SciELO - Scientific Electronic Library Online

vol.47 issue3Cuttings of post fire epicormic shoots of Ilex paraguariensis and Cabralea canjerana adult plantsWeed control and crop selectivity of post-emergence herbicides in common beans author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



  • text new page (beta)
  • English (pdf)
  • Article in xml format
  • How to cite this article
  • SciELO Analytics
  • Curriculum ScienTI
  • Automatic translation


Related links


Ciência Rural

On-line version ISSN 1678-4596

Cienc. Rural vol.47 no.3 Santa Maria  2017  Epub Jan 05, 2017 


Different feeding habits influence the activity of digestive enzymes in freshwater fish

Diferentes hábitos alimentares influenciam a atividade das enzimas digestivas em peixes de água doce

Carolina Rosa Gioda1 

Alexandra Pretto2 

Carine de Souza Freitas3 

Jossiele Leitemperger4 

Vania Lucia Loro4 

Rafael Lazzari5 

Leandro Ademar Lissner6 

Bernardo Baldisserotto3  7 

Joseânia Salbego3  * 

1Instituto de Ciências Biológicas, Universidade Federal de Rio Grande (FURG), Rio Grande, RS, Brasil.

2Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, Brasil.

3Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brasil.

4Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Santa Maria, RS, Brasil.

5Departamento de Zootecnia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brasil.

6Universidade Federal do Pampa (UNIPAMPA), Caçapava do Sul, RS, Brasil.

7Departamento de Fisiologia e Farmacologia, Programa de Pós-graduação em Farmacologia e Zootecnia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil.


The aim of this study was to verify the activity of some digestive enzymes in four fish species with different feeding habits. Knowledge of these enzymatic activities can help us to understand the species' digestive processes. The species chosen for this study were Ctenopharyngodon idella (herbivore), Rhamdia quelen (omnivore), Leporinus obtusidens (omnivore) and Hoplias malabaricus (carnivore). The digestive tract of these species was divided into four portions to estimate enzymatic activity: stomach, anterior, mid and posterior intestine. Ctenopharyngodon idella had the highest amylase and maltase activities in all portions of the gut, followed by L. obtusidens . The highest trypsin activity was observed in all gut portions of H. malabaricus, followed by the mid intestine of L. obtusidens and the anterior intestine of C. idella . The highest chymotrypsin activity was found in all portions of C. idella followed by the anterior intestines of R. quelen, L. obtusidens and H. malabaricus . In the stomach, acid protease activity was significantly lower in R. quelen and L. obtusidens compared to H. malabaricus. Ctenopharyngodon idella showed high activity of enzymes that hydrolyze carbohydrates, represented in this study by amylase and maltase and H. malabaricus showed higher protease activity and low amylase activity.

Key words: freshwater fishes; feeding habits; enzymatic activity; amylase; alkaline protease; maltase; trypsin


O objetivo deste estudo foi verificar a atividade de algumas enzimas digestivas em quatro espécies de peixes com hábitos alimentares diferentes. O conhecimento das atividades dessas enzimas pode nos ajudar a compreender os processos digestivos das espécies. As espécies escolhidas para este estudo foram Ctenopharyngodon idella (herbívoro), Rhamdia quelen (onívoro), Leporinus obtusidens (onívoro) e Hoplias malabaricus (carnívoro). O trato digestivo dessas espécies foi dividido em quatro partes para estimar a atividade enzimática: estômago, intestino anterior, médio e posterior. Ctenopharyngodon idella teve a maior atividade da amilase e maltase em todas as porções do intestino, seguido por L. obtusidens . A maior atividade da tripsina foi observada em todas as porções do intestino de H. malabaricus , seguido pelo intestino médio de L. obtusidens e o intestino anterior de C. idella . A maior atividade de quimotripsina foi encontrada em todas as partes do intestino do C. idella , seguida pelo intestino anterior de R. quelen, L. obtusidens e H. malabaricus . No estômago, a atividade de protease ácida foi significativamente menor em R. quelen e L. obtusidens comparado com H. malabaricus. Ctenopharyngodon idella mostrou alta atividade de enzimas que hidrolisam carboidratos, representadas neste estudo por amilase e maltase e H. malabaricus mostrou maior atividade de proteases e baixa atividade de amilase.

Palavras-chave: peixes de água doce; hábitos alimentares; atividade enzimática; amilase; protease alcalina; maltase; tripsina


Fish usually exhibit high versatility in their feeding habits that is reflected in different anatomical and functional features. This allows fish to explore a wide range of food resources and maximize the use of available food in the environment (PERETTI & ADRIAN, 2008). The digestive potential of fish is highly variable, changing with species, age, size, food and feeding history, stage of maturity and temperature (GARCÍA-CARREÑO et al., 2002). The analysis of digestive enzymes provides information on fish nutritional physiology and on their ability to take advantage of the different nutritional fractions of the feed (TENGJAROENKUL et al., 2000; ODEDEYI & FAGBENRO, 2010; LAZZARI et al., 2010; 2015).

Ctenopharyngodon idella (grass carp) (Characiformes, Cyprinidae ), is an herbivorous fish species that feeds on aquatic plants (BILLARD & BERNI, 2004). The omnivorous Leporinus obtusidens (piava) (Characiformes, Anostomidae ) feed on plants, insects and fishes (REYNALTE-TATAJE & ZANIBONI-FILHO, 2010; LAZZARI et al., 2015). Rhamdia quelen (silver catfish) (Siluriformes, Heptapteridae ) is an omnivorous fish with a tendency towards ichthyophagy, depending on food availability in the environment (BALDISSEROTTO et al., 2013). Hoplias malabaricus (traira) (Characiformes, Erythrinidae ) is a carnivorous fish species that, in the adult stage, ingests intact preys (MENIN & MIMURA, 1991).

Several studies of digestive enzymes in fish species with different feeding habits have been reported (KUZ´MINA & KUZ´MINA, 1990; CHAKRABARTI et al., 2006; LÓPEZ-VÁSQUEZ et al., 2009) and some showed that fish growth might be related to digestive enzyme capacity (CHAKRABARTI et al., 2006; FILIPPOV et al., 2013; LAZZARI et al., 2015). The aim of this study was to investigate protease and carbohydrase activities in four fish species raised in Brazil. The major propose is collected information concerning fish cultivated in Southern Brazil for improved in the future fish diets according to digestive enzymatic profile.


Ten individuals of each species, C. idella (20.46±3.9g and 12.95±1.7cm), R. quelen (66.20±10.5g and 18.75±1.5cm) and L. obtusidens (69.80±11.7g and 25.41±0.8cm) with approximate age were obtained from the fish culture sector at Universidade Federal de Santa Maria. Hoplias malabaricus (60.30±10.9g and 16.64±1.6cm) was obtained from regional pond producer. Both species were fasted for 12h before euthanasia by section of spinal cord. Body weight and length were taken subsequently.

The fish were kept in 250L tanks with proper charge density for each species, and water quality parameters were monitored regularly: dissolved oxygen (5.8±0.6mg L-1); temperature (23±0.4ºC, using an oxygen meter Y5512; YSI Inc., Yellow Springs, OH, USA); pH 7.5±0.3 (DMPH-2 pH meter, Digimed, São Paulo, SP, Brazil); total ammonia nitrogen levels (0.14±0.04mg L-1) (EATON et al., 2005); un-ionized ammonia (NH3) levels 0.007±0.001mg L-1 (COLT, 2002); alkalinity (42±2.7mg L-1 CaCO3); nitrite (0.0033±0.003mg L-1) (BOYD & TUCKER, 1992) and; water hardness (26.0±1.4mg L-1 CaCO3) (EDTA titrimetric method).

The digestive tract was immediately removed after euthanasia and divided into four sections: stomach (except for the grass carp, which does not possess stomach), anterior (or pyloric ceca), mid and posterior intestines. Portions were placed into ice and then stored at -20ºC. Tissues were homogenized in buffer solution containing phosphate (10mM) and Tris (20mM), pH 7.0 using a Potter-Elvehijen homogenizer. The homogenates were centrifuged at 10.000g for 10min at 4ºC and the supernatant (crude extract) was used as an enzyme source for all assays.

The effect of different pH on the incubation medium was studied for protease alkaline and amylase activities. Total acid protease activity was measured in the stomach, using a non-specific substrate (casein 1.5%) according to HIDALGO et al. (1999).

Trypsin, chymotrypsin, amylase and maltase were determined in homogenates from the stomach and anterior, mid and posterior intestine. The experimental protocol was modified according to BERNFELD (1955). The starch hydrolyzed by the enzyme and glucose levels were determined according to PARK & JOHNSON (1949). The protein content of crude extracts was determined by the method of LOWRY et al. (1951), using bovine serum albumin as a standard. For more details, see the technical of study LAZZARI et al. (2010).

Differences between species were analyzed by one-way analysis of variance followed by the Duncan test (Statistica 5.0). Data were expressed as mean ± SEM, and differences were considered significant at a probability level of 95% (P<0.05).


Trypsin, chymotrypsin and maltase activities were observed in the stomach of R. quelen , L. obtusidens , and H. malabaricus . The greatest trypsin activity was found in H. malabaricus following for L. obtusidens . The low values for trypsin were recorded to R. quelen . Chymotrypsin activity in the stomach was similar to R. quelen and H. malabaricus , and L. obtusidens showed lower activity as compared to other fish species. Maltase activity was highest in L. obtusidens comparing to H. malabaricus and R. quelen that showed similar maltase activity in stomach (Table 1).

Table 1 Trypsin, chymotrypsin and maltase activities in the stomach of the studied species data on enzyme digestive activities (n=10) are expressed as U mg protein-1 where U=1μmol of substrate hydrolyzed min-1. Different superscript letters represent significant difference of digestive enzymes activity comparing different fish species (P<0.05). 

Ctenopharyngodon idella and L. obtusidens showed the highest amylase activity at pH 7.0 and H. malabaricus at pH 8.5 and pH 8.0 in the anterior and midintestine, respectively (Figure 1A and B). Rhamdia quelen showed highest activity at pH 7.0 in the middle intestine (Figure 1B). Higher amylase activity in the anterior and mid in C. idella (Figure 1A and B). In the stomach the highest amylase activity was observed at pH 7.0 for L. obtusidens and R. quelen and pH 8.0 for H. malabaricus (Figure 1C).

Figure 1 Amylase activity at different pHs in the anterior (A) and min-1 (B) intestine and stomach (C) of the studied species. Activity is expressed as U mg protein-1, where U=1 μmol glucose min mg protein-1. Data represent mean ± SEM (n=10). *Represents the pH at which the enzyme has the highest activity. 

Alkaline protease presented the highest activities at pH 8.0 or 8.5 for all species, but R. quelen and H. malabaricus also showed high activities at pH 9.0 and 10.0. Compared to the other species, C. idella continued to show high activity of alkaline protease in the middle portion of the intestine (Figure 2A and B). The highest acid protease activity in the stomach was at pH 2.5 for H. malabaricus and L. obtusidens and pH 2.0 for R. quelen (Figure 2C). In C. idella the mid intestine showed the highest activity for amylase and maltase when compared to anterior and posterior segments. In R. quelen the highest activity of these enzymes was exhibited in the anterior intestine. In L. obtusidens the highest amylase activity was detected in the anterior intestine and maltase in the mid intestine, but H. malabaricus showed very low amylase activity in all intestine portions. On the other hand, H. malabaricus presented maltase activity in middle and posterior intestine portions similar to that obtained for R. quelen , but lower than L. obtusidens and C. idella. (Figure 3).

Figure 2 Alkaline protease activity at different pHs in the anterior (A) and mid (B) intestine and acid protease activity in the stomach (C) of the studied species. Activity is expressed as U mg protein-1, where U=1μg tyrosine min-1 mg protein-1. Data represent mean ±SEM (n=10). *Represents the pH at which the enzyme has the highest activity. 

Figure 3 Amylase (A) and maltase (B) activities in anterior, middle and posterior intestine of the studied species. Activity is expressed as U mg protein-1, where U=1μmol glucose min-1 mg protein-1. Trypsin (C) and chymotrypsin (D) activity in anterior, middle and posterior intestine of the studied species. Activity is expressed as U mg protein-1, where U= g of substrate hydrolyzed (TAME or BTEE) min-1 mg protein-1. Data represent mean ± SEM (n=10). *Represents the portion of the intestine where the highest activity is observed for each enzyme. 

The highest trypsin activity was observed in all intestine portions of H. malabaricus . Ctenopharyngodon idella exhibited the highest trypsin activity in the anterior intestine, L. obtusidens in the mid intestine and R. quelen in the posterior intestine (Figure 3C). Ctenopharyngodon idella showed the highest chymotrypsin activity at all intestine portions. Rhamdia quelen and H. malabaricus showed high activity of this enzyme in the anterior portion but for L. obtusidens the highest activity was observed in the posterior intestine (Figure 3D).


The knowledge of the feeding habits of different fish species associated with enzymes activities in the digestive tract is important to provide an appropriate diet for each species because digestive enzymes activity very reflects the changes in dietary (PERETTI & ANDRIAN, 2008; LAZZARI et al., 2010; 2015).

The carnivorous H. malabaricus showed lower amylase, maltase, alkaline protease and chymotrypsin activity compared to the other fish species studied. The main digestive enzymes of H. malabaricus are represented by acid protease in the stomach and trypsin in the intestine, but this species also showed some chymotrypsin and maltase activity in the stomach and all intestine portions. Other carnivorous species such as Oncorhynchus mykiss and Pseudoplatystoma corruscans also showed high protease activity in the stomach (HIDALGO et al., 1999; LUNDSTEDT et al., 2004). In the present study, amylase and maltase activities were found in H. malabaricus , likely because they would be required to digest the glycogen present in animal tissues. Another carnivorous fish, the sea bass ( Lates calcarifer ), also presented amylase activity in the digestive tract (SABAPATHY & TÉO, 1992).

The highest total alkaline protease activity measured in the intestine was found at pH 8.0 and 8.5 for all fish species studied. However, some activity was also detected at pH 9.0 and 10.0 for all species, mainly in the anterior intestine. On the other hand, GARCÍA-CARREÑO et al. (2002) verified that the optimum pH for intestinal enzymes of Brycon orbignyanus was 10.0. The results observed at high alkaline pHs (9.0 and 10.0) are probably due to other alkaline proteases as carboxipeptidase-like, elastase-like or collagenase-like activities (HIDALGO et al., 1999).

The herbivore C. idella presented the highest amylase and maltase activities within the fish species studied, in accordance with CHAKRABARTI et al. (2006), who found high amylase activity in herbivorous fish. However, C. idella also presented alkaline protease, trypsin and chymotrypsin activities in the intestine. In agreement with the present study, KUZʹMINA & KUZʹMINA (1990) and CHAKRABARTI et al. (2006) also found high protease activity in non-carnivorous fish. In addition, the herbivorous Oreochromis niloticus (Nile tilapia) demonstrated higher carbohydrase activity than protease activity when compared to carnivorous and omnivorous fish (TENGJAROENKUL et al., 2000). Different authors have reported a close relationship between herbivorous feeding habits and higher amylase activity (HIDALGO et al., 1999; ODEDEYI & FAGBENRO, 2010).

In conclusion our study showed higher acid protease and trypsin activities in the carnivorous species studied, while higher amylase and maltase activities were found in the herbivorous species. Omnivorous species presented intermediate activity values. The results are within the expected range for each species and their feeding habits. The application of these feedings in the formulation of specific diets for each species using sources of low cost and good digestibility to fish


The authors thank Dr. Everton Behr for his technical help. V.L. Loro and B. Baldisserotto received research fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Brazil)


BALDISSEROTTO, B. et al. Jundiá (Rhamdia sp.). In: BALDISSEROTTO, B.; GOMES, L.C. (Eds.). Espécies nativas para piscicultura no Brasil. 2.ed. Santa Maria: UFSM, 2013. p.301-323. [ Links ]

BERNFELD, P. Amylases a and b: colorimetric assay methods. In: COLOWICK, S. P.; KAPLAN, N. O. Methods in Enzimology. New York: Academic, 1955. p.49-158. [ Links ]

BILLARD, R.; BERNI, P. Trends in cyprinid polyculture. Cybium, v.28, p.255-261, 2004. Avaliable from: < Avaliable from: >. Accessed: Feb. 01, 2016. [ Links ]

BOYD, C. E.; TUCKER, C. S. Water quality and pond soil analyses for aquaculture. Alabama: Alabama Agricultural Experiment Station, Auburn University, 1992. 188p. [ Links ]

CHAKRABARTI, R. et al. Functional changes in digestive enzymes and characterization of proteases of silver carp (♂) and bighead carp (♀) hybrid, during early ontogeny. Aquaculture, v.253, p.694-702, 2006. Avaliable from: < Avaliable from: /publication/232380390Functionalchangesindigestiveenzymesandcharacterizationofproteasesofsilvercarp%28%29andbigheadcarp%28%29hybridduringearlyontogeny/links/0046351c18baa96e1400 0000.pdf >. Accessed: Feb. 01, 2016. doi: 10.1016/j.aquaculture.2005.08.018. [ Links ]

COLT, J. List of spreadsheets prepared as a complement. In: WEDEMEYER, G. A. (Ed.). Fish hatchery management. 2. ed. Bethesda: American Fisheries Society Publications, 2002. 751p. [ Links ]

EATON, A. D. et al. Standard methods for the examination of water and wastewater. 21. ed. Washington: American Public Health Association, 2005. 1193p. [ Links ]

FILIPPOV, A. A. et al. Effects of organic pollutants on fish digestive enzymes: a review. Inland Water Biology, v.6, p.155-160, 2013. Available from: >. Accessed: Feb. 01, 2016. doi: 10.1134/S199508291302003X. [ Links ]

GARCÍA-CARREÑO, F. L. et al. Digestive proteinases of Brycon orbignyanus (Characidae, Teleostei): characteristics and effects of protein quality. Comparative Biochemistry and Physiology - Part B, v.132, p.343-352, 2002. Available from: http://www.bashanfoundation. org/carreno/carrrenocharacidae.pdf >. Accessed: Feb. 01, 2016. [ Links ]

HIDALGO, M. C. et al. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture , v.170, p.267-283, 1999. Available from: 85e-7c72-11e3-8614-00000aab0f26&acdnat=1389632004_81ce406d86b8e1217d669d5a1545a 634 > . Accessed: Jan. 13, 2014. [ Links ]

KUZʹMINA, V. V.; KUZʹMINA, Y. G. Level of total proteolytic activity in some species of fish from the Volga barin. Journal of Ichthyology, v.30, p.25-35, 1990. [ Links ]

LAZZARI, R. et al. Protein sources and digestive enzyme activities in jundiá (Rhamdia quelen). Scientia Agricola, v.67, n.3, p.259-266, 2010. Avaliable from: < Avaliable from: 3/a02v67n3.pdf >. Accessed: Feb. 01, 2016. [ Links ]

LAZZARI, R. et al. Utilização de resíduos de frutas em dietas para piava. Boletim do Instituto de Pesca, v.41, n.2, p. 227-237, 2015. Avaliable from: < Avaliable from: Accessed: Feb. 01, 2016. [ Links ]

LÓPEZ-VÁSQUEZ, K. et al. Digestive enzymes of eight Amazonian teleosts with different feeding habits. Journal of Fish Biology, v.74, p.1620-1628, 2009. Available from: >. Acessed: Feb. 01, 2016. [ Links ]

LOWRY, O. H. et al. Protein measurement with folin phenol reagent. Journal of Biological Chemistry, v.193, p.265-275, 1951. Avaliable from: < Avaliable from: >. Accessed: Feb. 01, 2016. [ Links ]

LUNDSTEDT, L. M. et al. Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei: Siluriformes) in response to diet composition. Comparative Biochemistry and Physiology - Part B , v.137, p.331-339, 2004. Available from: acdnat=1478524910_3f0b1e79f3d7dca29dfb1f70145f627a >. Accessed: Feb. 01, 2016. [ Links ]

MENIN, E.; MIMURA, O. M. Anatomia funcional da cavidade bucofaringeana de Hoplias malabaricus (Bloch, 1794) (Characiformes, Erythrinidae). Revista Ceres, v.38, p.240-255, 1991. Avaliable from: < Avaliable from: >. Accessed: Feb. 01, 2016. [ Links ]

ODEDEYI, D. O.; FAGBENRO, O. A. Feeding habits and digestive enzymes in the gut of Mormyrus rume (Valenciennes 1846) (Osteichthtes, Mormyridae). Tropical Zoology, v.23, p.75-89, 2010. Avaliable from: < Avaliable from: habits_and_digestive_enzymes_in_the_gut_of_Mormyrus_rume_Valenciennes_1846_Osteichth yes_Mormyridae >. Accessed: Feb. 01, 2016. [ Links ]

PARK, J. T.; JOHNSON, M. J. A submicro determination of glucose. Journal of Biological Chemistry , v.181, p.149-151, 1949. Available from: >. Accessed: Feb. 03, 2016. [ Links ]

PERETTI, D.; ANDRIAN, I. F. Feeding and morphological analysis of the digestive tract of four species of fish (Astyanax altiparanae, Parauchenipterus galeatus, Serrasalmus marginatus and Hoplias aff. malabaricus) from the upper Paraná River floodplain, Brazil. Brazilian Journal of Biology, v.68, n.3, p.671-679, 2008. Avaliable from: < Avaliable from: S1519-69842008000300027&script=sci_arttext >. Accessed: Feb. 01, 2016. doi: 10.1590/S1519-698420080 00300027. [ Links ]

REYNALTE-TATAJE, D.; ZANIBONI-FILHO, E. Cultivo de piapara, piauçu, piava e piau - gênero Leporinus. In: BALDISSEROTTO, B.; GOMES, L. C. (Eds.). Espécies nativas para piscicultura no Brasil . Santa Maria: UFSM , 2010. p.73-99. [ Links ]

SABAPATHY, U.; TEO, L. H. A quantitative study of some digestive enzymes in the rabbitfish, Siganus canaliculatus and the Sea bass, Lates calcarifer. Journal of Fish Biology , v.42, p.595-602, 1992. Avaliable from: < Avaliable from: 62.x/pdf >. Accessed: Feb. 01, 2016. doi: 10.1016/S0022-474X(00)00016-3. [ Links ]

TENGJAROENKUL, B. et al. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture , v.182, p.317-327, 2000. Available from:,%20oreochromis%20niloticus%20l..pdf >. Accessed: Feb. 01, 2016. [ Links ]


Received: February 04, 2016; Accepted: May 30, 2016; Revised: December 06, 2016

E-mail: *Corresponding author

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License