Yang Y. Toxoplasma gondii and Neospora caninum in Free-Range Chickens in Henan Province of China. BioMed Res Int 2016; 2016: 8290536. http://dx.doi.org/10.1155/2016/8290536. PMid:27274992.
http://dx.doi.org/10.1155/2016/8290536...
; Rocchigiani et al., 2017Rocchigiani G, Poli A, Nardoni S, Papini R, Mancianti F. Neospora caninum in wild waterfowl: occurrence of parasite DNA and Low antibody titers. J Parasitol 2017; 103(1): 142-145. http://dx.doi.org/10.1645/16-34. PMid:27805842.
http://dx.doi.org/10.1645/16-34...
). A similar prevalence was detected in waterfowl birds (17.5%, 32/182) from Italy, indicating that, as these bird species feed directly on the ground, they have a higher seroprevalence (Nardoni et al., 2019Nardoni S, Poli A, Varvaro I, Rocchigiani G, Ceccherelli R, Mancianti F. Detection of Neospora caninum DNA in wild birds from Italy. Pathogens 2019; 8(4): 202. http://dx.doi.org/10.3390/pathogens8040202. PMid:31652735.
http://dx.doi.org/10.3390/pathogens80402...
). However, in an urban park from Brazil, only one goose (Anser sp.) (out of 149) was found to be seropositive to N. caninum, suggesting that this seroprevalence may be due to a low seroconversion rate or a different type of feed in this species (Konell et al., 2019Konell AL, Sato AP, Stival M, Malaguini NP, Anjos A, Ferreira RF, et al. Serosurvey of Toxoplasma gondii, Sarcocystis sp. and Neospora caninum in geese (Anser sp.) from urban parks and captivity. Rev Bras Parasitol Vet 2019; 28(2): 221-228. http://dx.doi.org/10.1590/s1984-29612019042. PMid:31271639.
http://dx.doi.org/10.1590/s1984-29612019...
).

Based on the variable analysis, slaughter above 90 days was a variable associated with exposure to N. caninum in chickens. This result indicates that chickens more than 90 days of age have a higher chance of infection due to longer lifespan; however, a previous study showed no significant association between the N. caninum infection and age of chickens (Feng et al., 2016Feng Y, Lu Y, Wang Y, Liu J, Zhang L, Yang Y. Toxoplasma gondii and Neospora caninum in Free-Range Chickens in Henan Province of China. BioMed Res Int 2016; 2016: 8290536. http://dx.doi.org/10.1155/2016/8290536. PMid:27274992.
http://dx.doi.org/10.1155/2016/8290536...
). Chickens that have contact with animal wastes and raised free all-day were also associated with infection. We suggest that these variables contribute to a higher exposition to the parasitic stages present in the environment since outdoor chickens have higher seropositivity (Costa et al., 2008Costa KS, Santos SL, Uzêda RS, Pinheiro AM, Almeida MAO, Araújo FR, et al. Chickens (Gallus domesticus) are natural intermediate hosts of Neospora caninum. Int J Parasitol 2008; 38(2): 157-159. http://dx.doi.org/10.1016/j.ijpara.2007.10.008. PMid:18054356.
http://dx.doi.org/10.1016/j.ijpara.2007....
). The presence of dogs on the farm showed no significant association with seropositivity in chickens; however, the presence of wild canids could contribute to the epidemiology of neosporosis (Melendez et al., 2020Melendez P, Ilha M, Woldemeskel M, Graham J, Coarsey M, Baughman D, et al. An outbreak of Neospora caninum abortion in a dairy herd from the State of Georgia, United States. Vet Med Sci 2020: 1-10. https://doi.org/10.1002/vms3.346.
https://doi.org/10.1002/vms3.346...
).

In the present study, we evaluated the ELISA technique using the total antigen; however, it showed a low sensitivity and specificity. Additionally, the Kappa coefficient showed a slight agreement with IFAT and ELISA, which makes this technique not appropriated for the screening test in epidemiological studies in chickens since cross-reaction with apicomplexan parasites may be present (Gondim et al., 2017Gondim LFP, Mineo JR, Schares G. Importance of serological cross-reactivity among Toxoplasma gondii, Hammondia spp., Neospora spp., Sarcocystis spp. and Besnoitia besnoiti. Parasitology 2017; 144(7): 851-868. http://dx.doi.org/10.1017/S0031182017000063. PMid:28241894.
http://dx.doi.org/10.1017/S0031182017000...
). The protein disulfide isomerase (PDI), heat-shock protein (HSP70), and ribosomal proteins (RP1) have been identified as cross-reactive antigens and could be related to the low specificity of the serological test (Liao et al., 2005Liao M, Xuan X, Huang X, Shirafuji H, Fukumoto S, Hirata H, et al. Identification and characterization of cross-reactive antigens from Neospora caninum and Toxoplasma gondii. Parasitology 2005; 130(Pt 5): 481-488. http://dx.doi.org/10.1017/S0031182004006948. PMid:15991490.
http://dx.doi.org/10.1017/S0031182004006...
; Zhang et al., 2011Zhang H, Lee E, Yu L, Kawano S, Huang P, Liao M, et al. Identification of the cross-reactive and species-specific antigens between Neospora caninum and Toxoplasma gondii tachyzoites by a proteomics approach. Parasitol Res 2011; 109(3): 899-911. http://dx.doi.org/10.1007/s00436-011-2332-5. PMid:21461729.
http://dx.doi.org/10.1007/s00436-011-233...
). An ELISA using the surface antigen 1 of N. caninum (NcSAG1t) was tested in serum from chickens, and was a good option for serological diagnosis of neosporosis in animals since the use of species-specific recombinant proteins avoids cross-reaction (Ibrahim, 2013Ibrahim HM. Seroprevalence of Neospora caninum antibodies in chicken samples from Delta Egypt using a recombinant NcSAG1 protein-based ELISA. Egypt J Immunol 2013; 20(1): 29-37. PMid:23888555.; Gondim et al., 2017Gondim LFP, Mineo JR, Schares G. Importance of serological cross-reactivity among Toxoplasma gondii, Hammondia spp., Neospora spp., Sarcocystis spp. and Besnoitia besnoiti. Parasitology 2017; 144(7): 851-868. http://dx.doi.org/10.1017/S0031182017000063. PMid:28241894.
http://dx.doi.org/10.1017/S0031182017000...
). An agglutination test (N-MAT) showed high sensitivity and specificity for naturally and experimentally infected chickens and could be an alternative tool (Sayari et al., 2016Sayari M, Namavari M, Mojaver S. Seroprevalence of Neospora caninum infection in free ranging chickens (Gallus domesticus). J Parasit Dis 2016; 40(3): 845-847. http://dx.doi.org/10.1007/s12639-014-0590-8. PMid:27605795.
http://dx.doi.org/10.1007/s12639-014-059...
).

According to molecular analyses, no samples were positive. In chickens from China, no positive samples have been observed by molecular analyses in myocardium digestion liquids (n=25) (Feng et al., 2016Feng Y, Lu Y, Wang Y, Liu J, Zhang L, Yang Y. Toxoplasma gondii and Neospora caninum in Free-Range Chickens in Henan Province of China. BioMed Res Int 2016; 2016: 8290536. http://dx.doi.org/10.1155/2016/8290536. PMid:27274992.
http://dx.doi.org/10.1155/2016/8290536...
). However, the presence of N. caninum DNA in chickens was first reported in the brain of six animals, confirming that chickens are natural intermediate hosts of the parasite (Costa et al., 2008Costa KS, Santos SL, Uzêda RS, Pinheiro AM, Almeida MAO, Araújo FR, et al. Chickens (Gallus domesticus) are natural intermediate hosts of Neospora caninum. Int J Parasitol 2008; 38(2): 157-159. http://dx.doi.org/10.1016/j.ijpara.2007.10.008. PMid:18054356.
http://dx.doi.org/10.1016/j.ijpara.2007....
). In wild birds that tested seropositive with a low titer of the antibody, a high rate of positive PCR samples was detected, indicating that these birds could also be involved in the epidemiology of N. caninum (Nardoni et al., 2019Nardoni S, Poli A, Varvaro I, Rocchigiani G, Ceccherelli R, Mancianti F. Detection of Neospora caninum DNA in wild birds from Italy. Pathogens 2019; 8(4): 202. http://dx.doi.org/10.3390/pathogens8040202. PMid:31652735.
http://dx.doi.org/10.3390/pathogens80402...
). DNA of N. caninum was also detected in brain and heart tissues from wild waterfowl from Italy, showing that these animals can become infected and could contribute to the spread of the parasite. (Rocchigiani et al., 2017Rocchigiani G, Poli A, Nardoni S, Papini R, Mancianti F. Neospora caninum in wild waterfowl: occurrence of parasite DNA and Low antibody titers. J Parasitol 2017; 103(1): 142-145. http://dx.doi.org/10.1645/16-34. PMid:27805842.
http://dx.doi.org/10.1645/16-34...
).

Animals experimentally infected with tachyzoites and oocysts of two different strains of N. caninum yielded negative results at PCR (Oliveira et al., 2018Oliveira S, Aizawa J, Soares HS, Chiebao DP, Castro MB, Hora AS, et al. Experimental Neospora caninum infection in chickens (Gallus gallus domesticus) with oocysts and tachyzoites of two recent isolates reveals resistance to infection. Int J Parasitol 2018; 48(2): 117-123. http://dx.doi.org/10.1016/j.ijpara.2017.07.004. PMid:28903025.
http://dx.doi.org/10.1016/j.ijpara.2017....
); however, this resistance to chronic infection could be related to the strain of parasite as the parasite had a low capacity for multiplication at temperatures above 39ºC to 41.5ºC (Rezende-Gondim et al., 2017Rezende-Gondim MM, Da Silva AV, Schares G, Gondim LFP. In contrast to Toxoplasma gondii, Neospora caninum tachyzoites did not sustain multiplication in vitro at increased incubation temperatures. Vet Parasitol 2017; 234: 19-24. https://doi.org/10.1016/j.vetpar.2016.12.013.
https://doi.org/10.1016/j.vetpar.2016.12...
). Since we could not detect positive samples by PCR, we suggested that chickens were infected by a low dose of parasites, or they are resistant to chronic infection, being the tissue cysts eliminated due to high corporal temperature of free-range chickens. Moreover, previous studies have demonstrated that chickens present a transient N. caninum infection, being seropositive without the establishment of infection (Furuta et al., 2007Furuta PI, Mineo TW, Carrasco AO, Godoy GS, Pinto AA, Machado RZ. Neospora caninum infection in birds: experimental infections in chicken and embryonated eggs. Parasitology 2007; 134(Pt 14): 1931-1939. http://dx.doi.org/10.1017/S0031182007003344. PMid:17686190.
http://dx.doi.org/10.1017/S0031182007003...
; Munhoz et al., 2014Munhoz AD, Amaral TF, Gonçalves LR, Moraes VMB, Machado RZ. Gallus gallus domesticus are resistant to infection with Neospora caninum tachyzoites of the NC-1 strain. Vet Parasitol 2014; 206(3-4): 123-128. http://dx.doi.org/10.1016/j.vetpar.2014.10.009. PMid:25468016.
http://dx.doi.org/10.1016/j.vetpar.2014....
).

Conclusions

Our results showed that N. caninum is circulating among free-range chickens on the studied farms; however, the importance of these animals on the epidemiology of neosporosis should be elucidated. The ELISA demonstrated a slight agreement with IFAT, being the IFAT a more appropriate technique for epidemiological studies.

  • How to cite: Sasse JP, Silva ACS, Carneiro PG, Nino BSL, Vieira FEG, de Barros LD, et al. Neospora caninum in free-range chickens (Gallus gallus domesticus) from southern Brazil. Braz J Vet Parasitol 2020; 29(4): e013620. https://doi.org/10.1590/S1984-29612020107

References

  • Bartels CJM, Wouda W, Schukken YH. Risk factors for Neospora caninum-associated abortion storms in dairy herds in The Netherlands (1995 to 1997). Theriogenology 1999; 52(2): 247-257. http://dx.doi.org/10.1016/S0093-691X(99)00126-0 PMid:10734392.
    » http://dx.doi.org/10.1016/S0093-691X(99)00126-0
  • Camillo G, Cadore GC, Ferreira MST, Braünig P, Maciel JF, Pivoto FL, et al. Toxoplasma gondii and Neospora caninum antibodies in backyard chickens in Rio Grande do Sul, Brazil. Rev Bras Cienc Avic 2015; 17(2): 263-265. http://dx.doi.org/10.1590/1516-635x1702263-265
    » http://dx.doi.org/10.1590/1516-635x1702263-265
  • Casartelli-Alves L, Boechat VC, Macedo-Couto R, Ferreira LC, Nicolau JL, Neves LB, et al. Sensitivity and specificity of serological tests, histopathology and immunohistochemistry for detection of Toxoplasma gondii infection in domestic chickens. Vet Parasitol 2014; 204(3-4): 346-351. http://dx.doi.org/10.1016/j.vetpar.2014.05.039 PMid:24953750.
    » http://dx.doi.org/10.1016/j.vetpar.2014.05.039
  • Conrad PA, Sverlow K, Anderson M, Rowe J, BonDurant R, Tuter G, et al. Detection of serum antibody responses in cattle with natural or experimental Neospora infections. J Vet Diagn Invest 1993; 5(4): 572-578. http://dx.doi.org/10.1177/104063879300500412 PMid:8286457.
    » http://dx.doi.org/10.1177/104063879300500412
  • Costa KS, Santos SL, Uzêda RS, Pinheiro AM, Almeida MAO, Araújo FR, et al. Chickens (Gallus domesticus) are natural intermediate hosts of Neospora caninum. Int J Parasitol 2008; 38(2): 157-159. http://dx.doi.org/10.1016/j.ijpara.2007.10.008 PMid:18054356.
    » http://dx.doi.org/10.1016/j.ijpara.2007.10.008
  • Darwich L, Cabezón O, Echeverria I, Pabón M, Marco I, Molina-López R, et al. Presence of Toxoplasma gondii and Neospora caninum DNA in the brain of wild birds. Vet Parasitol 2012; 183(3-4): 377-381. http://dx.doi.org/10.1016/j.vetpar.2011.07.024 PMid:21831525.
    » http://dx.doi.org/10.1016/j.vetpar.2011.07.024
  • de Barros LD, Miura AC, Minutti AF, Vidotto O, Garcia JL. Neospora caninum in birds: a review. Parasitol Int 2018; 67(4): 397-402. http://dx.doi.org/10.1016/j.parint.2018.03.009 PMid:29614327.
    » http://dx.doi.org/10.1016/j.parint.2018.03.009
  • de Barros LD, Taroda A, Martins TA, Miura AC, De Seixas M, Sammi AS, et al. Survey of Neospora caninum in eared doves (Zenaida auriculata) in Southern Brazil. Acta Trop 2017; 174: 132-135. http://dx.doi.org/10.1016/j.actatropica.2017.07.007 PMid:28716354.
    » http://dx.doi.org/10.1016/j.actatropica.2017.07.007
  • Dubey JP, Schares G. Neosporosis in animals-The last five years. Vet Parasitol 2011; 180(1–2): 90-108. http://dx.doi.org/10.1016/j.vetpar.2011.05.031 PMid:21704458.
    » http://dx.doi.org/10.1016/j.vetpar.2011.05.031
  • Dubey JP. Refinement of pepsin digestion method for isolation of Toxoplasma gondii from infected tissues. Vet Parasitol 1998; 74(1): 75-77. http://dx.doi.org/10.1016/S0304-4017(97)00135-0 PMid:9493311.
    » http://dx.doi.org/10.1016/S0304-4017(97)00135-0
  • Feng Y, Lu Y, Wang Y, Liu J, Zhang L, Yang Y. Toxoplasma gondii and Neospora caninum in Free-Range Chickens in Henan Province of China. BioMed Res Int 2016; 2016: 8290536. http://dx.doi.org/10.1155/2016/8290536 PMid:27274992.
    » http://dx.doi.org/10.1155/2016/8290536
  • Furuta PI, Mineo TW, Carrasco AO, Godoy GS, Pinto AA, Machado RZ. Neospora caninum infection in birds: experimental infections in chicken and embryonated eggs. Parasitology 2007; 134(Pt 14): 1931-1939. http://dx.doi.org/10.1017/S0031182007003344 PMid:17686190.
    » http://dx.doi.org/10.1017/S0031182007003344
  • Garcia JL, Gennari SM, Machado RZ, Navarro IT. Toxoplasma gondii: detection by mouse bioassay, histopathology, and polymerase chain reaction in tissues from experimentally infected pigs. Exp Parasitol 2006a; 113(4): 267-271. http://dx.doi.org/10.1016/j.exppara.2006.02.001 PMid:16545804.
    » http://dx.doi.org/10.1016/j.exppara.2006.02.001
  • Garcia JL, Navarro IT, Vidotto O, Gennari SM, Machado RZ, da Luz Pereira AB, et al. Toxoplasma gondii: comparison of a rhoptry-ELISA with IFAT and MAT for antibody detection in sera of experimentally infected pigs. Exp Parasitol 2006b; 113(2): 100-105. http://dx.doi.org/10.1016/j.exppara.2005.12.011 PMid:16458299.
    » http://dx.doi.org/10.1016/j.exppara.2005.12.011
  • Gonçalves IN, Uzêda RS, Lacerda GA, Moreira RRN, Araújo FR, Oliveira RHM, et al. Molecular frequency and isolation of cyst-forming coccidia from free ranging chickens in Bahia State, Brazil. Vet Parasitol 2012; 190(1-2): 74-79. http://dx.doi.org/10.1016/j.vetpar.2012.05.007 PMid:22673105.
    » http://dx.doi.org/10.1016/j.vetpar.2012.05.007
  • Gondim LFP, Mineo JR, Schares G. Importance of serological cross-reactivity among Toxoplasma gondii, Hammondia spp., Neospora spp., Sarcocystis spp. and Besnoitia besnoiti. Parasitology 2017; 144(7): 851-868. http://dx.doi.org/10.1017/S0031182017000063 PMid:28241894.
    » http://dx.doi.org/10.1017/S0031182017000063
  • Gondim LSQ, Abe-Sandes K, Uzêda RS, Silva MSA, Santos SL, Mota RA, et al. Toxoplasma gondii and Neospora caninum in sparrows (Passer domesticus) in the Northeast of Brazil. Vet Parasitol 2010; 168(1-2): 121-124. http://dx.doi.org/10.1016/j.vetpar.2009.09.055 PMid:19879051.
    » http://dx.doi.org/10.1016/j.vetpar.2009.09.055
  • Hughes JM, Williams RH, Morley EK, Cook DAN, Terry RS, Murphy RG, et al. The prevalence of Neospora caninum and co-infection with Toxoplasma gondii by PCR analysis in naturally occurring mammal populations. Parasitology 2006; 132(Pt 1): 29-36. http://dx.doi.org/10.1017/S0031182005008784 PMid:16393351.
    » http://dx.doi.org/10.1017/S0031182005008784
  • Ibrahim HM. Seroprevalence of Neospora caninum antibodies in chicken samples from Delta Egypt using a recombinant NcSAG1 protein-based ELISA. Egypt J Immunol 2013; 20(1): 29-37. PMid:23888555.
  • Konell AL, Sato AP, Stival M, Malaguini NP, Anjos A, Ferreira RF, et al. Serosurvey of Toxoplasma gondii, Sarcocystis sp. and Neospora caninum in geese (Anser sp.) from urban parks and captivity. Rev Bras Parasitol Vet 2019; 28(2): 221-228. http://dx.doi.org/10.1590/s1984-29612019042 PMid:31271639.
    » http://dx.doi.org/10.1590/s1984-29612019042
  • Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33(1): 159-174. http://dx.doi.org/10.2307/2529310 PMid:843571.
    » http://dx.doi.org/10.2307/2529310
  • Liao M, Xuan X, Huang X, Shirafuji H, Fukumoto S, Hirata H, et al. Identification and characterization of cross-reactive antigens from Neospora caninum and Toxoplasma gondii. Parasitology 2005; 130(Pt 5): 481-488. http://dx.doi.org/10.1017/S0031182004006948 PMid:15991490.
    » http://dx.doi.org/10.1017/S0031182004006948
  • Machado RZ, Montassier HJ, Pinto AA, Lemos EG, Machado MRF, Valadão IFF, et al. An enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against Babesia bovis in cattle. Vet Parasitol 1997; 71(1): 17-26. http://dx.doi.org/10.1016/S0304-4017(97)00003-4 PMid:9231985.
    » http://dx.doi.org/10.1016/S0304-4017(97)00003-4
  • Martins J, Kwok OCH, Dubey JP. Seroprevalence of Neospora caninum in free-range chickens (Gallus domesticus) from the Americas. Vet Parasitol 2011; 182(2-4): 349-351. http://dx.doi.org/10.1016/j.vetpar.2011.05.023 PMid:21676546.
    » http://dx.doi.org/10.1016/j.vetpar.2011.05.023
  • Melendez P, Ilha M, Woldemeskel M, Graham J, Coarsey M, Baughman D, et al. An outbreak of Neospora caninum abortion in a dairy herd from the State of Georgia, United States. Vet Med Sci 2020: 1-10. https://doi.org/10.1002/vms3.346
    » https://doi.org/10.1002/vms3.346
  • Mineo TW, Carrasco AOT, Marciano JA, Werther K, Pinto AA, Machado RZ. Pigeons (Columba livia) are a suitable experimental model for Neospora caninum infection in birds. Vet Parasitol 2009; 159(2): 149-153. http://dx.doi.org/10.1016/j.vetpar.2008.10.024 PMid:19027237.
    » http://dx.doi.org/10.1016/j.vetpar.2008.10.024
  • Munhoz AD, Amaral TF, Gonçalves LR, Moraes VMB, Machado RZ. Gallus gallus domesticus are resistant to infection with Neospora caninum tachyzoites of the NC-1 strain. Vet Parasitol 2014; 206(3-4): 123-128. http://dx.doi.org/10.1016/j.vetpar.2014.10.009 PMid:25468016.
    » http://dx.doi.org/10.1016/j.vetpar.2014.10.009
  • Nardoni S, Poli A, Varvaro I, Rocchigiani G, Ceccherelli R, Mancianti F. Detection of Neospora caninum DNA in wild birds from Italy. Pathogens 2019; 8(4): 202. http://dx.doi.org/10.3390/pathogens8040202 PMid:31652735.
    » http://dx.doi.org/10.3390/pathogens8040202
  • Oliveira S, Aizawa J, Soares HS, Chiebao DP, Castro MB, Hora AS, et al. Experimental Neospora caninum infection in chickens (Gallus gallus domesticus) with oocysts and tachyzoites of two recent isolates reveals resistance to infection. Int J Parasitol 2018; 48(2): 117-123. http://dx.doi.org/10.1016/j.ijpara.2017.07.004 PMid:28903025.
    » http://dx.doi.org/10.1016/j.ijpara.2017.07.004
  • Otranto D, Llazari A, Testini G, Traversa D, Frangipane di Regalbono A, Badan M, et al. Seroprevalence and associated risk factors of neosporosis in beef and dairy cattle in Italy. Vet Parasitol 2003; 118(1-2): 7-18. http://dx.doi.org/10.1016/j.vetpar.2003.10.008 PMid:14651870.
    » http://dx.doi.org/10.1016/j.vetpar.2003.10.008
  • Paré J, Hietala SK, Thurmond MC. An enzyme-linked immunosorbent assay (ELISA) for serological diagnosis of Neospora sp. infection in cattle. J Vet Diagn Invest 1995; 7(3): 352-359. http://dx.doi.org/10.1177/104063879500700310 PMid:7578451.
    » http://dx.doi.org/10.1177/104063879500700310
  • Reichel MP, Alejandra Ayanegui-Alcérreca M, Gondim LFP, Ellis JT. What is the global economic impact of Neospora caninum in cattle – The billion dollar question. Int J Parasitol 2013; 43(2): 133-142. http://dx.doi.org/10.1016/j.ijpara.2012.10.022 PMid:23246675.
    » http://dx.doi.org/10.1016/j.ijpara.2012.10.022
  • Rezende-Gondim MM, Da Silva AV, Schares G, Gondim LFP. In contrast to Toxoplasma gondii, Neospora caninum tachyzoites did not sustain multiplication in vitro at increased incubation temperatures. Vet Parasitol 2017; 234: 19-24. https://doi.org/10.1016/j.vetpar.2016.12.013
    » https://doi.org/10.1016/j.vetpar.2016.12.013
  • Rocchigiani G, Poli A, Nardoni S, Papini R, Mancianti F. Neospora caninum in wild waterfowl: occurrence of parasite DNA and Low antibody titers. J Parasitol 2017; 103(1): 142-145. http://dx.doi.org/10.1645/16-34 PMid:27805842.
    » http://dx.doi.org/10.1645/16-34
  • Romero DG, Sánchez GFD, Morales SE. Neospora caninum in free-range chickens of Central Mexico. Vet Parasitol Reg Stud Reports 2016; 5: 31-33. http://dx.doi.org/10.1016/j.vprsr.2016.08.006 PMid:31014534.
    » http://dx.doi.org/10.1016/j.vprsr.2016.08.006
  • Salant H, Mazuz ML, Savitsky I, Nasereddin A, Blinder E, Baneth G. Neospora caninum in crows from Israel. Vet Parasitol 2015; 212(3-4): 375-378. http://dx.doi.org/10.1016/j.vetpar.2015.08.019 PMid:26359640.
    » http://dx.doi.org/10.1016/j.vetpar.2015.08.019
  • Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
  • Sayari M, Namavari M, Mojaver S. Seroprevalence of Neospora caninum infection in free ranging chickens (Gallus domesticus). J Parasit Dis 2016; 40(3): 845-847. http://dx.doi.org/10.1007/s12639-014-0590-8 PMid:27605795.
    » http://dx.doi.org/10.1007/s12639-014-0590-8
  • Silva RC, Machado G. Canine neosporosis: perspectives on pathogenesis and management. Vet Med (Auckl) 2016; 7: 59-70. http://dx.doi.org/10.2147/VMRR.S76969 PMid:30050838.
    » http://dx.doi.org/10.2147/VMRR.S76969
  • Zhang H, Lee E, Yu L, Kawano S, Huang P, Liao M, et al. Identification of the cross-reactive and species-specific antigens between Neospora caninum and Toxoplasma gondii tachyzoites by a proteomics approach. Parasitol Res 2011; 109(3): 899-911. http://dx.doi.org/10.1007/s00436-011-2332-5 PMid:21461729.
    » http://dx.doi.org/10.1007/s00436-011-2332-5

Publication Dates

  • Publication in this collection
    04 Dec 2020
  • Date of issue
    2020

History

  • Received
    09 June 2020
  • Accepted
    05 Oct 2020
Colégio Brasileiro de Parasitologia Veterinária FCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 - Jaboticabal - SP - Brazil
E-mail: cbpv_rbpv.fcav@unesp.br