Acessibilidade / Reportar erro

Growth performance and meat quality of feedlot steers fed diets with or without natural feed additive

ABSTRACT

The objective of this study was to evaluate the growth performance and meat quality of feedlot Aberdeen Angus steers fed high-concentrate diets with or without a natural feed additive composed of a mixture of yeasts and essential oils (EO). A completely randomized design with two diets (with or without natural feed additive) and 12 replicates was used. Twenty-four steers with initial shrunk body weight of 402.62±48.2 kg and average age of 18±2.0 months were used. Steers were fed ad libitum a diet containing 777.3 g of concentrate/kg dry matter (DM) and 222.7 g of corn silage/kg DM for 74 days. The mixture of yeast and EO was supplied at the rate of 10.0 and 0.117 g/animal/day, respectively. Average daily weight gain and feed efficiency in the adaptation period was greater in animals fed natural feed additive; however, there was no difference for the total experimental period. Dry matter intake, carcass weight, carcass yield, proportion of carcass bone, carcass muscle + fat:bone ratio, round thickness, and arm length were not altered by treatments. The inclusion of a natural feed additive in the diet increased the cooling loss (0.98 vs. 1.25%), proportion of carcass muscle (51.32 vs. 54.56%), carcass muscle:fat ratio (1.70 vs. 2.11%), leg length (68.79 vs. 70.71 cm), and arm perimeter (36.70 vs. 37.88 cm) and reduced the proportion of carcass fat (30.17 vs. 25.92%). Carcass length was greater in animals fed the diet with a natural feed additive. Meat color, texture, and marbling were not altered by treatments. The addition of natural feed additive to high concentrate diets does not alter the productive performance of feedlot Aberdeen Angus steers, although it can increase the proportion of lean meat of carcasses.

average daily gain; carcasses muscle; dry matter intake; essential oils; yeasts

1. Introduction

Feeding cattle a high proportion of the concentrate in the diet allows rapid carcass finishing ( Augusto et al., 2019Augusto, W. F.; Bilego, U. O.; Missio, R. L.; Guimarães, T. P.; Miotto, F. R. C.; Rezende, P. L. P.; Neiva, J. N. M. and Restle, J. 2019. Animal performance, carcass traits and meat quality of F1 Angus-Nellore steers and heifers slaughtered in feedlot with a similar carcass finishing. Semina: Ciências Agrárias 40:1681-1694. https://doi.org/10.5433/1679-0359.2019v40n4p1681
https://doi.org/10.5433/1679-0359.2019v4...
). However, high-concentrate diets can cause metabolic disorders, such as acidosis, and lead to inconsistent performance in cattle ( Nuñez et al., 2013Nuñez, A. J. C.; Caetano, M.; Berndt, A.; Demarchi, J. J. A. A.; Leme, P. R. and Lanna, D. P. D. 2013. Combined use of ionophore and virginiamycin for finishing Nellore steers fed high concentrate diets. Scientia Agricola 70:229-236. https://doi.org/10.1590/S0103-90162013000400002
https://doi.org/10.1590/S0103-9016201300...
).

The use of ionophores is the most common strategy used to reduce the incidence of metabolic disorders and increase feeding efficiency and animal performance ( Nuñez et al., 2013Nuñez, A. J. C.; Caetano, M.; Berndt, A.; Demarchi, J. J. A. A.; Leme, P. R. and Lanna, D. P. D. 2013. Combined use of ionophore and virginiamycin for finishing Nellore steers fed high concentrate diets. Scientia Agricola 70:229-236. https://doi.org/10.1590/S0103-90162013000400002
https://doi.org/10.1590/S0103-9016201300...
; Montano et al., 2015Montano, M. F.; Manriquez, O. M.; Salinas-Chavira, J.; Torrentera, M. and Zinn, R. A. 2015. Effects of monensin and virginiamycin supplementation in finishing diets with distiller dried grains plus solubles on growth performance and digestive function of steers. Journal of Applied Animal Research 43:417-425. https://doi.org/10.1080/09712119.2014.978785
https://doi.org/10.1080/09712119.2014.97...
). However, the use of these additives has been associated with antibiotic resistance and risks to human health ( Landers et al., 2012Landers, T. F.; Cohen, B.; Wittum, T. E. and Larson, E. L. 2012. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Reports 127:4-22. https://doi.org/10.1177/003335491212700103
https://doi.org/10.1177/0033354912127001...
). Although there is a lack of data conclusively demonstrating the magnitude of this threat ( Chang et al., 2015Chang, Q.; Wang, W.; Regey-Yochay, G.; Lipsitch, M. and Hanage, W. P. 2015. Antibiotics in agriculture and the risk to human health: how worried should we be? Evolutionary Applications 8:240-247. https://doi.org/10.1111/eva.12185
https://doi.org/10.1111/eva.12185...
), the use of relevant antibiotics has been prohibited in some parts of the world, such as the European Union, with enhanced research targeting natural feed additives ( Neumann et al., 2013Neumann, M.; Silva, M. R. H.; Figueira, D. N.; Spada, C. A.; Reinehr, L. L. and Poczynek, M. 2013. Leveduras vivas (Sacharomyces cerevisie) sobre o desempenho de novilhos terminados em confinamento e as características da carne e da carcaça. Revista Acadêmica: Ciência Animal 11:75-85. https://doi.org/10.7213/academica.7758
https://doi.org/10.7213/academica.7758...
; Kolling et al., 2016Kolling, G. J.; Panazzolo, D. M.; Gabbi, A. M.; Stumpf, M. T.; Passos, M. B.; Cruz, E. A. and Fischer, V. 2016. Oregano extract added into the diet of dairy heifers changes feeding behavior and concentrate intake. The Scientific World Journal 2016:8917817. https://doi.org/10.1155/2016/8917817
https://doi.org/10.1155/2016/8917817...
), which are more acceptable to consumers.

Research on yeasts and essential oils (EO) has shown that they are safe feed additives that can improve ruminal function ( Rivaroli et al., 2017Rivaroli, D. C.; Prado, R. M.; Ornaghi, M. G.; Mottini, C.; Ramos, T. R.; Barrado, A. G.; Jorge, A. M. and Prado, I. N. 2017. Essential oils in the diet of crossbred (½ Angus vs. ½ Nellore) bulls finished in feedlot on animal performance, feed efficiency and carcass characteristics. Journal of Agricultural Science 9:205-212. https://doi.org/10.5539/jas.v9n10p205
https://doi.org/10.5539/jas.v9n10p205...
; Zhu et al., 2017Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; Liu, J. and Wang, J. 2017. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. Journal of Animal Science and Biotechnology 8:36. https://doi.org/10.1186/s40104-017-0167-3
https://doi.org/10.1186/s40104-017-0167-...
). Essential oils reduce ruminal production of acetate and methane, increasing energy efficiency ( Simitzis, 2017Simitzis, P. E. 2017. Enrichment of animal diets with essential oils—A great perspective on improving animal performance and quality characteristics of the derived products. Medicines 4:35. https://doi.org/10.3390/medicines4020035
https://doi.org/10.3390/medicines4020035...
), growth performance, and carcass characteristics ( Valero et al., 2014Valero, M. V.; Prado, R. M.; Zawadzki, F.; Eiras, C. E.; Madrona, G. S. and Prado, I. N. 2014. Propolis and essential oils additives in the diets improved animal performance and feed efficiency of bulls finished in feedlot. Acta Scientiarum. Animal Sciences 36:419-426. ). Yeasts use rumen O 2 and provide growth factors for bacteria that use lactate, increasing energy and protein efficiency ( Zhu et al., 2017Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; Liu, J. and Wang, J. 2017. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. Journal of Animal Science and Biotechnology 8:36. https://doi.org/10.1186/s40104-017-0167-3
https://doi.org/10.1186/s40104-017-0167-...
) and animal performance ( Neumann et al., 2013Neumann, M.; Silva, M. R. H.; Figueira, D. N.; Spada, C. A.; Reinehr, L. L. and Poczynek, M. 2013. Leveduras vivas (Sacharomyces cerevisie) sobre o desempenho de novilhos terminados em confinamento e as características da carne e da carcaça. Revista Acadêmica: Ciência Animal 11:75-85. https://doi.org/10.7213/academica.7758
https://doi.org/10.7213/academica.7758...
). In addition, these natural feed additives are known to improve animal immunity ( Finck et al., 2014Finck, D. N.; Ribeiro, F. R. B.; Burdick, N. C.; Parr, S. L.; Carroll, J. A.; Young, T. R.; Bernhard, B. C.; Corley, J. R.; Estefan, A. G.; Rathmann, R. T. and Johnson, B. J. 2014. Yeast supplementation alters the performance and health status of receiving cattle. The Profissional Animal Scientist 30:333-341. https://doi.org/10.15232/S1080-7446 (15)30125-X
https://doi.org/10.15232/S1080-7446 (15)...
; Zhu et al., 2017Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; Liu, J. and Wang, J. 2017. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. Journal of Animal Science and Biotechnology 8:36. https://doi.org/10.1186/s40104-017-0167-3
https://doi.org/10.1186/s40104-017-0167-...
). However, some studies have reported that these substances have no effect on animal performance ( Vakili et al., 2013Vakili, A. R.; Khorrami, B.; Danesh Mesgaran, N. and Parand, E. 2013. The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian-Australasian Journal of Animal Sciences 26:935-944. https://doi.org/10.5713/ajas.2012.12636
https://doi.org/10.5713/ajas.2012.12636...
; Neumann et al., 2020Neumann, M.; Souza, A. M.; Horst, E. H.; Araujo, R. C.; Venancio, B. J. and Favaro, J. L. 2020. Yeast culture in the diet of feedlot steers: performance, carcass traits and feeding behavior. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 72:535-544. https://doi.org/10.1590/1678-4162-11148
https://doi.org/10.1590/1678-4162-11148...
), whereas other studies have shown worsening of productive performance ( Chaves et al., 2008Chaves, A. V.; Stanford, K.; Dugan, M. E. R.; Gibson, L. L.; McAllister, T. A.; Van Herk, F. and Benchaar, C. 2008. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livestock Science 117:215-224. https://doi.org/10.1016/j.livsci.2007.12.013
https://doi.org/10.1016/j.livsci.2007.12...
). In addition, there is limited literature available regarding the use of a mixture of yeasts and EO in diet of beef cattle, especially regarding the effect of using a mixture of these additives in the diet with a high proportion of the concentrate on animal performance and meat quality.

In the present study, it was hypothesized that supplementation of natural feed additives to high-concentrate diets benefits growth performance and meat quality of feedlot steers. Thus, the objective of this study was to evaluate the growth performance and meat quality of Aberdeen Angus steers fed high-concentrate diets with or without a natural feed additive composed of a mixture of yeasts and EO.

2. Material and Methods

The experiment was carried out in Dois Vizinhos, Paraná, Brazil (25°٤٢'5" S and 53°03'94" W). Animal research was conducted according to the guidelines of the Institutional Committee on Animal Use (case number 2017-003).

Twenty-four contemporary Aberdeen Angus steers were used in this study. They had an initial shrunk body weight (BW) of 403.88±47.2 kg and average initial age of 18±2.0 months. Before the finishing period, animals grazed for six months on a pasture of Aruana grass ( Panicum maximum Jacq.) with supplementation of 1.9 g of dry matter (DM)/kg BW (208.7 g of crude protein/kg DM of supplement). Animals were confined to individual pens (10 m 2 ) that were partially covered with concrete floors, individual feeders, and water that was available ad libitum . Before the experimental period, animals were treated with control endoparasites and ectoparasites with ivermectin commercial products. The experimental period was 74 days, with the initial 15 days used for adaptation to facilities and diets. During the adaptation period, animals received two transition diets (550 and 650 g of concentrate/kg DM of the diet) for eight days (four days each), after the supply of experimental diet. Animals were weighed at the beginning and end of the feedlot period, and on the 15th and 44th day of the feeding period after a 14-hour fast. The subcutaneous fat thickness (SFT) in the 11th and 12th ribs was determined during animal weighing using an ultrasound device (Pie Medical – Scanner 200 VET, model 51B04UM02).

A completely randomized design with two treatments (diets with or without natural feed additives) and 12 replicates (animals) was used. The diets had 222.7 g/kg corn silage, 684.0 g/kg of corn grain, 73.8 g/kg of soybean meal, 12.4 g/kg of the mineral mixture, 3.1 g/kg of salt, and 3.9 g/kg of urea (DM basis). A unique commercial additive (All Sacch Beef ® ) containing both live dry yeasts ( Saccharomyces cerevisiae Yea-sacc 1026; 5×10 8 colony forming units/g) and EO (1.17 g/kg of thymol and 1.17 g/kg of carvacrol) was used. Thus, 50 g/animal/day of the commercial additive was weighed and mixed manually with the ration. The inclusion of yeast and EO mixture (50% thymol and 50% carvacrol) corresponded to 10.0 and 0.117 g/animal/day, respectively.

Feed was supplied ad libitum , retaining 5–8% as orts above voluntary intake. Feeding was provided only once a day (09:30 h). Feed intake was recorded daily by weighing the feed provided and as orts from the previous day. Samples of ingredients of diets and orts from each animal were collected weekly, and composite samples were formed every 28 days. All samples were pre-dried in an oven with forced-air circulation at 55 °C for 72 h and ground in a Willey mill (1-mm particle size). Subsequently, chemical compositions of ingredients and diets were determined ( Table 1 ).

Table 1
Chemical composition of the ingredients and diets (DM basis, g/kg)

The standard procedures of AOAC (2000)AOAC - Association of Official Analytical Chemists. 2000. Official methods of analysis. 17th ed. AOAC International, Arlington. were adopted to determine the composition of ingredients in diets and orts: DM (method 934.01), mineral matter (MM; method 924.05), crude protein (CP; method 920.87), and ether extract (EE; method 920.85). The neutral detergent fiber (NDF) content was determined using alpha-amylase, according to Mertens (2002)Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International 85:1217-1240. . Total carbohydrate (TC) content was determined according to Sniffen et al. (1992)Sniffen, C. J.; O’Connor, J. D.; Van Soest, P. J.; Fox, D. G. and Russell, J. B. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70:3562-3577. https://doi.org/10.2527/1992.70113562x
https://doi.org/10.2527/1992.70113562x...
:

T C = 100 ( % C P + % E E + % M M )

The non-fibrous carbohydrate (NFC) content was determined according to Hall (2000)Hall, M. B. 2000. Neutral detergent-soluble carbohydrates. Nutritional relevance and analysis. University of Florida, Gainesville. 76p.:

N F C = 100 % M M % E E % N D F ( % C P % C P u + % U )

in which CPu is the CP from urea, and U is the urea content, expressed as % DM.

The tabulated value (Valadares Filho et al., 2018) of the total digestible nutrients (TDN) content of feeds was used to determine the energy content of the diets. The metabolizable energy (ME) of the diets was estimated according to NRC (2000), assuming 1 kg of total digestible nutrients = 4.4 Mcal digestible energy, and 1 Mcal of digestible energy = 0.82 Mcal of ME.

The criterion used for the slaughter of animals was an SFT value of 8 mm as estimated by ultrasound. Animals were slaughtered after a 14-hour fast, following the normal flow of the slaughter line. After slaughter, carcasses were identified, divided in half, weighed, washed, and cooled (2 ℃) for 24 h. Afterwards, carcasses were weighed again. Hot carcass yield (HCY) and cold carcass yield (CCY) were determined according to Müller (1987)Müller, L. 1987. Normas para avaliação de carcaças e concursos de carcaças de novilhos. 2.ed. Universidade Federal de Santa Maria, Santa Maria. 31p.:

HCY   =   hot   carcass   weight   ( HCW ) / BW   obtained   on   the   farm CCY   =   cold   carcass   weight   ( CCW ) / BW   obtained   on   the   farm

Carcass cooling loss (CCL) was determined according to Müller (1987)Müller, L. 1987. Normas para avaliação de carcaças e concursos de carcaças de novilhos. 2.ed. Universidade Federal de Santa Maria, Santa Maria. 31p. , using the following equation:

CCL   =   ( HCW     CCW ) / HCW   ×   100

In the right half of the carcass, metrical characteristics were evaluated: carcass length (CL), taken from the cranial medial edge of the first rib to the anterior edge of the pubic bone; leg length (LL), corresponding to the distance between the anterior edge of the pubic bone and tibiotarsal joint; round thickness (RT), taken from the lateral and medial upper portion of the cushion, with the assistance of a compass; arm length (AL), taken from the radiocarpus joint until the olecranon edge; and arm perimeter (AP), determined by the perimeter of the medial region of the arm.

The section comprising the 9th, 10th, and 11th ribs of the right carcass was dissected into muscle, fat, and bone to determine the physical composition of the carcasses according to the methodology described by Hankins and Howe (1946)Hankins, O. G. and Howe, P. E. 1946. Estimation of the composition of beef carcasses and cuts. Technical Bulletin No. 926. United States Department of Agriculture, Washington, DC. . The SFT of the carcasses was determined between the 11th and 12th ribs using a digital caliper. Fat thickness gain (FTG) was estimated by evaluating the initial SFT (ISFT) measured by ultrasonography and the SFT in the carcass, as follows:

F T G = S F T I S F T

Meat color, marbling, and texture were evaluated by a panel of trained evaluators (four evaluators) on the surface of the longissimus lumborum located between the 11th and 12th ribs after 30 min of exposure to air ( Müller, 1987Müller, L. 1987. Normas para avaliação de carcaças e concursos de carcaças de novilhos. 2.ed. Universidade Federal de Santa Maria, Santa Maria. 31p. ).

Data were subjected to analysis of variance (F test; α = 0.10) using the PROC GLM procedure of SAS (Statistical Analysis System, version 8.02). When necessary, data were transformed using a logarithmic function. Initial body weight was used as a covariate, but when not significant, its effect was removed from the model. The general mathematical model used is represented by:

Y i j k = μ + T i + C i j + e i j k

in which Y ijk is the dependent variable, µ is the general average, Τ i is the effect of diets, C ij is the effect of the covariate, and e ijk is the experimental error.

3. Results

Dry matter intake (DMI, kg/day or g/kg BW) was not affected at any time during the experimental period by the inclusion of natural feed additives (P>0.10) ( Table 2 ). Average daily gain (ADG) and feed efficiency of the adaptation period was greater in animals fed the diet with the natural feed additives (P = 0.087 and P = 0.089, respectively). However, there was no difference (P>0.10) in ADG and feed efficiency between diets in the total feedlot period and the other evaluated periods.

Table 2
Growth performance of steers fed high-concentrate diets with or without natural feed additive

Slaughter body weight (SBW), HCW, CCW, HCY, CCY, and SFT did not differ between treatments (P>0.10) ( Table 3 ). The inclusion of natural feed additives increased the CCL and the proportion of carcass muscle (PCM) (P<0.10). In contrast, the inclusion of natural feed additives reduced the proportion of carcass fat (PCF) (P<0.10). The proportion of carcass bone did not differ between treatments (P>0.10). The carcass muscle:fat ratio (CM:F) was increased by the inclusion of natural feed additives (P<0.10). The carcass muscle + fat:bone ratio (CM+F:B) was not affected by treatment (P>0.10).

Table 3
Slaughter body weight and carcass characteristics of steers fed high-concentrate diets with or without natural feed additive

The CL was greater in animals fed the diet with the natural feed additives (P<0.10). Round thickness and AL did not differ between the treatments (P>0.10). The inclusion of natural feed additives increased LL and AP (P<0.10).

Color, texture, and marbling of the meat were not affected (P>0.10) by the inclusion of natural feed additives ( Table 4 ).

Table 4
Meat characteristics of steers fed high-concentrate diet with or without natural feed additives

4. Discussion

The similar DMI in high-grain diets is usually attributed to the fact that the energy needs of the animals are met through the high-energy content of diets ( Barros et al., 2018Barros, A. C. B.; Neiva, J. N. M.; Restle, J.; Missio, R. L.; Miotto, F. R. C.; Elejalde, D. A. G. and Maciel, R. P. 2018. Production responses in young bulls fed glycerin as a replacement for concentrates in feedlot diets. Animal Production Science 58:856-861. https://doi.org/10.1071/AN16288
https://doi.org/10.1071/AN16288...
). Krehbiel et al. (2006)Krehbiel, C. R.; Cranston, J. J. and McCurdy, M. P. 2006. An upper limit for caloric density of finishing diets. Journal of Animal Science 84:E34-E49. verified that ruminants on high-grain diets (2.7–3.3 Mcal of ME/kg of DM) eat to maintain constant energy intake. In this study, it was expected that the DMI would be reduced as a result of the increase in energy efficiency provided by the inclusion of natural feed additives in the diets, as reported by Sartori et al. (2017)Sartori, E. D.; Canozzi, M. E. A.; Zago, D.; Prates, E. R.; Velho, J. P. and Barcellos, J. O. J. 2017. The effect of live yeast supplementation on beef cattle performance: a systematic review and meta-analysis. Journal of Agricultural Science 9:21-37. https://doi.org/10.5539/jas.v9n4p21
https://doi.org/10.5539/jas.v9n4p21...
. However, several studies have found no difference in the DMI of steers fed yeast or EO ( Kuss et al., 2009Kuss, F.; Moletta, J. L.; Paula, M. C.; Moura, I. C. F.; Andrade, S. J. T. and Silva, A. G. M. 2009. Desempenho e características da carcaça e da carne de novilhos não-castrados alimentados com ou sem adição de monensina e/ou probiótico à dieta. Ciência Rural 39:1180-1186. https://doi.org/10.1590/S0103-84782009005000033
https://doi.org/10.1590/S0103-8478200900...
; Pancini et al., 2020Pancini, S.; Cooke, R. F.; Brandão, A. P.; Dias, N. W.; Timlin, C. L.; Fontes, P. L. P.; Sales, A. F. F.; Wicks, J. C.; Murray, A.; Marques, R. S.; Pohler, K. G. and Mercadante, V. R. G. 2020. Supplementing a yeast-derived product to feedlot cattle consuming monensin: Impacts on performance, physiological responses, and carcass characteristics. Livestock Science 232:103907. https://doi.org/10.1016/j.livsci.2019.103907
https://doi.org/10.1016/j.livsci.2019.10...
; Lockard et al., 2020Lockard, C. L.; Lockard, C. G.; Paulus-Compart, D. M. and Jennings, J. S. 2020. Effects of a yeast-based additive complex on performance, heat stress behaviors, and carcass characteristics of feedlot steers. Livestock Science 236:104052. https://doi.org/10.1016/j.livsci.2020.104052
https://doi.org/10.1016/j.livsci.2020.10...
). According to Sartori et al. (2017)Sartori, E. D.; Canozzi, M. E. A.; Zago, D.; Prates, E. R.; Velho, J. P. and Barcellos, J. O. J. 2017. The effect of live yeast supplementation on beef cattle performance: a systematic review and meta-analysis. Journal of Agricultural Science 9:21-37. https://doi.org/10.5539/jas.v9n4p21
https://doi.org/10.5539/jas.v9n4p21...
, changes in the DMI of European cattle are difficult to perceive when diets with yeast have a concentrate content of less than 75%, a feeding period of less than 90 days, and low yeast doses. Some of these conditions were applied in this study (genotype and feeding time).

Alterations in the DMI (increase) caused by the inclusion of yeast in diets were verified only at the beginning of the feedlot period ( Finck et al., 2014Finck, D. N.; Ribeiro, F. R. B.; Burdick, N. C.; Parr, S. L.; Carroll, J. A.; Young, T. R.; Bernhard, B. C.; Corley, J. R.; Estefan, A. G.; Rathmann, R. T. and Johnson, B. J. 2014. Yeast supplementation alters the performance and health status of receiving cattle. The Profissional Animal Scientist 30:333-341. https://doi.org/10.15232/S1080-7446 (15)30125-X
https://doi.org/10.15232/S1080-7446 (15)...
; Neumann et al., 2020Neumann, M.; Souza, A. M.; Horst, E. H.; Araujo, R. C.; Venancio, B. J. and Favaro, J. L. 2020. Yeast culture in the diet of feedlot steers: performance, carcass traits and feeding behavior. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 72:535-544. https://doi.org/10.1590/1678-4162-11148
https://doi.org/10.1590/1678-4162-11148...
), which is justified by its benefits on the immune system of animals during the reception/adaptation period (period of greatest stress). On the other hand, the effect of yeast on DMI of the total feedlot period depends on the number of days of feeding ( Wagner et al., 2016Wagner, J. J.; Engle, T. E.; Belknap, C. R. and Dorton, K. L. 2016. Meta-analysis examining the effects of Saccharomyces cerevisiae fermentation products on feedlot performance and carcass traits. The Professional Animal Scientist 32:172-182. https://doi.org/10.15232/pas.2015-01438
https://doi.org/10.15232/pas.2015-01438...
). According to Neumann et al. (2020)Neumann, M.; Souza, A. M.; Horst, E. H.; Araujo, R. C.; Venancio, B. J. and Favaro, J. L. 2020. Yeast culture in the diet of feedlot steers: performance, carcass traits and feeding behavior. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 72:535-544. https://doi.org/10.1590/1678-4162-11148
https://doi.org/10.1590/1678-4162-11148...
, the short feeding period (112 days) of bulls fed diets (50% concentrate) with or without yeast culture was responsible for the absence of lesions in internal organs (related to metabolic disorders) and similar corporal temperature (in the region of the rumen, hind legs, and rectum), indicating the absence of inflammatory reactions in the hooves and rumen. The incidence, prevalence, and severity of ruminal acidosis depend on the number of feeding days and are higher at the end of the finishing phase ( Castillo-Lopez et al., 2014Castillo-Lopez, E.; Wiese, B. I.; Hendrick, S.; McKinnon, J. J.; McAllister, T. A.; Beauchemin, K. A. and Penner, G. B. 2014. Incidence, prevalence, severity, and risk factors for ruminal acidosis in feedlot steers during backgrounding, diet transition, and finishing. Journal of Animal Science 92:3053-3063. https://doi.org/10.2527/jas.2014-7599
https://doi.org/10.2527/jas.2014-7599...
). It is worth noting that European animals, like those in this study, are less susceptible to ruminal disorders compared with zebu cattle on high-grain diets ( Nuñez et al., 2013Nuñez, A. J. C.; Caetano, M.; Berndt, A.; Demarchi, J. J. A. A.; Leme, P. R. and Lanna, D. P. D. 2013. Combined use of ionophore and virginiamycin for finishing Nellore steers fed high concentrate diets. Scientia Agricola 70:229-236. https://doi.org/10.1590/S0103-90162013000400002
https://doi.org/10.1590/S0103-9016201300...
).

The increase in animal performance due to dietary inclusion of yeast or EO is quite common in dairy cows ( Jiang et al., 2017Jiang, Y.; Ogunade, I. M.; Arriola, K. G.; Qi, M.; Vyas, D.; Staples, C. R. and Adesogan, A. T. 2017. Effects of the dose and viability of Saccharomyces cerevisiae. 2. Ruminal fermentation, performance of lactating dairy cows, and correlations between ruminal bacteria abundance and performance measures. Journal of Dairy Science 100:8102-8118. https://doi.org/10.3168/jds.2016-12371
https://doi.org/10.3168/jds.2016-12371...
; Dias et al., 2018Dias, A. L. G.; Freitas, J. A.; Micai, B.; Azevedo, R. A.; Greco, L. F. and Santos, J. E. P. 2018. Effects of supplementing yeast culture to diets differing in starch content on performance and feeding behavior of dairy cows. Journal of Dairy Science 101:186-200. https://doi.org/10.3168/jds.2017-13240
https://doi.org/10.3168/jds.2017-13240...
) and small ruminants ( Chaves et al., 2008Chaves, A. V.; Stanford, K.; Dugan, M. E. R.; Gibson, L. L.; McAllister, T. A.; Van Herk, F. and Benchaar, C. 2008. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livestock Science 117:215-224. https://doi.org/10.1016/j.livsci.2007.12.013
https://doi.org/10.1016/j.livsci.2007.12...
; Maamouri et al., 2014Maamouri, O.; Jemmali, B.; Badri, I.; Selmi, H. and Rouissi, H. 2014. Effects of yeast (Saccharomyces cerevisiae) feed supplement on growth performances in “Queue Fine de l’Ouest” lambs. Journal of New Sciences 8:1-6. ). In beef cattle, growth performance increase by dietary inclusion of yeast or EO are more frequent in young cattle (calves) ( Neumann et al., 2013Neumann, M.; Silva, M. R. H.; Figueira, D. N.; Spada, C. A.; Reinehr, L. L. and Poczynek, M. 2013. Leveduras vivas (Sacharomyces cerevisie) sobre o desempenho de novilhos terminados em confinamento e as características da carne e da carcaça. Revista Acadêmica: Ciência Animal 11:75-85. https://doi.org/10.7213/academica.7758
https://doi.org/10.7213/academica.7758...
; Ornaghi et al., 2017Ornaghi, M. G.; Passetti, R. A. C.; Torrecilhas, J. A.; Mottin, C.; Vital, A. C. P.; Guerrero, A.; Sañudo, C.; Campo, M. M. and Prado, I. N. 2017. Essential oils in the diet of young bulls: Effect on animal performance, digestibility, temperament, feeding behaviour and carcass characteristics. Animal Feed Science and Technology 234:274-283. https://doi.org/10.1016/j.anifeedsci.2017.10.008
https://doi.org/10.1016/j.anifeedsci.201...
), which is attributed to the more effective action to improve health, because this category has a weaker immune system. Improved health is also an explanation for the increase in growth performance of steers in the initial phase of the experimental period by dietary yeast inclusion ( Neumann et al., 2020Neumann, M.; Souza, A. M.; Horst, E. H.; Araujo, R. C.; Venancio, B. J. and Favaro, J. L. 2020. Yeast culture in the diet of feedlot steers: performance, carcass traits and feeding behavior. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 72:535-544. https://doi.org/10.1590/1678-4162-11148
https://doi.org/10.1590/1678-4162-11148...
).

Although the dosage of EO used (0.117 g/animal/day) in this study is lower than that (≥ 3 g/animal/day) used in other studies ( Vakili et al., 2013Vakili, A. R.; Khorrami, B.; Danesh Mesgaran, N. and Parand, E. 2013. The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian-Australasian Journal of Animal Sciences 26:935-944. https://doi.org/10.5713/ajas.2012.12636
https://doi.org/10.5713/ajas.2012.12636...
; Valero et al., 2014Valero, M. V.; Prado, R. M.; Zawadzki, F.; Eiras, C. E.; Madrona, G. S. and Prado, I. N. 2014. Propolis and essential oils additives in the diets improved animal performance and feed efficiency of bulls finished in feedlot. Acta Scientiarum. Animal Sciences 36:419-426. ), the yeast dosage (10 g/animal/day) was higher than that used (5–8 g/animal/day) in studies that verified the positive effect of this additive on the performance of young cattle ( Finck et al., 2014Finck, D. N.; Ribeiro, F. R. B.; Burdick, N. C.; Parr, S. L.; Carroll, J. A.; Young, T. R.; Bernhard, B. C.; Corley, J. R.; Estefan, A. G.; Rathmann, R. T. and Johnson, B. J. 2014. Yeast supplementation alters the performance and health status of receiving cattle. The Profissional Animal Scientist 30:333-341. https://doi.org/10.15232/S1080-7446 (15)30125-X
https://doi.org/10.15232/S1080-7446 (15)...
; Neumann et al., 2013Neumann, M.; Silva, M. R. H.; Figueira, D. N.; Spada, C. A.; Reinehr, L. L. and Poczynek, M. 2013. Leveduras vivas (Sacharomyces cerevisie) sobre o desempenho de novilhos terminados em confinamento e as características da carne e da carcaça. Revista Acadêmica: Ciência Animal 11:75-85. https://doi.org/10.7213/academica.7758
https://doi.org/10.7213/academica.7758...
). This reinforces the results of Sartori et al. (2017)Sartori, E. D.; Canozzi, M. E. A.; Zago, D.; Prates, E. R.; Velho, J. P. and Barcellos, J. O. J. 2017. The effect of live yeast supplementation on beef cattle performance: a systematic review and meta-analysis. Journal of Agricultural Science 9:21-37. https://doi.org/10.5539/jas.v9n4p21
https://doi.org/10.5539/jas.v9n4p21...
, who demonstrated that the positive responses obtained by yeast supplementation depend on other factors, such as dosage and type of yeast, animal category, feeding period, and diet composition. According to these researchers, the challenge of animal nutrition is to understand the interactions of the use of yeast in the performance of beef cattle.

Improvements in feed efficiency in beef cattle fed yeast or EO are generally a result of reduced DMI ( Meyer et al., 2009Meyer, N. F.; Erickson, G. E.; Klopfenstein, T. J.; Greenquist, M. A.; Luebbe, M. K.; Williams, P. and Engstrom, M. A. 2009. Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility. Journal of Animal Science 87:2346-2354. https://doi.org/10.2527/jas.2008-1493
https://doi.org/10.2527/jas.2008-1493...
) or increased growth performance ( Neumann et al., 2013Neumann, M.; Silva, M. R. H.; Figueira, D. N.; Spada, C. A.; Reinehr, L. L. and Poczynek, M. 2013. Leveduras vivas (Sacharomyces cerevisie) sobre o desempenho de novilhos terminados em confinamento e as características da carne e da carcaça. Revista Acadêmica: Ciência Animal 11:75-85. https://doi.org/10.7213/academica.7758
https://doi.org/10.7213/academica.7758...
), although these positive results are not often found in the literature ( Alemu et al., 2019Alemu, A. W.; Romero-Pérez, A.; Araujo, R. C. and Beauchemin, K. A. 2019. Effect of encapsulated nitrate and microencapsulated blend of essential oils on growth performance and methane emissions from beef steers fed backgrounding diets. Animals 9:21. https://doi.org/10.3390/ani9010021
https://doi.org/10.3390/ani9010021...
; Neumann et al., 2020Neumann, M.; Souza, A. M.; Horst, E. H.; Araujo, R. C.; Venancio, B. J. and Favaro, J. L. 2020. Yeast culture in the diet of feedlot steers: performance, carcass traits and feeding behavior. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 72:535-544. https://doi.org/10.1590/1678-4162-11148
https://doi.org/10.1590/1678-4162-11148...
). The consensus is that positive results from the use of yeast are more pronounced in calves under stress or exposed to high levels of disease-causing agents ( Alugongo et al., 2017Alugongo, G. M.; Xiao, J.; Wu, Z.; Li, S.; Wang, Y. and Cao, Z. 2017. Review: Utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves. Journal of Animal Science and Biotechnology 8:34. https://doi.org/10.1186/s40104-017-0165-5
https://doi.org/10.1186/s40104-017-0165-...
).

Variations in slaughter body weight and carcass fat cover are the main factors responsible for the variation in carcass characteristics of the same cattle genotype or animal category ( Berg and Butterfield, 1976Berg, R. T. and Butterfield, R. M. 1976. New concepts of cattle growth. Sydney University Press, Sydney. 220p. ). As a consequence, most results in the literature do not show the effect of dietary inclusion of natural feed additives on the carcass characteristics of steers with similar slaughter body weights ( Kuss et al., 2009Kuss, F.; Moletta, J. L.; Paula, M. C.; Moura, I. C. F.; Andrade, S. J. T. and Silva, A. G. M. 2009. Desempenho e características da carcaça e da carne de novilhos não-castrados alimentados com ou sem adição de monensina e/ou probiótico à dieta. Ciência Rural 39:1180-1186. https://doi.org/10.1590/S0103-84782009005000033
https://doi.org/10.1590/S0103-8478200900...
; Neumann et al., 2013Neumann, M.; Silva, M. R. H.; Figueira, D. N.; Spada, C. A.; Reinehr, L. L. and Poczynek, M. 2013. Leveduras vivas (Sacharomyces cerevisie) sobre o desempenho de novilhos terminados em confinamento e as características da carne e da carcaça. Revista Acadêmica: Ciência Animal 11:75-85. https://doi.org/10.7213/academica.7758
https://doi.org/10.7213/academica.7758...
).

The most intriguing results of this study are related to the increases in PCM and CM:F and reduction in the PCF of animals fed natural additives. This change does not seem to occur by chance, as it was accompanied by a change in the CCL and metric measurements of the carcasses. The greater CCL of the animals that received natural additives can be explained by the greater PCM, as the muscle tissue has higher water content than the fat tissue ( Owens et al., 1995Owens, F. N.; Gill, D. R.; Secrist, D. S. and Coleman, S. W. 1995. Review of some aspects of growth and development of feedlot cattle. Journal of Animal Science 73:3152-3172. https://doi.org/10.2527/1995.73103152x
https://doi.org/10.2527/1995.73103152x...
).

The similar proportion of carcass bone between treatments can be justified by the fact that bone tissue is the least variable fraction of the carcass, as it develops before muscle and adipose tissue ( Berg and Butterfield, 1976Berg, R. T. and Butterfield, R. M. 1976. New concepts of cattle growth. Sydney University Press, Sydney. 220p. ). The highest CL, LL, and AP indicated that animals fed natural additives showed greater body development than those fed the control diet, even though this was not evidenced in growth performance. The increase in the AP of the carcass of steers fed natural additives comparted with those fed a control diet has drawn attention because this region is made up of bone and muscle ( Silva et al., 2015Silva, R. M.; Restle, J.; Missio, R. L.; Bilego, U. O.; Pacheco, P. S.; Rezende, P. L. P.; Fernandes, J. J. R.; Silva, A. H. G. and Pádua, J. T. 2015. Características de carcaça e carne de novilhos de diferentes predominâncias genéticas alimentados com dietas contendo níveis de substituição do grão de milho pelo grão de milheto. Semina: Ciências Agrárias 36:943-960. https://doi.org/10.5433/1679-0359.2015v36n2p943
https://doi.org/10.5433/1679-0359.2015v3...
) and is sensitive to variations in carcass muscle tissue ( Restle et al., 2002Restle, J.; Pascoal, L. L.; Faturi, C.; Alves Filho, D. C.; Brondani, I. L.; Pacheco, P. S. and Peixoto, L. A. O. 2002. Efeito do grupo genético e da heterose nas características quantitativas da carcaça de vacas de descarte terminadas em confinamento. Revista Brasileira de Zootecnia 31:350-362. https://doi.org/10.1590/S1516-35982002000200009
https://doi.org/10.1590/S1516-3598200200...
). Additionally, the AP variation in the absence of the RT variation indicates that muscle deposition may have occurred most intensely in the forequarter, a region in which muscles show prolonged growth with advancing age ( Jorge et al., 1997Jorge, A. M.; Fontes, C. A. A.; Freitas, J. A.; Soares, J. E.; Rodrigues, L. R. R.; Resende, F. D. and Queiroz, A. C. 1997. Rendimento da carcaça e de cortes básicos de bovinos e bubalinos, abatidos com diferentes estágios de maturidade. Revista Brasileira de Zootecnia 26:1048-1054. ).

The increase in PCM may be related to improvements in rumen function, which occur due to an increase in the supply of energy and protein with the use of natural additives in cattle diet ( Zhu et al., 2017Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; Liu, J. and Wang, J. 2017. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. Journal of Animal Science and Biotechnology 8:36. https://doi.org/10.1186/s40104-017-0167-3
https://doi.org/10.1186/s40104-017-0167-...
). Some studies have shown an increase in carcass muscle of beef cattle, without alterations in growth performance, through changes in correlated characteristics, such as rib eye area ( Narvaez et al., 2014Narvaez, N.; Alazzeh, A. Y.; Wang, Y. and McAllister, T. A. 2014. Effect of Propionibacterium acidipropionici P169 on growth performance and rumen metabolism of beef cattle fed a corn- and corn dried distillers’ grains with solubles-based finishing diet. Canadian Journal Animal Science 94:363-369. https://doi.org/10.4141/CJAS2013-130
https://doi.org/10.4141/CJAS2013-130...
), CCL ( Gomes et al., 2009Gomes, R. C.; Leme, P. R.; Silva, S. L.; Antunes, M. T. and Guedes, C. F. 2009. Carcass quality of feedlot finished steers fed yeast, monensin, and the association of both additives. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 61:648-654. https://doi.org/10.1590/S0102-09352009000300018
https://doi.org/10.1590/S0102-0935200900...
), and AP ( Neumann et al., 2020Neumann, M.; Souza, A. M.; Horst, E. H.; Araujo, R. C.; Venancio, B. J. and Favaro, J. L. 2020. Yeast culture in the diet of feedlot steers: performance, carcass traits and feeding behavior. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 72:535-544. https://doi.org/10.1590/1678-4162-11148
https://doi.org/10.1590/1678-4162-11148...
). Lockard et al. (2020)Lockard, C. L.; Lockard, C. G.; Paulus-Compart, D. M. and Jennings, J. S. 2020. Effects of a yeast-based additive complex on performance, heat stress behaviors, and carcass characteristics of feedlot steers. Livestock Science 236:104052. https://doi.org/10.1016/j.livsci.2020.104052
https://doi.org/10.1016/j.livsci.2020.10...
observed an increase in lean meat yield (calculated yield grade) and CCL in steers fed a yeast-based additive complex, without alterations in growth performance, HCW, and fat thickness. However, these researchers did not clarify the factors of cause and effect that led to these results.

Most of the results in literature do not show significant changes in meat color, texture, and marbling of steers or heifers fed natural additives ( Gomes et al., 2009Gomes, R. C.; Leme, P. R.; Silva, S. L.; Antunes, M. T. and Guedes, C. F. 2009. Carcass quality of feedlot finished steers fed yeast, monensin, and the association of both additives. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 61:648-654. https://doi.org/10.1590/S0102-09352009000300018
https://doi.org/10.1590/S0102-0935200900...
; Neumann et al., 2013Neumann, M.; Silva, M. R. H.; Figueira, D. N.; Spada, C. A.; Reinehr, L. L. and Poczynek, M. 2013. Leveduras vivas (Sacharomyces cerevisie) sobre o desempenho de novilhos terminados em confinamento e as características da carne e da carcaça. Revista Acadêmica: Ciência Animal 11:75-85. https://doi.org/10.7213/academica.7758
https://doi.org/10.7213/academica.7758...
; Lockard et al., 2020Lockard, C. L.; Lockard, C. G.; Paulus-Compart, D. M. and Jennings, J. S. 2020. Effects of a yeast-based additive complex on performance, heat stress behaviors, and carcass characteristics of feedlot steers. Livestock Science 236:104052. https://doi.org/10.1016/j.livsci.2020.104052
https://doi.org/10.1016/j.livsci.2020.10...
), which is justified by the lack of variation in animal performance and marbling. Titi et al. (2008)Titi, H. H.; Abdullah, A. Y.; Lubbadeh, W. F. and Obeidat, B. S. 2008. Growth and carcass characteristics of male dairy calves on a yeast culture-supplemented diet. South African Journal of Animal Science 38:174-183. observed that the color of the meat of calves fed diets with yeast was lighter (b*) and less red (chroma), which is attributed to the higher marbling content of the meat of these animals. However, according to Calnan et al. (2017)Calnan, H. B.; Jacob, R. H.; Pethick, D. W. and Gardner, G. E. 2017. Selection for intramuscular fat and lean meat yield will improve the bloomed colour of Australian lamb loin meat. Meat Science 131:187-195. https://doi.org/10.1016/j.meatsci.2017.05.001
https://doi.org/10.1016/j.meatsci.2017.0...
, light reflection of white intramuscular fat has a positive influence on yellowness (b*) and chroma of the meat.

The similar meat color between treatments was consistent with the marbling of the meat in this study. Additionally, similar slaughter age can contribute to these results, as age is one of the main factors affecting the color and texture of the meat, as discussed by Silva et al. (2014)Silva, R. M.; Restle, J.; Bilego, U. O.; Missio, R. L.; Pacheco, P. S. and Prado, C. S. 2014. Características físico-químicas da carne de tourinhos zebuínos e europeus alimentados com níveis de grão de milheto na dieta. Ciência Animal Brasileira 15:20-31. https://doi.org/10.5216/cab.v15i1.25777
https://doi.org/10.5216/cab.v15i1.25777...
. Lastly, the similar ADG and SFT between treatments corroborate the degree of marbling, since higher rates of weight gain increase fat deposition, especially intramuscular fat ( Pethick et al., 2004Pethick, D. W.; Harper, G. S. and Oddy, V. H. 2004. Growth, development and nutritional manipulation of marbling in cattle: a review. Australian Journal of Experimental Agriculture 44:705-715. https://doi.org/10.1071/EA02165
https://doi.org/10.1071/EA02165...
).

5. Conclusions

The addition of natural feed additive to high concentrate diets does not alter the productive performance of feedlot Aberdeen Angus steers, although it can increase the proportion of lean meat of the carcasses.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. We thank the company Nutrivital - Saúde e Nutrição Animal for supplying inputs.

References

  • Alemu, A. W.; Romero-Pérez, A.; Araujo, R. C. and Beauchemin, K. A. 2019. Effect of encapsulated nitrate and microencapsulated blend of essential oils on growth performance and methane emissions from beef steers fed backgrounding diets. Animals 9:21. https://doi.org/10.3390/ani9010021
    » https://doi.org/10.3390/ani9010021
  • Alugongo, G. M.; Xiao, J.; Wu, Z.; Li, S.; Wang, Y. and Cao, Z. 2017. Review: Utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves. Journal of Animal Science and Biotechnology 8:34. https://doi.org/10.1186/s40104-017-0165-5
    » https://doi.org/10.1186/s40104-017-0165-5
  • AOAC - Association of Official Analytical Chemists. 2000. Official methods of analysis. 17th ed. AOAC International, Arlington.
  • Augusto, W. F.; Bilego, U. O.; Missio, R. L.; Guimarães, T. P.; Miotto, F. R. C.; Rezende, P. L. P.; Neiva, J. N. M. and Restle, J. 2019. Animal performance, carcass traits and meat quality of F1 Angus-Nellore steers and heifers slaughtered in feedlot with a similar carcass finishing. Semina: Ciências Agrárias 40:1681-1694. https://doi.org/10.5433/1679-0359.2019v40n4p1681
    » https://doi.org/10.5433/1679-0359.2019v40n4p1681
  • Barros, A. C. B.; Neiva, J. N. M.; Restle, J.; Missio, R. L.; Miotto, F. R. C.; Elejalde, D. A. G. and Maciel, R. P. 2018. Production responses in young bulls fed glycerin as a replacement for concentrates in feedlot diets. Animal Production Science 58:856-861. https://doi.org/10.1071/AN16288
    » https://doi.org/10.1071/AN16288
  • Berg, R. T. and Butterfield, R. M. 1976. New concepts of cattle growth. Sydney University Press, Sydney. 220p.
  • Calnan, H. B.; Jacob, R. H.; Pethick, D. W. and Gardner, G. E. 2017. Selection for intramuscular fat and lean meat yield will improve the bloomed colour of Australian lamb loin meat. Meat Science 131:187-195. https://doi.org/10.1016/j.meatsci.2017.05.001
    » https://doi.org/10.1016/j.meatsci.2017.05.001
  • Castillo-Lopez, E.; Wiese, B. I.; Hendrick, S.; McKinnon, J. J.; McAllister, T. A.; Beauchemin, K. A. and Penner, G. B. 2014. Incidence, prevalence, severity, and risk factors for ruminal acidosis in feedlot steers during backgrounding, diet transition, and finishing. Journal of Animal Science 92:3053-3063. https://doi.org/10.2527/jas.2014-7599
    » https://doi.org/10.2527/jas.2014-7599
  • Chaves, A. V.; Stanford, K.; Dugan, M. E. R.; Gibson, L. L.; McAllister, T. A.; Van Herk, F. and Benchaar, C. 2008. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livestock Science 117:215-224. https://doi.org/10.1016/j.livsci.2007.12.013
    » https://doi.org/10.1016/j.livsci.2007.12.013
  • Chang, Q.; Wang, W.; Regey-Yochay, G.; Lipsitch, M. and Hanage, W. P. 2015. Antibiotics in agriculture and the risk to human health: how worried should we be? Evolutionary Applications 8:240-247. https://doi.org/10.1111/eva.12185
    » https://doi.org/10.1111/eva.12185
  • Dias, A. L. G.; Freitas, J. A.; Micai, B.; Azevedo, R. A.; Greco, L. F. and Santos, J. E. P. 2018. Effects of supplementing yeast culture to diets differing in starch content on performance and feeding behavior of dairy cows. Journal of Dairy Science 101:186-200. https://doi.org/10.3168/jds.2017-13240
    » https://doi.org/10.3168/jds.2017-13240
  • Finck, D. N.; Ribeiro, F. R. B.; Burdick, N. C.; Parr, S. L.; Carroll, J. A.; Young, T. R.; Bernhard, B. C.; Corley, J. R.; Estefan, A. G.; Rathmann, R. T. and Johnson, B. J. 2014. Yeast supplementation alters the performance and health status of receiving cattle. The Profissional Animal Scientist 30:333-341. https://doi.org/10.15232/S1080-7446 (15)30125-X
    » https://doi.org/10.15232/S1080-7446 (15)30125-X
  • Gomes, R. C.; Leme, P. R.; Silva, S. L.; Antunes, M. T. and Guedes, C. F. 2009. Carcass quality of feedlot finished steers fed yeast, monensin, and the association of both additives. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 61:648-654. https://doi.org/10.1590/S0102-09352009000300018
    » https://doi.org/10.1590/S0102-09352009000300018
  • Hall, M. B. 2000. Neutral detergent-soluble carbohydrates. Nutritional relevance and analysis. University of Florida, Gainesville. 76p.
  • Hankins, O. G. and Howe, P. E. 1946. Estimation of the composition of beef carcasses and cuts. Technical Bulletin No. 926. United States Department of Agriculture, Washington, DC.
  • Jiang, Y.; Ogunade, I. M.; Arriola, K. G.; Qi, M.; Vyas, D.; Staples, C. R. and Adesogan, A. T. 2017. Effects of the dose and viability of Saccharomyces cerevisiae. 2. Ruminal fermentation, performance of lactating dairy cows, and correlations between ruminal bacteria abundance and performance measures. Journal of Dairy Science 100:8102-8118. https://doi.org/10.3168/jds.2016-12371
    » https://doi.org/10.3168/jds.2016-12371
  • Jorge, A. M.; Fontes, C. A. A.; Freitas, J. A.; Soares, J. E.; Rodrigues, L. R. R.; Resende, F. D. and Queiroz, A. C. 1997. Rendimento da carcaça e de cortes básicos de bovinos e bubalinos, abatidos com diferentes estágios de maturidade. Revista Brasileira de Zootecnia 26:1048-1054.
  • Kolling, G. J.; Panazzolo, D. M.; Gabbi, A. M.; Stumpf, M. T.; Passos, M. B.; Cruz, E. A. and Fischer, V. 2016. Oregano extract added into the diet of dairy heifers changes feeding behavior and concentrate intake. The Scientific World Journal 2016:8917817. https://doi.org/10.1155/2016/8917817
    » https://doi.org/10.1155/2016/8917817
  • Krehbiel, C. R.; Cranston, J. J. and McCurdy, M. P. 2006. An upper limit for caloric density of finishing diets. Journal of Animal Science 84:E34-E49.
  • Kuss, F.; Moletta, J. L.; Paula, M. C.; Moura, I. C. F.; Andrade, S. J. T. and Silva, A. G. M. 2009. Desempenho e características da carcaça e da carne de novilhos não-castrados alimentados com ou sem adição de monensina e/ou probiótico à dieta. Ciência Rural 39:1180-1186. https://doi.org/10.1590/S0103-84782009005000033
    » https://doi.org/10.1590/S0103-84782009005000033
  • Landers, T. F.; Cohen, B.; Wittum, T. E. and Larson, E. L. 2012. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Reports 127:4-22. https://doi.org/10.1177/003335491212700103
    » https://doi.org/10.1177/003335491212700103
  • Lockard, C. L.; Lockard, C. G.; Paulus-Compart, D. M. and Jennings, J. S. 2020. Effects of a yeast-based additive complex on performance, heat stress behaviors, and carcass characteristics of feedlot steers. Livestock Science 236:104052. https://doi.org/10.1016/j.livsci.2020.104052
    » https://doi.org/10.1016/j.livsci.2020.104052
  • Maamouri, O.; Jemmali, B.; Badri, I.; Selmi, H. and Rouissi, H. 2014. Effects of yeast (Saccharomyces cerevisiae) feed supplement on growth performances in “Queue Fine de l’Ouest” lambs. Journal of New Sciences 8:1-6.
  • Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International 85:1217-1240.
  • Meyer, N. F.; Erickson, G. E.; Klopfenstein, T. J.; Greenquist, M. A.; Luebbe, M. K.; Williams, P. and Engstrom, M. A. 2009. Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility. Journal of Animal Science 87:2346-2354. https://doi.org/10.2527/jas.2008-1493
    » https://doi.org/10.2527/jas.2008-1493
  • Montano, M. F.; Manriquez, O. M.; Salinas-Chavira, J.; Torrentera, M. and Zinn, R. A. 2015. Effects of monensin and virginiamycin supplementation in finishing diets with distiller dried grains plus solubles on growth performance and digestive function of steers. Journal of Applied Animal Research 43:417-425. https://doi.org/10.1080/09712119.2014.978785
    » https://doi.org/10.1080/09712119.2014.978785
  • Müller, L. 1987. Normas para avaliação de carcaças e concursos de carcaças de novilhos. 2.ed. Universidade Federal de Santa Maria, Santa Maria. 31p.
  • Narvaez, N.; Alazzeh, A. Y.; Wang, Y. and McAllister, T. A. 2014. Effect of Propionibacterium acidipropionici P169 on growth performance and rumen metabolism of beef cattle fed a corn- and corn dried distillers’ grains with solubles-based finishing diet. Canadian Journal Animal Science 94:363-369. https://doi.org/10.4141/CJAS2013-130
    » https://doi.org/10.4141/CJAS2013-130
  • Neumann, M.; Silva, M. R. H.; Figueira, D. N.; Spada, C. A.; Reinehr, L. L. and Poczynek, M. 2013. Leveduras vivas (Sacharomyces cerevisie) sobre o desempenho de novilhos terminados em confinamento e as características da carne e da carcaça. Revista Acadêmica: Ciência Animal 11:75-85. https://doi.org/10.7213/academica.7758
    » https://doi.org/10.7213/academica.7758
  • Neumann, M.; Souza, A. M.; Horst, E. H.; Araujo, R. C.; Venancio, B. J. and Favaro, J. L. 2020. Yeast culture in the diet of feedlot steers: performance, carcass traits and feeding behavior. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 72:535-544. https://doi.org/10.1590/1678-4162-11148
    » https://doi.org/10.1590/1678-4162-11148
  • NRC - National Research Council. 2000. Nutrient requirements of beef cattle. 7th ed. National Academy Press, Washington, DC. 242p.
  • Nuñez, A. J. C.; Caetano, M.; Berndt, A.; Demarchi, J. J. A. A.; Leme, P. R. and Lanna, D. P. D. 2013. Combined use of ionophore and virginiamycin for finishing Nellore steers fed high concentrate diets. Scientia Agricola 70:229-236. https://doi.org/10.1590/S0103-90162013000400002
    » https://doi.org/10.1590/S0103-90162013000400002
  • Ornaghi, M. G.; Passetti, R. A. C.; Torrecilhas, J. A.; Mottin, C.; Vital, A. C. P.; Guerrero, A.; Sañudo, C.; Campo, M. M. and Prado, I. N. 2017. Essential oils in the diet of young bulls: Effect on animal performance, digestibility, temperament, feeding behaviour and carcass characteristics. Animal Feed Science and Technology 234:274-283. https://doi.org/10.1016/j.anifeedsci.2017.10.008
    » https://doi.org/10.1016/j.anifeedsci.2017.10.008
  • Owens, F. N.; Gill, D. R.; Secrist, D. S. and Coleman, S. W. 1995. Review of some aspects of growth and development of feedlot cattle. Journal of Animal Science 73:3152-3172. https://doi.org/10.2527/1995.73103152x
    » https://doi.org/10.2527/1995.73103152x
  • Pancini, S.; Cooke, R. F.; Brandão, A. P.; Dias, N. W.; Timlin, C. L.; Fontes, P. L. P.; Sales, A. F. F.; Wicks, J. C.; Murray, A.; Marques, R. S.; Pohler, K. G. and Mercadante, V. R. G. 2020. Supplementing a yeast-derived product to feedlot cattle consuming monensin: Impacts on performance, physiological responses, and carcass characteristics. Livestock Science 232:103907. https://doi.org/10.1016/j.livsci.2019.103907
    » https://doi.org/10.1016/j.livsci.2019.103907
  • Pethick, D. W.; Harper, G. S. and Oddy, V. H. 2004. Growth, development and nutritional manipulation of marbling in cattle: a review. Australian Journal of Experimental Agriculture 44:705-715. https://doi.org/10.1071/EA02165
    » https://doi.org/10.1071/EA02165
  • Restle, J.; Pascoal, L. L.; Faturi, C.; Alves Filho, D. C.; Brondani, I. L.; Pacheco, P. S. and Peixoto, L. A. O. 2002. Efeito do grupo genético e da heterose nas características quantitativas da carcaça de vacas de descarte terminadas em confinamento. Revista Brasileira de Zootecnia 31:350-362. https://doi.org/10.1590/S1516-35982002000200009
    » https://doi.org/10.1590/S1516-35982002000200009
  • Rivaroli, D. C.; Prado, R. M.; Ornaghi, M. G.; Mottini, C.; Ramos, T. R.; Barrado, A. G.; Jorge, A. M. and Prado, I. N. 2017. Essential oils in the diet of crossbred (½ Angus vs. ½ Nellore) bulls finished in feedlot on animal performance, feed efficiency and carcass characteristics. Journal of Agricultural Science 9:205-212. https://doi.org/10.5539/jas.v9n10p205
    » https://doi.org/10.5539/jas.v9n10p205
  • Sartori, E. D.; Canozzi, M. E. A.; Zago, D.; Prates, E. R.; Velho, J. P. and Barcellos, J. O. J. 2017. The effect of live yeast supplementation on beef cattle performance: a systematic review and meta-analysis. Journal of Agricultural Science 9:21-37. https://doi.org/10.5539/jas.v9n4p21
    » https://doi.org/10.5539/jas.v9n4p21
  • Silva, R. M.; Restle, J.; Bilego, U. O.; Missio, R. L.; Pacheco, P. S. and Prado, C. S. 2014. Características físico-químicas da carne de tourinhos zebuínos e europeus alimentados com níveis de grão de milheto na dieta. Ciência Animal Brasileira 15:20-31. https://doi.org/10.5216/cab.v15i1.25777
    » https://doi.org/10.5216/cab.v15i1.25777
  • Silva, R. M.; Restle, J.; Missio, R. L.; Bilego, U. O.; Pacheco, P. S.; Rezende, P. L. P.; Fernandes, J. J. R.; Silva, A. H. G. and Pádua, J. T. 2015. Características de carcaça e carne de novilhos de diferentes predominâncias genéticas alimentados com dietas contendo níveis de substituição do grão de milho pelo grão de milheto. Semina: Ciências Agrárias 36:943-960. https://doi.org/10.5433/1679-0359.2015v36n2p943
    » https://doi.org/10.5433/1679-0359.2015v36n2p943
  • Simitzis, P. E. 2017. Enrichment of animal diets with essential oils—A great perspective on improving animal performance and quality characteristics of the derived products. Medicines 4:35. https://doi.org/10.3390/medicines4020035
    » https://doi.org/10.3390/medicines4020035
  • Sniffen, C. J.; O’Connor, J. D.; Van Soest, P. J.; Fox, D. G. and Russell, J. B. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70:3562-3577. https://doi.org/10.2527/1992.70113562x
    » https://doi.org/10.2527/1992.70113562x
  • Titi, H. H.; Abdullah, A. Y.; Lubbadeh, W. F. and Obeidat, B. S. 2008. Growth and carcass characteristics of male dairy calves on a yeast culture-supplemented diet. South African Journal of Animal Science 38:174-183.
  • Valadares Filho, S. C.; Lopes, A. S.; Silva, B. C.; Chizzotti, M. L. and Bissaro, L. Z. 2018. CQBAL 4.0. Tabelas brasileiras de composição de alimentos para ruminantes. Available at: < www.cqbal.com.br> . Accessed on: Dec. 13, 2021.
    » www.cqbal.com.br>
  • Vakili, A. R.; Khorrami, B.; Danesh Mesgaran, N. and Parand, E. 2013. The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian-Australasian Journal of Animal Sciences 26:935-944. https://doi.org/10.5713/ajas.2012.12636
    » https://doi.org/10.5713/ajas.2012.12636
  • Valero, M. V.; Prado, R. M.; Zawadzki, F.; Eiras, C. E.; Madrona, G. S. and Prado, I. N. 2014. Propolis and essential oils additives in the diets improved animal performance and feed efficiency of bulls finished in feedlot. Acta Scientiarum. Animal Sciences 36:419-426.
  • Wagner, J. J.; Engle, T. E.; Belknap, C. R. and Dorton, K. L. 2016. Meta-analysis examining the effects of Saccharomyces cerevisiae fermentation products on feedlot performance and carcass traits. The Professional Animal Scientist 32:172-182. https://doi.org/10.15232/pas.2015-01438
    » https://doi.org/10.15232/pas.2015-01438
  • Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; Liu, J. and Wang, J. 2017. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. Journal of Animal Science and Biotechnology 8:36. https://doi.org/10.1186/s40104-017-0167-3
    » https://doi.org/10.1186/s40104-017-0167-3

Publication Dates

  • Publication in this collection
    06 June 2022
  • Date of issue
    2022

History

  • Received
    16 May 2021
  • Accepted
    14 Feb 2022
Sociedade Brasileira de Zootecnia Universidade Federal de Viçosa / Departamento de Zootecnia, 36570-900 Viçosa MG Brazil, Tel.: +55 31 3612-4602, +55 31 3612-4612 - Viçosa - MG - Brazil
E-mail: rbz@sbz.org.br