Acessibilidade / Reportar erro

Isotopic signature of the caridean shrimp Potimirim brasiliana Villalobos, 1960 in different points of a pristine area in southeastern Brazil

Assinatura isotópica do camarão carídeo Potimirim brasiliana Villalobos, 1960 em diferentes pontos de uma área preservada no sudeste do Brasil

Abstracts

Abstract

Aim

The aim of this study was to investigate the isotopic signature of P. brasiliana captured in three different points along the river flow toward the sea of the Prumirim River, northern coast of the state of São Paulo/Brazil in order to test the hypothesis of similarity between isotopic signature of individuals living in separated areas of the river.

Methods

We used stable isotope analyses (δ13C and δ15N) at three points of the river and ANOVA and Bayesian Ellipses analyses were performed.

Results

Our results showed that are a differential isotopic enrichment along the river course in 13C, providing important results on the environmental condition and anthropogenic impacts in the region. In addition, the food biology of P. brasiliana was characterized as a primary consumer corroborating with the detritivores feeding habit observed in previous studies of stomach content analysis.

Conclusions

Our research, limited to a single area along the northern coast of the state of São Paulo, uncovers intriguing findings that merit replication in other areas within the region. This is particularly crucial given the rising number of anthropogenic influences resulting from urban development, underscoring the need for improved monitoring of these areas.

Keywords:
amphidromous species; Atyidae; freshwater shrimp; conservation; stable isotopes


Resumo

Objetivo

O objetivo deste estudo foi investigar a assinatura isotópica de P. brasiliana capturada em três diferentes pontos ao longo do fluxo fluvial em direção ao mar do rio Prumirim com a finalidade de testar a hipótese de similaridade entre a assinatura isotópica de indivíduos que vivem em areas diferentes do rio.

Métodos

Foram utilizadas análises de isótopos estáveis (δ13C e δ15N) em três pontos do rio e foram realizadas análises de Stable Isotope Mixing Models e Bayesian Ellipses.

Resultados

Nossos resultados mostraram que há um enriquecimento isotópico diferencial ao longo do curso do rio em 13C, fornecendo resultados importantes sobre as condições ambientais e os impactos antropogênicos na região. Além disso, a biologia alimentar de P. brasiliana foi caracterizada como um consumidor primário, corroborando com o hábito alimentar de detritívoros observado em estudos anteriores de análise de conteúdo estomacal.

Conclusões

Nossa pesquisa, limitada a uma única área ao longo da costa norte do estado de São Paulo, revela descobertas intrigantes que merecem ser replicadas em outras áreas dentro da região. Isso é especialmente crucial dada a crescente quantidade de influências antropogênicas resultantes do desenvolvimento urbano, ressaltando a necessidade de um monitoramento aprimorado dessas áreas.

Palavras-chave:
espécies anfídromas; Atyidae; camarão de água doce; conservação; isótopos estáveis


1. Introduction

Habitat use and trophic strategies are central topics in ecology, and modern tools can help us to improve the knowledge in these issues. For example, although stomach content analyses provide us important information about the diet habits of a species (such as taxonomy and composition of diet size, trophic chain, and predator-prey interactions) distinct tools have been widely used in the study of food communities (Layman et al., 2005Layman, C.A., Winemiller, K.O. & Arrington, D.A., 2005. Describing the structure and function of a Neotropical river food web using stable isotopes, stomach contents, and functional experiments. In: Ruiter, P.C., Wolters, V. & Moore, J.C., eds. Dynamic food webs: multispecies assemblages, ecosystem development and environmental change. Amsterdam: Elsevier, 395-406. http://dx.doi.org/10.1016/B978-012088458-2/50037-0.
http://dx.doi.org/10.1016/B978-012088458...
). The stable isotopes are one of the appliances that complement these analyses, bringing information temporarily integrated (weeks to months) on diet habits, representing food sources that are in fact assimilated by the consumer (Davis et al., 2012Davis, A.M., Blanchette, M.L., Pusey, B.J., Jardine, T.D. & Pearson, R.G., 2012. Gut content and stable isotope analyses provide complementary understanding of ontogenetic dietary shifts and trophic relationships among fishes in a tropical river. Freshw. Biol., 57(10), 2156-2172. http://dx.doi.org/10.1111/j.1365-2427.2012.02858.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
).

Decapod crustaceans (Malacostraca, Decapoda) are a relatively very representative group with more than 13,800 extant species worldwide (WoRMS, 2023World Register of Marine Species – WoRMS, 2023. Decapoda [online]. Oostende: WoRMS. Retrieved in 2023, June 19, from https://www.marinespecies.org/aphia.php?p=taxdetails&id=1130
https://www.marinespecies.org/aphia.php?...
). However, there are few studies using isotopic tools focused on freshwater species inhabiting the Neotropical region: Viozzi et al. (2021)Viozzi, M.F., Del Rio, C.M. & Williner, V., 2021. Tissue-specific isotopic incorporation turnover rates and trophic discrimination factors in the freshwater shrimp Macrobrachium borellii (Crustacea: Decapoda: Palaemonidae). Zool. Stud., 60, e32. PMid:34963785. https://doi.org/10.6620/ZS.2021.60-32.
https://doi.org/10.6620/ZS.2021.60-32...
with the shrimp Macrobrachium borellii (Nobili, 1896) Burress et al. (2013Burress, E.D., Gangloff, M.M. & Siefferman, L., 2013. Trophic analysis of two subtropical South American freshwater crabs using stable isotope ratios. Hydrobiologia, 702(1), 5-13. http://dx.doi.org/10.1007/s10750-012-1290-y.
http://dx.doi.org/10.1007/s10750-012-129...
) with the endemic aeglids from the southern, Aegla uruguayana Schmitt, 1942; Denadai et al. (2022)Denadai, A.C., Costa, V.E., Wolf, M.R., Gonçalves, G.R.L. & Castilho, A.L., 2022. Isotopic signature and the trophic interactions of Aegla castro Schmitt, 1942 (Crustacea: Anomura: Aeglidae). Nauplius, 30, e2022024. http://dx.doi.org/10.1590/2358-2936e2022024.
http://dx.doi.org/10.1590/2358-2936e2022...
with A. castro Schmitt, 1942 and Burress et al. (2013)Burress, E.D., Gangloff, M.M. & Siefferman, L., 2013. Trophic analysis of two subtropical South American freshwater crabs using stable isotope ratios. Hydrobiologia, 702(1), 5-13. http://dx.doi.org/10.1007/s10750-012-1290-y.
http://dx.doi.org/10.1007/s10750-012-129...
with the crab Trichodactylus panoplus (von Martens, 1869).

Freshwater shrimps are a very representative group of the crustacean fauna and a good model to apply an isotopic approach to ecological studies, especially amphidromous species that present a fresh and marine water dependency during the life cycle. The genus Potimirim Holthuis, 1954 is an excellent group that fits with this later characteristic. This genus has currently five species of tiny freshwater shrimps, all restricted to the American continent (Torati & Mantelatto, 2012Torati, L.S. & Mantelatto, F.L., 2012. Ontogenetic and evolutionary change of external morphology of the neotropical shrimp Potimirim (Holthuis, 1954) explained by a molecular phylogeny of the genus. J. Crustac. Biol., 32(4), 625-640. http://dx.doi.org/10.1163/193724012X635322.
http://dx.doi.org/10.1163/193724012X6353...
; Mantelatto et al., 2021Mantelatto, F.L., Vera-Silva, A.L., Prado, B.M. & Pileggi, L.G., 2021. Phylogenomic analyses reveals gene flow between populations of the freshwater shrimp Potimirim brasiliana (Caridea, Atyidae) along its wide distribution. An. Acad. Bras. Cienc., 93(2), e20190384. PMid:33729377. http://dx.doi.org/10.1590/0001-3765202120190384.
http://dx.doi.org/10.1590/0001-376520212...
), among which two species occur in coastal rivers and streams of Brazil, P. brasiliana Villalobos, 1959 and P. potimirim (Müller, 1881) (Mantelatto et al., 2021Mantelatto, F.L., Vera-Silva, A.L., Prado, B.M. & Pileggi, L.G., 2021. Phylogenomic analyses reveals gene flow between populations of the freshwater shrimp Potimirim brasiliana (Caridea, Atyidae) along its wide distribution. An. Acad. Bras. Cienc., 93(2), e20190384. PMid:33729377. http://dx.doi.org/10.1590/0001-3765202120190384.
http://dx.doi.org/10.1590/0001-376520212...
). These shrimps have a fundamental role in the trophic web of limnic environments (Benzie, 1982Benzie, J.A.H., 1982. The complete larval development of Caridina mccullochi Roux, 1926 (Decapoda, Atyidae) reared in the laboratory. J. Crustac. Biol., 2(4), 493-513. http://dx.doi.org/10.2307/1548091.
http://dx.doi.org/10.2307/1548091...
) and in the sediment renewal process (Souza & Moulton, 2005Souza, M.L. & Moulton, T.P., 2005. The effects of shrimps on benthic material in a Brazilian island stream. Freshw. Biol., 50(4), 592-602. http://dx.doi.org/10.1111/j.1365-2427.2005.01348.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
; Lima et al., 2006Lima, G.V., Silveira, C.M. & Oshiro, L.M.Y., 2006. Estrutura populacional dos camarões simpátricos Potimirim glabra e Potimirim potimirim (Crustacea, Decapoda, Atyidae) no rio Sahy, Rio de Janeiro, Brasil. Iheringia Ser. Zool., 96(1), 81-87. http://dx.doi.org/10.1590/S0073-47212006000100015.
http://dx.doi.org/10.1590/S0073-47212006...
). In addition, Potimirim species are only found in pristine areas with a high degree of environmental preservation in terms of quality of the water and marginal vegetation, which could be a good candidate for water quality indicator (F.L. Mantelatto Pers. Comm.).

The target species of this study, P. brasiliana, is endemic to Brazil and occur along the east coast, from the states of Bahia to Santa Catarina (Villalobos, 1959Villalobos, A., 1959. Contribución al conocimiento de los Atyidae de México. II (Crustacea, Decapoda). Estudio de algunas especies del género Potimirim (Ortmannia), con descripción de una especie nueva en Brasil. An. Inst. Biol., 30, 269-330.; Torati & Mantelatto, 2012Torati, L.S. & Mantelatto, F.L., 2012. Ontogenetic and evolutionary change of external morphology of the neotropical shrimp Potimirim (Holthuis, 1954) explained by a molecular phylogeny of the genus. J. Crustac. Biol., 32(4), 625-640. http://dx.doi.org/10.1163/193724012X635322.
http://dx.doi.org/10.1163/193724012X6353...
; Rocha et al., 2013Rocha, S.S., Bueno, S.L.S., Shimizu, R.M. & Mantelatto, F.L., 2013. Reproductive biology and population structure of Potimirim brasiliana Villalobos, 1959 (Decapoda, Atyidae) from a littoral fast-flowing stream, São Paulo State, Brazil. Crustaceana, 86(1), 67-83. http://dx.doi.org/10.1163/15685403-00003151.
http://dx.doi.org/10.1163/15685403-00003...
). This shrimp is usually found in clear flowing water, under stones, among roots of aquatic plants, and in the litter deposited at the bottom of rivers and streams that flow into the sea, in coastal regions (Barros & Fontoura, 1996Barros, M. & Fontoura, N., 1996. Crescimento de Potimirim glabra (Kingsley, 1878) (Crustacea, Decapoda, Atydae), na Praia da Vigia, Garopaba, Santa Catarina, Brasil. Nauplius, 4, 11-28.; Rocha et al., 2013Rocha, S.S., Bueno, S.L.S., Shimizu, R.M. & Mantelatto, F.L., 2013. Reproductive biology and population structure of Potimirim brasiliana Villalobos, 1959 (Decapoda, Atyidae) from a littoral fast-flowing stream, São Paulo State, Brazil. Crustaceana, 86(1), 67-83. http://dx.doi.org/10.1163/15685403-00003151.
http://dx.doi.org/10.1163/15685403-00003...
; Grilli et al., 2014Grilli, N.M., Terossi, M. & Mantelatto, F.L., 2014. Sexual system of the freshwater shrimps of the genus Potimirim Holthuis (Decapoda: Caridea: Atyidae): is there a pattern in this genus? Mar. Freshw. Res., 65(9), 759-765. http://dx.doi.org/10.1071/MF13238.
http://dx.doi.org/10.1071/MF13238...
), since it depends on brackish water to complete its larval development (Hoffmann & Negreiros-Fransozo, 2010Hoffmann, P. & Negreiros-Fransozo, M.L., 2010. Reproductive cycle and fecundity of Potimirim glabra (Kingsley, 1954) (Caridea, Atyidae) from a littoral stream. Invertebr. Reprod. Dev., 54(3), 133-141. http://dx.doi.org/10.1080/07924259.2010.9652325.
http://dx.doi.org/10.1080/07924259.2010....
; Grilli et al., 2014Grilli, N.M., Terossi, M. & Mantelatto, F.L., 2014. Sexual system of the freshwater shrimps of the genus Potimirim Holthuis (Decapoda: Caridea: Atyidae): is there a pattern in this genus? Mar. Freshw. Res., 65(9), 759-765. http://dx.doi.org/10.1071/MF13238.
http://dx.doi.org/10.1071/MF13238...
).

Potimirim brasiliana has an upstream migratory behavior in the river after the larval development, common to Atyid shrimps (Hoffmann & Negreiros-Fransozo, 2010Hoffmann, P. & Negreiros-Fransozo, M.L., 2010. Reproductive cycle and fecundity of Potimirim glabra (Kingsley, 1954) (Caridea, Atyidae) from a littoral stream. Invertebr. Reprod. Dev., 54(3), 133-141. http://dx.doi.org/10.1080/07924259.2010.9652325.
http://dx.doi.org/10.1080/07924259.2010....
; Bauer, 2011Bauer, R.T., 2011. Amphidromy and migrations of freshwater shrimps. II. Delivery of hatching larvae to the sea, return juvenile upstream migration, and human impacts. In: Asakura, A., ed. New frontiers in crustacean biology. Leiden: Brill, 157-168. http://dx.doi.org/10.1163/ej.9789004174252.i-354.115.
http://dx.doi.org/10.1163/ej.97890041742...
). This migration may drive to a shrimp population structure composed of several local populations or subpopulations inhabiting different rivers habitats (Bauer, 2011Bauer, R.T., 2011. Amphidromy and migrations of freshwater shrimps. II. Delivery of hatching larvae to the sea, return juvenile upstream migration, and human impacts. In: Asakura, A., ed. New frontiers in crustacean biology. Leiden: Brill, 157-168. http://dx.doi.org/10.1163/ej.9789004174252.i-354.115.
http://dx.doi.org/10.1163/ej.97890041742...
; Santos et al., 2022Santos, R.C., Pantaleão, J.A.F., Teles, J.N., França, N.F.C., Costa, J.R.P., Cabral, H., Pardo, L.M. & Mantelatto, F.L., 2022. The influence of natural barriers on the amphidromous shrimp Potimirim brasiliana (Caridea, Atyidae) from two rivers in Southeastern Brazil. Biol. Bull., 242(1), 27-39. PMid:35245163. http://dx.doi.org/10.1086/718590.
http://dx.doi.org/10.1086/718590...
), which consequently can exhibit differential structures and sizes, as a result of the degree of isolation or the habitat characteristics, while the shrimps may migrate among them (Hanski, 1994Hanski, I., 1994. A practical model of metapopulation dynamics. J. Anim. Ecol., 63(1), 151-162. http://dx.doi.org/10.2307/5591.
http://dx.doi.org/10.2307/5591...
; Terui et al., 2014Terui, A., Miyazaki, Y., Yoshioka, A., Kaifu, K., Matsuzaki, S.S. & Washitani, I., 2014. Asymmetric dispersal structures a riverine metapopulation of the freshwater pearl mussel Margaritifera laevis. Ecol. Evol., 4(15), 3004-3014. PMid:25247058. http://dx.doi.org/10.1002/ece3.1135.
http://dx.doi.org/10.1002/ece3.1135...
; Santos et al., 2022Santos, R.C., Pantaleão, J.A.F., Teles, J.N., França, N.F.C., Costa, J.R.P., Cabral, H., Pardo, L.M. & Mantelatto, F.L., 2022. The influence of natural barriers on the amphidromous shrimp Potimirim brasiliana (Caridea, Atyidae) from two rivers in Southeastern Brazil. Biol. Bull., 242(1), 27-39. PMid:35245163. http://dx.doi.org/10.1086/718590.
http://dx.doi.org/10.1086/718590...
).

Coastal streams may consist of shallow regions with turbulent hydrology, deep regions with slow water flow, and the formation of small and large waterfalls (Jönck & Aranha, 2010Jönck, C.R. & Aranha, J.M.R., 2010. Influence of a waterfall over richness and similarity in adjoining pools of an Atlantic Rainforest stream. Acta Limnol. Bras., 22(4), 378-383. http://dx.doi.org/10.4322/actalb.2011.003.
http://dx.doi.org/10.4322/actalb.2011.00...
). Waterfalls can function as natural barriers that influence the distribution, abundance, and ecological relationships of some species, acting as biogeographical barriers within river basins (Reznick & Ghalambor, 2005Reznick, D.N. & Ghalambor, C.K., 2005. Selection in nature: experimental manipulations of natural populations. Integr. Comp. Biol., 45(3), 456-462. PMid:21676790. http://dx.doi.org/10.1093/icb/45.3.456.
http://dx.doi.org/10.1093/icb/45.3.456...
; Greathouse & Pringle, 2006Greathouse, E.A. & Pringle, C.M., 2006. Does the river continuum concept apply on a tropical island? Longitudinal variation in a Puerto Rican stream. Can. J. Fish. Aquat. Sci., 63(1), 134-152. http://dx.doi.org/10.1139/f05-201.
http://dx.doi.org/10.1139/f05-201...
; Mazzoni et al., 2006Mazzoni, R., Fenerich-Verani, N., Caramaschi, É.P. & Iglesias-Rios, R., 2006. Stream-dwelling fish communities from an Atlantic rain forest drainage. Braz. Arch. Biol. Technol., 49(2), 249-256. http://dx.doi.org/10.1590/S1516-89132006000300010.
http://dx.doi.org/10.1590/S1516-89132006...
). Although certain waterfalls can promote isolation between subpopulations along the course of a river, some species of amphidromous shrimp are able to traverse upstream waterfalls in search of predator-free refuge environments, depending on several factors, such as habitat composition, elevation, predation, among others (Covich et al., 2009Covich, A.P., Crowl, T.A., Hein, C.L., Townsend, M.J. & McDowell, W.H., 2009. Predator-prey interactions in river networks: comparing shrimp spatial refugia in two drainage basins. Freshw. Biol., 54(3), 450-465. http://dx.doi.org/10.1111/j.1365-2427.2008.02121.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
; Hein et al., 2011Hein, C.L., Pike, A.S., Blanco, J.F., Covich, A., Scatena, F., Hawkins, C. & Crowl, T.A., 2011. Effects of coupled natural and anthropogenic factors on the community structure of diadromous fish and shrimp species in tropical island streams. Freshw. Biol., 56(5), 1002-1015. http://dx.doi.org/10.1111/j.1365-2427.2010.02537.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
; Ebner et al., 2021Ebner, B.C., Donaldson, J.A., Murphy, H., Thuesen, P., Ford, A., Schaffer, J. & Keith, P., 2021. Waterfalls mediate the longitudinal distribution of diadromous predatory fishes structuring communities in tropical, short, steep coastal streams. Freshw. Biol., 66(6), 1225-1241. http://dx.doi.org/10.1111/fwb.13712.
http://dx.doi.org/10.1111/fwb.13712...
).

The aim of this study was to investigate the isotopic signature of Potimirim brasiliana in three different points of the Prumirim River on the northern coast of the state of São Paulo/Brazil. Our hypothesis is that the isotopic signature of this shrimp is compatible with its previously described feeding habit (detritivores) and there are differences on the river sampled reflecting the different habitats exposition of shrimps.

2. Material and Methods

The sampling was carried out during the spring of September 2019 in the Prumirim River, a pristine coastal river from Ubatuba, São Paulo, Brazil. Three points were chosen, representing the layers of the river flow toward the sea: the first point (Upstream from a Waterfall = P1) was the most distant of the sea (~ 1.4 km along the course of the river); the second (Downstream from Waterfall = P2) was intermediary and the third point (Close to Sea = P3) was the closest to the sea (Figure 1).

Figure 1
Schematic drawing and images of Ubatuba, São Paulo, Brazil, with the three sampling points in the Prumirim River: Upstream Waterfall Area (P1), Downstream Waterfall Area (P2), and Close to Sea Area (P3).

The Prumirim River covers an area of 21 km2 and has an average flow of m3/s (Andrade, 2008Andrade, T.M.B.D., 2008. Dinâmica das formas dissolvidas de nitrogênio e carbono em microbacias da Mata Atlântica no município de Ubatuba (SP) [Doctoral dissertation]. Piracicaba: Universidade de São Paulo.). It is predominantly composed of igneous and metamorphic rocks in the mountainous region. Mostly, it consists of small streams that originate from headwaters, flowing through steep valleys until they reach the coastal plain. Sometimes these streams transform into sinuous and meandering creeks or rivers, flowing into small beaches (Andrade, 2008Andrade, T.M.B.D., 2008. Dinâmica das formas dissolvidas de nitrogênio e carbono em microbacias da Mata Atlântica no município de Ubatuba (SP) [Doctoral dissertation]. Piracicaba: Universidade de São Paulo.). Between P1 and P2 there is a waterfall approximately eight meters high. The map of this study was made in the software QGIS 3.30.1 using the SIRGAS 2000 coordinate system, using Google’s® satellite image.

The specimens were collected in all three points during the morning, by two-person using dip nets and sieves for approximately 30 minutes. Afterward, shrimp were stored in plastic bags with water from the sampling site and transported alive to the field laboratory of the Oceanographic Institute of the University of São Paulo (IO/USP), where they were cryo-anesthetized and identified using specific literature (Villalobos, 1959Villalobos, A., 1959. Contribución al conocimiento de los Atyidae de México. II (Crustacea, Decapoda). Estudio de algunas especies del género Potimirim (Ortmannia), con descripción de una especie nueva en Brasil. An. Inst. Biol., 30, 269-330.; Torati & Mantelatto, 2012Torati, L.S. & Mantelatto, F.L., 2012. Ontogenetic and evolutionary change of external morphology of the neotropical shrimp Potimirim (Holthuis, 1954) explained by a molecular phylogeny of the genus. J. Crustac. Biol., 32(4), 625-640. http://dx.doi.org/10.1163/193724012X635322.
http://dx.doi.org/10.1163/193724012X6353...
). Thirty individuals were collected for each sampling point, totaling 90 individuals. To obtain the necessary weight of the material sufficient to perform the analysis of stable isotopes we grouped three individuals per sample. As a result, we obtained ten different isotopic values for each collection point. The samples were kept frozen until the time to run the analysis of stable isotopes. Both analyses used only adult specimens. We emphasize that the area P3 is an area with strong influence of the sea and anthropic, this can influence the enrichment of 13C in our results.

The analysis of stable isotopes (i.e., 13C/12C and 15N/14N, respectively) has been frequently used as an informative and reliable tool to identify the main food source and the trophic position of consumers (Peterson & Fry, 1987Peterson, B.J. & Fry, B., 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18(1), 293-320. http://dx.doi.org/10.1146/annurev.es.18.110187.001453.
http://dx.doi.org/10.1146/annurev.es.18....
; Post, 2002Post, D.M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83(3), 703-718. http://dx.doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2.
http://dx.doi.org/10.1890/0012-9658(2002...
; Mao et al., 2016Mao, Z., Gu, X. & Zeng, Q., 2016. Food sources and trophic relationships of three decapod crustaceans: insights from gut contents and stable isotope analyses. Aquacult. Res., 47(9), 2888-2898. http://dx.doi.org/10.1111/are.12739.
http://dx.doi.org/10.1111/are.12739...
). Specifically, the isotopic values of δ15N are indicators of the trophic level in species, given that δ15N exhibits a slight enrichment of 2.5% – 5‰ in each trophic level (Minagawa & Wada, 1984Minagawa, M. & Wada, E., 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta, 48(5), 1135-1140. http://dx.doi.org/10.1016/0016-7037(84)90204-7.
http://dx.doi.org/10.1016/0016-7037(84)9...
; Bearhop et al., 2004Bearhop, S., Adams, C.E., Waldron, S., Fuller, R.A. & Macleod, H., 2004. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol., 73(5), 1007-1012. http://dx.doi.org/10.1111/j.0021-8790.2004.00861.x.
http://dx.doi.org/10.1111/j.0021-8790.20...
). In the other hand, the values of δ13C contributes better as indicators of habitat, since they allow the differentiation between the sources of primary production, that could change according to distinct habitat location (Fry, 2006Fry, B., 2006. Stable isotope ecology. New York: Springer. http://dx.doi.org/10.1007/0-387-33745-8.
http://dx.doi.org/10.1007/0-387-33745-8...
). Thus, obtain the isotopic signature of different taxa from different sites across natural areas allows the estimation of their isotopic niche.

Stable isotopes analysis was carried out in the Center for Stable Isotopes of the Institute of Biosciences of UNESP, Botucatu, São Paulo, Brazil. After thawing, the abdominal muscle tissue was extracted from each shrimp and dried at 60 ºC for 48 h, and the samples were ground in a cryogenic grinder for 5 min at 990 rpm. Subsequently, the samples were weighed from each sampling point, samples weighing approximately 50-80μg for 13C and 400-500 μg for 15N were used to measure, whose CO2 and N2 were obtained by combustion and measured in a mass spectrometer, which determines the obtained δ13C and δ15N enrichment values relative to their respective international standards. The isotopic composition values were obtained relative to the international standard V-PDB (Vienna Pee Dee Belemnite) for δ13C and atmospheric air N2 for δ15N, with an analysis error of 0.2 ‰ and calculated by Equation 1:

δ X ( s a m p l e , s t a n d a r d ) = R s a m p l e / R s t a n d a r d 1 × 10 3 (1)

Where: δX represents the isotope enrichment of the chemical element X (13C or 15N) of the sample relative to the respective international standard, and R represents the ratio between the least abundant and the most abundant isotope. Although our samples did not undergo a lipid removal chemical process, they resulted a C:N ratio < 3.5, indicating that it was not necessary to perform a lipid correction for δ13C values [see Post et al. (2007)Post, D.M., Layman, C.A., Arrington, D.A., Takimoto, G., Quattrochi, J. & Montaña, C.G., 2007. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152(1), 179-189. PMid:17225157. http://dx.doi.org/10.1007/s00442-006-0630-x.
http://dx.doi.org/10.1007/s00442-006-063...
].

The Stable Isotope Bayesian Ellipses in R “SIBER” package (Jackson et al., 2011Jackson, A.L., Inger, R., Parnell, A.C. & Bearhop, S., 2011. Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol., 80(3), 595-602. PMid:21401589. http://dx.doi.org/10.1111/j.1365-2656.2011.01806.x.
http://dx.doi.org/10.1111/j.1365-2656.20...
) was used to analyze and determine isotopic niches and their overlapping among shrimps from samples collected in the different points across the river using 40% of data size. Two niche metrics were utilized to describe niche width: SEAc (size-corrected standard ellipse area) and SEAb (Bayesian standard ellipse area). We obtained posterior modes of SEAb, when the 95% credibility intervals were non-overlapping. Finally, we test the differences of ellipse sizes by calculating the probability of posterior distributions (smaller or larger).

The data were considered normal and homoscedastic by the multivariate analyses then an Analysis of Variance (ANOVA) one-way was used to test niche differences between sampling points, considering isotopic values as response variable and sampling points as categorical variable. Subsequently, Tukey’s post hoc test was performed to verify the differences between niches. These analyses and figures were performed in the software R using the packages “multcompView” (Graves et al., 2019Graves, S., Piepho, H. & Dorai-Raj, S., 2019. multcompView: visualizations of paired comparisons. R package version 0.1-8 [online]. Vienna: The R Project for Statistical Computing. Retrieved in 2023, June 1, from https://CRAN.R-project.org/package=multcompView
https://CRAN.R-project.org/package=multc...
), “dplyr” (Wickham et al., 2023Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D., 2023. dplyr: a grammar of data manipulation. R package version 1.1.0 [online]. Vienna: The R Project for Statistical Computing. Retrieved in 2023, June 1, from https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr...
) and “ggplot2” (Wickham, 2016Wickham, H., 2016. ggplot2: elegant graphics for data analysis [online]. New York: Springer-Verlag. Retrieved in 2023, June 1, from https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org...
).

3. Results

The isotopic values obtained in the three points were: δ13C and δ15N of P1 ranged from −26.69 to −23.42‰ (mean ± SD = −25.70 ± 1.02‰), and 5.30 to 6.82‰ (5.91 ± 0.48h), respectively. δ13C of P2 ranged from −26.15 to −24.08‰ (mean ± SD = −24.7 ± 0.58‰) and δ15N ranged from 5.50 to 7.18‰ (mean ± SD = 6.41 ± 0.48‰). In P3 δ13C ranged from −25.55 to −24.59‰ (mean ± SD = −24.96 ± 0.32‰) and δ15N ranged from 5.39 to 6.78‰ (mean ± SD = 6.33 ± 0.45‰).

There was a significant difference in the food sources of P. brasiliana in the three points sampled (Figure 2). However, the point with the greatest difference was Upstream from Waterfall (P1) containing higher values of δ13C and lower values of δ15N (Figure 2).

Figure 2
A) Dispersion point B) dual isotope plot (mean value) and C) SEAb (Bayesian standard ellipse area) of Potimirim brasiliana at the three sampling points in the Prumirim River (data pattern in 40% of size samples), Ubatuba, São Paulo, Brazil. P1 = Upstream Waterfall Area, P2 = Downstream Waterfall Area and P3 = Close to Sea Area.

The Bayesian estimations of the standard ellipse areas (SEAb) of P. brasiliana showed differences in the niche width of the Upstream Waterfall Area (P1) and the other two sampling points, and a relationship between the points Downstream Waterfall (P2) and Close to Sea (P3) (Figure 2; Table 1). There was a niche overlap in all points, the point Close to Sea is completely overlapped by both the point Downstream Waterfall and Upstream Waterfall, while these two are slightly overlapping between them (Figure 2; Table 1). The width of the niches (Figure 2; Table 1) in the Upstream Waterfall area was higher than the other two points (Figure 3).

Table 1
Samples of Potimirim brasiliana from Prumirim river, São Paulo, Brazil, analyzed (n) and SIBER analysis including the ellipse area corrected for small size (SEAc) and the estimated posterior mode of its isotopic niche width as the standard ellipse area of bayesian standard ellipse area (SEAb) in ‰2 together with the 95% credibility interval (in brackets).
Figure 3
Box plot of Potimirim brasiliana isotopic values A) δ13C and B) δ15N by sampling points (P1 = Upstream Waterfall Area, P2 = Downstream Waterfall Area and P3 = Close to Sea Area), in Ubatuba, São Paulo, Brazil. Letters above the box plots indicate the differences in Tukey test, which followed the ANOVA (p < 0.05).

The ANOVA test of niche differences between sampling points was significant for both isotopic values of δ13C: F = 4.98, p = 0.01 and δ15N: F = 3.27, p = 0.05 (Figure 3). This result shows that differences were identified between sampling points for δ13C but not for δ15N (Figure 3).

4. Discussion

The results showed an evident and significant change in the carbon source, showing the importance of the marine influence on carbon assimilation. The isotopic nitrogen signature did not show an evident gradient, but there was a high variation in the isotopic nitrogen values upstream, which may suggest a diversification of food items in these habitats. Also, the different isotopic results of different 13C between the sampling points initially indicate a high enriched carbon values indicate use of detritus as main source of carbon, corroborating other studies on stomach content (Abele & Blum, 1977Abele, L.G. & Blum, N., 1977. Ecological aspects of the freshwater decapod crustaceans of the Perlas Archipelago, Panamá. Biotropica, 9(4), 239-252. http://dx.doi.org/10.2307/2388141.
http://dx.doi.org/10.2307/2388141...
).

Previous studies of stomach content analyses indicate that shrimps of the genus Potimirim are detritivores, feeding on particles scraping the substrate (Felgenhauer & Abele, 1985Felgenhauer, B.E. & Abele, L.G., 1985. Feeding structures of two atyid shrimps, with comments on caridean phylogeny. J. Crustac. Biol., 5(3), 397-419. http://dx.doi.org/10.2307/1547911.
http://dx.doi.org/10.2307/1547911...
). In addition, Abele & Blum (1977)Abele, L.G. & Blum, N., 1977. Ecological aspects of the freshwater decapod crustaceans of the Perlas Archipelago, Panamá. Biotropica, 9(4), 239-252. http://dx.doi.org/10.2307/2388141.
http://dx.doi.org/10.2307/2388141...
showed that 18% of the stomach contents analyzed were composed of plant material and 88% of unidentified material due to the degree of crushing found. Although neither of the studies cited above used the stable isotopes, our results corroborate them since the isotopic signature found (δ13C between -28 and -23) indicates values composed of C3 plants (Ducatti et al., 2011Ducatti, C., Martins, C.L., Arrigoni, M.B., Martins, M.B., Vieira Júnior, L.C. & Denadai, J.C., 2011. Utilização de isótopos estáveis em ruminantes. Rev. Bras. Zootec., 40, 68-75.), classifying this species as the basis of the food web of that environment as a primary consumer and confirming by the first time, via isotopic data, its important ecological role in this environment.

In the area above the waterfall (P1), we observed higher values of δ13C, characteristic of more preserved areas and less degraded by anthropic actions. Despite the lack of data from other species that make up the ecological niche of the Prumirim River, our results, using a caridean shrimp as a study model demonstrated that small stretches of a river considered a pristine area, can present different environmental quality, and consequently influence the life cycle and fauna existing of this environment.

The Prumirim region (including beach, river, and Atlantic Forest) is mainly affected by landfill and human occupation (this causes concern mainly regarding the degradation of mangroves), but also has tourism activities such as diving and hiking (Vasconcellos & Sanches, 2009Vasconcellos, A.N. & Sanches, F.O., 2009. Análise e espacialização dos manguezais no município de Ubatuba (SP) utilizando-se recursos do sensoriamento remoto. Encicl. Biosf., 5(8), 1-21.; CTBio, 2020Comissão Temática de Biodiversidade e Áreas Protegidas – CTBio, 2020. Plano de manejo: área de proteção ambiental marinha do litoral norte. São Paulo: CTBio. Retrieved in 2023, June 1, from https://sigam.ambiente.sp.gov.br/sigam3/Repositorio/511/Documentos/APAM_LN/APAMLN_Plano_de_manejo_CTBio.pdf
https://sigam.ambiente.sp.gov.br/sigam3/...
). Regarding fishing, the conservation status is considered stable, and the region is part of a marine protected area (MPA), however, landed fishing is allowed in the region (Vasconcellos & Sanches, 2009Vasconcellos, A.N. & Sanches, F.O., 2009. Análise e espacialização dos manguezais no município de Ubatuba (SP) utilizando-se recursos do sensoriamento remoto. Encicl. Biosf., 5(8), 1-21.; CTBio, 2020Comissão Temática de Biodiversidade e Áreas Protegidas – CTBio, 2020. Plano de manejo: área de proteção ambiental marinha do litoral norte. São Paulo: CTBio. Retrieved in 2023, June 1, from https://sigam.ambiente.sp.gov.br/sigam3/Repositorio/511/Documentos/APAM_LN/APAMLN_Plano_de_manejo_CTBio.pdf
https://sigam.ambiente.sp.gov.br/sigam3/...
).

The results of stable isotope values also indicated that there was a general overlapping of niches among all sampled points. This means that individuals captured in the upper part of the waterfall did not use exclusively the habitat in which they were collected, probably due to amphidromous migratory behavior. After larval development in brackish water, amphidromous shrimp settle to the bottom as post-larvae and must find a freshwater habitat to migrate upstream to the habitat of adults (Bauer, 2013Bauer, R.T., 2013. Amphidromy in shrimps: a life cycle between rivers and the sea. Lat. Am. J. Aquat. Res. 41(4), 633-650. http://dx.doi.org/10.3856/vol41-issue4-fulltext-2.
http://dx.doi.org/10.3856/vol41-issue4-f...
; Santos et al., 2022Santos, R.C., Pantaleão, J.A.F., Teles, J.N., França, N.F.C., Costa, J.R.P., Cabral, H., Pardo, L.M. & Mantelatto, F.L., 2022. The influence of natural barriers on the amphidromous shrimp Potimirim brasiliana (Caridea, Atyidae) from two rivers in Southeastern Brazil. Biol. Bull., 242(1), 27-39. PMid:35245163. http://dx.doi.org/10.1086/718590.
http://dx.doi.org/10.1086/718590...
). This migration passing through the different sampling points during the life cycle probably influenced the pattern obtained in the analysis of stable isotopes. Therefore, the overlapping of the isotopic niche was strong evidence that shrimps do not reside for a long time in only one section of the river, but they displace along the river, even when adults, that reinforces the hypothesis that there are a few differences in the isotopic signature among the distinct points for P. brasiliana at the Prumirim River.

An additional explanation for the overlapping of niches among all sampled points could be the sharing of food such as leaf litter which is considered as a significant food resource for atyids (Cross et al., 2008Cross, W.F., Covich, A.P., Crowl, T.A., Benstead, J.P. & Ramírez, A., 2008. Secondary production, longevity and resource consumption rates of freshwater shrimps in two tropical streams with contrasting geomorphology and food web structure. Freshw. Biol., 53(12), 2504-2519. http://dx.doi.org/10.1111/j.1365-2427.2008.02078.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
). As the leaves and other types of organic matter move from one point of the river to another, following the current towards the sea, they can be shared by shrimps living in these different stretches. Despite P1 being connected with the other two points, it was noted that there is a difference in the size and distance of the ellipses compared to the others. This indicates that there is a variation in the food content at that sampling point, probably due to a greater variety of food at the point Upstream waterfall, or also, to greater availability of food due to a possible lower abundance of competing species in the area (Antonio & Richoux, 2014Antonio, E. & Richoux, N., 2014. Trophodynamics of three decapod crustaceans in a temperate estuary using stable isotope and fatty acid analyses. Mar. Ecol. Prog. Ser., 504, 193-205. http://dx.doi.org/10.3354/meps10761.
http://dx.doi.org/10.3354/meps10761...
).

During sampling, one of us (FLM), observed by snorkeling that some individuals showed the behavior of climbing of rocks that were in the course of the river and close to the margins, walking on them in rapids areas. Lima & Oshiro (2002)Lima, G.V. & Oshiro, L.M.Y., 2002. Partição ambiental de Potimirim glabra (Kingsley) e Potimirim potimirim (Müller) (Crustacea, Decapoda, Atyidae) no rio Sahy, Mangaratiba, Rio de Janeiro, Brasil. Rev. Bras. Zool., 19(Suppl. 2), 175-179. http://dx.doi.org/10.1590/S0101-81752002000600017.
http://dx.doi.org/10.1590/S0101-81752002...
and Lima et al. (2006)Lima, G.V., Silveira, C.M. & Oshiro, L.M.Y., 2006. Estrutura populacional dos camarões simpátricos Potimirim glabra e Potimirim potimirim (Crustacea, Decapoda, Atyidae) no rio Sahy, Rio de Janeiro, Brasil. Iheringia Ser. Zool., 96(1), 81-87. http://dx.doi.org/10.1590/S0073-47212006000100015.
http://dx.doi.org/10.1590/S0073-47212006...
reported a greater preference of P. brasiliana (as P. glabra) adults to environments with rocks, slopes, and points with greater hydrodynamism. This preference is also observed in some freshwater prawns (Macrobrachium spp.) that show upstream migration (Kikkert et al., 2009Kikkert, D.A., Crowl, T.A. & Covich, A.P., 2009. Upstream migration of amphidromous shrimps in the Luquillo Experimental Forest, Puerto Rico: temporal patterns and environmental cues. J. N. Am. Benthol. Soc., 28(1), 233-246. http://dx.doi.org/10.1899/08-019.1.
http://dx.doi.org/10.1899/08-019.1...
; Hongjamrassilp et al., 2021Hongjamrassilp, W., Maiphrom, W. & Blumstein, D.T., 2021. Why do shrimps leave the water? Mechanisms and functions of parading behaviour in freshwater shrimps. J. Zool., 313(2), 87-98. http://dx.doi.org/10.1111/jzo.12841.
http://dx.doi.org/10.1111/jzo.12841...
). According to Covich et al. (2009)Covich, A.P., Crowl, T.A., Hein, C.L., Townsend, M.J. & McDowell, W.H., 2009. Predator-prey interactions in river networks: comparing shrimp spatial refugia in two drainage basins. Freshw. Biol., 54(3), 450-465. http://dx.doi.org/10.1111/j.1365-2427.2008.02121.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
and Ebner et al. (2021)Ebner, B.C., Donaldson, J.A., Murphy, H., Thuesen, P., Ford, A., Schaffer, J. & Keith, P., 2021. Waterfalls mediate the longitudinal distribution of diadromous predatory fishes structuring communities in tropical, short, steep coastal streams. Freshw. Biol., 66(6), 1225-1241. http://dx.doi.org/10.1111/fwb.13712.
http://dx.doi.org/10.1111/fwb.13712...
these shrimps crawl through very high and steep waterfalls seeking refuge environments from predators and most resource availability (Bauer, 2023Bauer, R.T., 2023. Shrimps: their diversity, intriguing adaptations and variety lifestyles Cham: Springer. Life histories, 443-514, Fish & Fisheries Series, vol. 42. http://dx.doi.org/10.1007/978-3-031-20966-6_9.
http://dx.doi.org/10.1007/978-3-031-2096...
).

In addition, we cannot discharge that rainfall frequency and river discharge may also influence the migration process of these shrimps, especially in a subtropical region with frequent storm during the rainy season (spring and summer). Unfortunately, we have not checked volume of water during the sampling, but according to Andrade et al. (2011)Andrade, T.M.B., Camargo, P.B., Silva, D.M.L., Piccolo, M.C., Vieira, S.A., Alves, L.F., Joly, C.A. & Martinelli, L.A., 2011. Dynamics of dissolved forms of carbon and inorganic nitrogen in small watersheds of the coastal atlantic forest in southeast Brazil. Water Air Soil Pollut., 214(1-4), 393-408. http://dx.doi.org/10.1007/s11270-010-0431-z.
http://dx.doi.org/10.1007/s11270-010-043...
, the discharge of the Prumirim River in September (considered as dry season, with low average rainfall) was 6 m3/s which is considered one of the lowest, compared to the other rivers in the region. Even though in a low rainfall volume, the river flow among the sampled areas remains continuous, favoring the necessary orientation (positive rheotaxis) for the shrimp migration (Bauer, 2023Bauer, R.T., 2023. Shrimps: their diversity, intriguing adaptations and variety lifestyles Cham: Springer. Life histories, 443-514, Fish & Fisheries Series, vol. 42. http://dx.doi.org/10.1007/978-3-031-20966-6_9.
http://dx.doi.org/10.1007/978-3-031-2096...
). Such climbing behavior enables the upstream migratory movement carried out by P. brasiliana and, consequently, maintains connectivity with the different points of the river.

The majority of the studies that used stable isotopes of decapods as a model to test habitat connectivity, as far as we know, are restricted to penaeid shrimp and marine environments. Fry (1981)Fry, B., 1981. Natural stable carbon isotope tag traces Texas shrimp migrations. Fish Bull., 79, 337-345. evaluated the migration from inshore seagrass meadows to offshore areas of Farfantepenaeus aztecus (Ives, 1891) by indicating the presence of δ13C values of seagrass based food (common of inshore areas) in subadult individuals at offshore areas; Fry et al. (1999)Fry, B., Mumford, P.L. & Robblee, M.B., 1999. Stable isotope studies of pink shrimp (Farfantepenaeus duorarum Burkenroad) migrations on the southwestern Florida shelf. Mar. Sci. Bull., 65, 419-430. used populations of F. duorarum (Burkenroad, 1939) and traced higher connectivity of juvenile migration from inshore seagrass meadows areas to offshore region, in comparison to inshore mangrove-lined bays; and Taylor et al. (2017)Taylor, M.D., Fry, B., Becker, A. & Moltschaniwskyj, N., 2017. Recruitment and connectivity influence the role of seagrass as a penaeid nursery habitat in a wave dominated estuary. Sci. Total Environ., 584-585, 622-630. PMid:28131456. http://dx.doi.org/10.1016/j.scitotenv.2017.01.087.
http://dx.doi.org/10.1016/j.scitotenv.20...
studied Melicertus plebejus (Hess, 1865) highlighting the important role that connectivity plays in the recruitment of migratory species. Besides its accuracy in studies with decapods, this tool is also widely used to investigate migrations and connectivity of fish populations at different habitats (sea, estuaries, river, lakes, etc.) (Hesslein et al., 1991Hesslein, R.H., Capel, M.J., Fox, D.E. & Hallard, K.A., 1991. Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River Basin, Canada. Can. J. Fish. Aquat. Sci., 48(11), 2258-2265. http://dx.doi.org/10.1139/f91-265.
http://dx.doi.org/10.1139/f91-265...
; Lugendo et al., 2006Lugendo, B.R., Nagelkerken, I., Van Der Velde, G. & Mgaya, Y.D., 2006. The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: gut content and stable isotope analyses. J. Fish Biol., 69(6), 1639-1661. http://dx.doi.org/10.1111/j.1095-8649.2006.01231.x.
http://dx.doi.org/10.1111/j.1095-8649.20...
; Selleslagh et al., 2015Selleslagh, J., Blanchet, H., Bachelet, G. & Lobry, J., 2015. Feeding habitats, connectivity and origin of organic matter supporting fish populations in an estuary with a reduced intertidal area assessed by stable isotope analysis. Estuaries Coasts, 38(5), 1431-1447. http://dx.doi.org/10.1007/s12237-014-9911-5.
http://dx.doi.org/10.1007/s12237-014-991...
).

Potimirim brasiliana completes its life cycle with its larval stages going to brackish waters, as one of the typical amphidromous species behaviors (Bauer, 2013Bauer, R.T., 2013. Amphidromy in shrimps: a life cycle between rivers and the sea. Lat. Am. J. Aquat. Res. 41(4), 633-650. http://dx.doi.org/10.3856/vol41-issue4-fulltext-2.
http://dx.doi.org/10.3856/vol41-issue4-f...
; Grilli et al., 2014Grilli, N.M., Terossi, M. & Mantelatto, F.L., 2014. Sexual system of the freshwater shrimps of the genus Potimirim Holthuis (Decapoda: Caridea: Atyidae): is there a pattern in this genus? Mar. Freshw. Res., 65(9), 759-765. http://dx.doi.org/10.1071/MF13238.
http://dx.doi.org/10.1071/MF13238...
), and returning to upstream areas as juveniles, resisting to hydrodynamism and climbing the waterfall. Considering that the damming of rivers is one of the potential threats to populations of this species (Mantelatto et al., 2016Mantelatto, F.L., Torati, L.S., Pileggi, L.G., Mossolin, E.C., Terossi, M., Carvalho, F.L., Rocha, S.S. & Magalhães, C., 2016. Avaliação dos camarões atiídeos (Decapoda: Atyidae). In: Pinheiro, M. & Boos, H., eds. Livro vermelho dos crustáceos do Brasil: avaliação 2010-2014. Porto Alegre: Sociedade Brasileira de Carcinologia, 92-102.), we glimpse here some measurable indicators that can be used to monitor populations and use as a tool to mitigate impacts in populations that depend on movement between watercourse areas.

Our research, restricted to a single area along the northern coast of state of São Paulo, reveals interesting findings that should be replicated in other areas along the region, especially due to the increasing number of anthropogenic influences caused by urbanist development, justifying the importance of better monitoring of these areas.

Acknowledgements

FLM and LMP express their gratitude to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (CAPES-PRINT Program 88887.370257/2019-00) and Pró-Reitoria de Pós-Graduação da Universidade de São Paulo for a grant support during the LMP Brazilian visit and the facilities for the development of the course on Biologia Marinha Experimental (Programa de Biologia Comparada/FFCLRP/USP). We express our gratitude to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Temático Biota INTERCRUSTA 2018/13685-5) for travel and field support to the northern coast of São Paulo for experimental activities. We also thanks Jaqueline Costa and Eloá Santos for her help during field activities. The collections of specimens conducted in this study complied with current applicable state and federal laws of Brazil (DIFAP/IBAMA/123/05 and permanent license to FLM for collection of Zoological Material No. 11777-1 MMA/IBAMA/SISBIO and SISGEN A8E99E1). JNT, NFF and RCS are supported by student fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), CAPES and FAPESP (140957/2020-0; PROEX (DS) – 001 and 2018/00739-0, respectively). JAFP and FLM also thanks CNPq for research fellowships support (PDJ 151105/2019-7 and PQ 332253/2019-0, respectively). We also thank anonymous reviewers for help with corrections and suggestions.

  • Cite as: Teles, J.N., et al. Isotopic signature of the caridean shrimp Potimirim brasiliana Villalobos, 1960 in different points of a pristine area in southeastern Brazil. Acta Limnologica Brasiliensia, 2023, vol. 35, e14.

References

  • Abele, L.G. & Blum, N., 1977. Ecological aspects of the freshwater decapod crustaceans of the Perlas Archipelago, Panamá. Biotropica, 9(4), 239-252. http://dx.doi.org/10.2307/2388141
    » http://dx.doi.org/10.2307/2388141
  • Andrade, T.M.B., Camargo, P.B., Silva, D.M.L., Piccolo, M.C., Vieira, S.A., Alves, L.F., Joly, C.A. & Martinelli, L.A., 2011. Dynamics of dissolved forms of carbon and inorganic nitrogen in small watersheds of the coastal atlantic forest in southeast Brazil. Water Air Soil Pollut., 214(1-4), 393-408. http://dx.doi.org/10.1007/s11270-010-0431-z
    » http://dx.doi.org/10.1007/s11270-010-0431-z
  • Andrade, T.M.B.D., 2008. Dinâmica das formas dissolvidas de nitrogênio e carbono em microbacias da Mata Atlântica no município de Ubatuba (SP) [Doctoral dissertation]. Piracicaba: Universidade de São Paulo.
  • Antonio, E. & Richoux, N., 2014. Trophodynamics of three decapod crustaceans in a temperate estuary using stable isotope and fatty acid analyses. Mar. Ecol. Prog. Ser., 504, 193-205. http://dx.doi.org/10.3354/meps10761
    » http://dx.doi.org/10.3354/meps10761
  • Barros, M. & Fontoura, N., 1996. Crescimento de Potimirim glabra (Kingsley, 1878) (Crustacea, Decapoda, Atydae), na Praia da Vigia, Garopaba, Santa Catarina, Brasil. Nauplius, 4, 11-28.
  • Bauer, R.T., 2011. Amphidromy and migrations of freshwater shrimps. II. Delivery of hatching larvae to the sea, return juvenile upstream migration, and human impacts. In: Asakura, A., ed. New frontiers in crustacean biology. Leiden: Brill, 157-168. http://dx.doi.org/10.1163/ej.9789004174252.i-354.115
    » http://dx.doi.org/10.1163/ej.9789004174252.i-354.115
  • Bauer, R.T., 2013. Amphidromy in shrimps: a life cycle between rivers and the sea. Lat. Am. J. Aquat. Res. 41(4), 633-650. http://dx.doi.org/10.3856/vol41-issue4-fulltext-2
    » http://dx.doi.org/10.3856/vol41-issue4-fulltext-2
  • Bauer, R.T., 2023. Shrimps: their diversity, intriguing adaptations and variety lifestyles Cham: Springer. Life histories, 443-514, Fish & Fisheries Series, vol. 42. http://dx.doi.org/10.1007/978-3-031-20966-6_9
    » http://dx.doi.org/10.1007/978-3-031-20966-6_9
  • Bearhop, S., Adams, C.E., Waldron, S., Fuller, R.A. & Macleod, H., 2004. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol., 73(5), 1007-1012. http://dx.doi.org/10.1111/j.0021-8790.2004.00861.x
    » http://dx.doi.org/10.1111/j.0021-8790.2004.00861.x
  • Benzie, J.A.H., 1982. The complete larval development of Caridina mccullochi Roux, 1926 (Decapoda, Atyidae) reared in the laboratory. J. Crustac. Biol., 2(4), 493-513. http://dx.doi.org/10.2307/1548091
    » http://dx.doi.org/10.2307/1548091
  • Burress, E.D., Gangloff, M.M. & Siefferman, L., 2013. Trophic analysis of two subtropical South American freshwater crabs using stable isotope ratios. Hydrobiologia, 702(1), 5-13. http://dx.doi.org/10.1007/s10750-012-1290-y
    » http://dx.doi.org/10.1007/s10750-012-1290-y
  • Comissão Temática de Biodiversidade e Áreas Protegidas – CTBio, 2020. Plano de manejo: área de proteção ambiental marinha do litoral norte. São Paulo: CTBio. Retrieved in 2023, June 1, from https://sigam.ambiente.sp.gov.br/sigam3/Repositorio/511/Documentos/APAM_LN/APAMLN_Plano_de_manejo_CTBio.pdf
    » https://sigam.ambiente.sp.gov.br/sigam3/Repositorio/511/Documentos/APAM_LN/APAMLN_Plano_de_manejo_CTBio.pdf
  • Covich, A.P., Crowl, T.A., Hein, C.L., Townsend, M.J. & McDowell, W.H., 2009. Predator-prey interactions in river networks: comparing shrimp spatial refugia in two drainage basins. Freshw. Biol., 54(3), 450-465. http://dx.doi.org/10.1111/j.1365-2427.2008.02121.x
    » http://dx.doi.org/10.1111/j.1365-2427.2008.02121.x
  • Cross, W.F., Covich, A.P., Crowl, T.A., Benstead, J.P. & Ramírez, A., 2008. Secondary production, longevity and resource consumption rates of freshwater shrimps in two tropical streams with contrasting geomorphology and food web structure. Freshw. Biol., 53(12), 2504-2519. http://dx.doi.org/10.1111/j.1365-2427.2008.02078.x
    » http://dx.doi.org/10.1111/j.1365-2427.2008.02078.x
  • Davis, A.M., Blanchette, M.L., Pusey, B.J., Jardine, T.D. & Pearson, R.G., 2012. Gut content and stable isotope analyses provide complementary understanding of ontogenetic dietary shifts and trophic relationships among fishes in a tropical river. Freshw. Biol., 57(10), 2156-2172. http://dx.doi.org/10.1111/j.1365-2427.2012.02858.x
    » http://dx.doi.org/10.1111/j.1365-2427.2012.02858.x
  • Denadai, A.C., Costa, V.E., Wolf, M.R., Gonçalves, G.R.L. & Castilho, A.L., 2022. Isotopic signature and the trophic interactions of Aegla castro Schmitt, 1942 (Crustacea: Anomura: Aeglidae). Nauplius, 30, e2022024. http://dx.doi.org/10.1590/2358-2936e2022024
    » http://dx.doi.org/10.1590/2358-2936e2022024
  • Ducatti, C., Martins, C.L., Arrigoni, M.B., Martins, M.B., Vieira Júnior, L.C. & Denadai, J.C., 2011. Utilização de isótopos estáveis em ruminantes. Rev. Bras. Zootec., 40, 68-75.
  • Ebner, B.C., Donaldson, J.A., Murphy, H., Thuesen, P., Ford, A., Schaffer, J. & Keith, P., 2021. Waterfalls mediate the longitudinal distribution of diadromous predatory fishes structuring communities in tropical, short, steep coastal streams. Freshw. Biol., 66(6), 1225-1241. http://dx.doi.org/10.1111/fwb.13712
    » http://dx.doi.org/10.1111/fwb.13712
  • Felgenhauer, B.E. & Abele, L.G., 1985. Feeding structures of two atyid shrimps, with comments on caridean phylogeny. J. Crustac. Biol., 5(3), 397-419. http://dx.doi.org/10.2307/1547911
    » http://dx.doi.org/10.2307/1547911
  • Fry, B., 1981. Natural stable carbon isotope tag traces Texas shrimp migrations. Fish Bull., 79, 337-345.
  • Fry, B., 2006. Stable isotope ecology. New York: Springer. http://dx.doi.org/10.1007/0-387-33745-8
    » http://dx.doi.org/10.1007/0-387-33745-8
  • Fry, B., Mumford, P.L. & Robblee, M.B., 1999. Stable isotope studies of pink shrimp (Farfantepenaeus duorarum Burkenroad) migrations on the southwestern Florida shelf. Mar. Sci. Bull., 65, 419-430.
  • Graves, S., Piepho, H. & Dorai-Raj, S., 2019. multcompView: visualizations of paired comparisons. R package version 0.1-8 [online]. Vienna: The R Project for Statistical Computing. Retrieved in 2023, June 1, from https://CRAN.R-project.org/package=multcompView
    » https://CRAN.R-project.org/package=multcompView
  • Greathouse, E.A. & Pringle, C.M., 2006. Does the river continuum concept apply on a tropical island? Longitudinal variation in a Puerto Rican stream. Can. J. Fish. Aquat. Sci., 63(1), 134-152. http://dx.doi.org/10.1139/f05-201
    » http://dx.doi.org/10.1139/f05-201
  • Grilli, N.M., Terossi, M. & Mantelatto, F.L., 2014. Sexual system of the freshwater shrimps of the genus Potimirim Holthuis (Decapoda: Caridea: Atyidae): is there a pattern in this genus? Mar. Freshw. Res., 65(9), 759-765. http://dx.doi.org/10.1071/MF13238
    » http://dx.doi.org/10.1071/MF13238
  • Hanski, I., 1994. A practical model of metapopulation dynamics. J. Anim. Ecol., 63(1), 151-162. http://dx.doi.org/10.2307/5591
    » http://dx.doi.org/10.2307/5591
  • Hein, C.L., Pike, A.S., Blanco, J.F., Covich, A., Scatena, F., Hawkins, C. & Crowl, T.A., 2011. Effects of coupled natural and anthropogenic factors on the community structure of diadromous fish and shrimp species in tropical island streams. Freshw. Biol., 56(5), 1002-1015. http://dx.doi.org/10.1111/j.1365-2427.2010.02537.x
    » http://dx.doi.org/10.1111/j.1365-2427.2010.02537.x
  • Hesslein, R.H., Capel, M.J., Fox, D.E. & Hallard, K.A., 1991. Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River Basin, Canada. Can. J. Fish. Aquat. Sci., 48(11), 2258-2265. http://dx.doi.org/10.1139/f91-265
    » http://dx.doi.org/10.1139/f91-265
  • Hoffmann, P. & Negreiros-Fransozo, M.L., 2010. Reproductive cycle and fecundity of Potimirim glabra (Kingsley, 1954) (Caridea, Atyidae) from a littoral stream. Invertebr. Reprod. Dev., 54(3), 133-141. http://dx.doi.org/10.1080/07924259.2010.9652325
    » http://dx.doi.org/10.1080/07924259.2010.9652325
  • Hongjamrassilp, W., Maiphrom, W. & Blumstein, D.T., 2021. Why do shrimps leave the water? Mechanisms and functions of parading behaviour in freshwater shrimps. J. Zool., 313(2), 87-98. http://dx.doi.org/10.1111/jzo.12841
    » http://dx.doi.org/10.1111/jzo.12841
  • Jackson, A.L., Inger, R., Parnell, A.C. & Bearhop, S., 2011. Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol., 80(3), 595-602. PMid:21401589. http://dx.doi.org/10.1111/j.1365-2656.2011.01806.x
    » http://dx.doi.org/10.1111/j.1365-2656.2011.01806.x
  • Jönck, C.R. & Aranha, J.M.R., 2010. Influence of a waterfall over richness and similarity in adjoining pools of an Atlantic Rainforest stream. Acta Limnol. Bras., 22(4), 378-383. http://dx.doi.org/10.4322/actalb.2011.003
    » http://dx.doi.org/10.4322/actalb.2011.003
  • Kikkert, D.A., Crowl, T.A. & Covich, A.P., 2009. Upstream migration of amphidromous shrimps in the Luquillo Experimental Forest, Puerto Rico: temporal patterns and environmental cues. J. N. Am. Benthol. Soc., 28(1), 233-246. http://dx.doi.org/10.1899/08-019.1
    » http://dx.doi.org/10.1899/08-019.1
  • Layman, C.A., Winemiller, K.O. & Arrington, D.A., 2005. Describing the structure and function of a Neotropical river food web using stable isotopes, stomach contents, and functional experiments. In: Ruiter, P.C., Wolters, V. & Moore, J.C., eds. Dynamic food webs: multispecies assemblages, ecosystem development and environmental change. Amsterdam: Elsevier, 395-406. http://dx.doi.org/10.1016/B978-012088458-2/50037-0
    » http://dx.doi.org/10.1016/B978-012088458-2/50037-0
  • Lima, G.V. & Oshiro, L.M.Y., 2002. Partição ambiental de Potimirim glabra (Kingsley) e Potimirim potimirim (Müller) (Crustacea, Decapoda, Atyidae) no rio Sahy, Mangaratiba, Rio de Janeiro, Brasil. Rev. Bras. Zool., 19(Suppl. 2), 175-179. http://dx.doi.org/10.1590/S0101-81752002000600017
    » http://dx.doi.org/10.1590/S0101-81752002000600017
  • Lima, G.V., Silveira, C.M. & Oshiro, L.M.Y., 2006. Estrutura populacional dos camarões simpátricos Potimirim glabra e Potimirim potimirim (Crustacea, Decapoda, Atyidae) no rio Sahy, Rio de Janeiro, Brasil. Iheringia Ser. Zool., 96(1), 81-87. http://dx.doi.org/10.1590/S0073-47212006000100015
    » http://dx.doi.org/10.1590/S0073-47212006000100015
  • Lugendo, B.R., Nagelkerken, I., Van Der Velde, G. & Mgaya, Y.D., 2006. The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: gut content and stable isotope analyses. J. Fish Biol., 69(6), 1639-1661. http://dx.doi.org/10.1111/j.1095-8649.2006.01231.x
    » http://dx.doi.org/10.1111/j.1095-8649.2006.01231.x
  • Mantelatto, F.L., Torati, L.S., Pileggi, L.G., Mossolin, E.C., Terossi, M., Carvalho, F.L., Rocha, S.S. & Magalhães, C., 2016. Avaliação dos camarões atiídeos (Decapoda: Atyidae). In: Pinheiro, M. & Boos, H., eds. Livro vermelho dos crustáceos do Brasil: avaliação 2010-2014. Porto Alegre: Sociedade Brasileira de Carcinologia, 92-102.
  • Mantelatto, F.L., Vera-Silva, A.L., Prado, B.M. & Pileggi, L.G., 2021. Phylogenomic analyses reveals gene flow between populations of the freshwater shrimp Potimirim brasiliana (Caridea, Atyidae) along its wide distribution. An. Acad. Bras. Cienc., 93(2), e20190384. PMid:33729377. http://dx.doi.org/10.1590/0001-3765202120190384
    » http://dx.doi.org/10.1590/0001-3765202120190384
  • Mao, Z., Gu, X. & Zeng, Q., 2016. Food sources and trophic relationships of three decapod crustaceans: insights from gut contents and stable isotope analyses. Aquacult. Res., 47(9), 2888-2898. http://dx.doi.org/10.1111/are.12739
    » http://dx.doi.org/10.1111/are.12739
  • Mazzoni, R., Fenerich-Verani, N., Caramaschi, É.P. & Iglesias-Rios, R., 2006. Stream-dwelling fish communities from an Atlantic rain forest drainage. Braz. Arch. Biol. Technol., 49(2), 249-256. http://dx.doi.org/10.1590/S1516-89132006000300010
    » http://dx.doi.org/10.1590/S1516-89132006000300010
  • Minagawa, M. & Wada, E., 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta, 48(5), 1135-1140. http://dx.doi.org/10.1016/0016-7037(84)90204-7
    » http://dx.doi.org/10.1016/0016-7037(84)90204-7
  • Peterson, B.J. & Fry, B., 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18(1), 293-320. http://dx.doi.org/10.1146/annurev.es.18.110187.001453
    » http://dx.doi.org/10.1146/annurev.es.18.110187.001453
  • Post, D.M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83(3), 703-718. http://dx.doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
    » http://dx.doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
  • Post, D.M., Layman, C.A., Arrington, D.A., Takimoto, G., Quattrochi, J. & Montaña, C.G., 2007. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152(1), 179-189. PMid:17225157. http://dx.doi.org/10.1007/s00442-006-0630-x
    » http://dx.doi.org/10.1007/s00442-006-0630-x
  • Reznick, D.N. & Ghalambor, C.K., 2005. Selection in nature: experimental manipulations of natural populations. Integr. Comp. Biol., 45(3), 456-462. PMid:21676790. http://dx.doi.org/10.1093/icb/45.3.456
    » http://dx.doi.org/10.1093/icb/45.3.456
  • Rocha, S.S., Bueno, S.L.S., Shimizu, R.M. & Mantelatto, F.L., 2013. Reproductive biology and population structure of Potimirim brasiliana Villalobos, 1959 (Decapoda, Atyidae) from a littoral fast-flowing stream, São Paulo State, Brazil. Crustaceana, 86(1), 67-83. http://dx.doi.org/10.1163/15685403-00003151
    » http://dx.doi.org/10.1163/15685403-00003151
  • Santos, R.C., Pantaleão, J.A.F., Teles, J.N., França, N.F.C., Costa, J.R.P., Cabral, H., Pardo, L.M. & Mantelatto, F.L., 2022. The influence of natural barriers on the amphidromous shrimp Potimirim brasiliana (Caridea, Atyidae) from two rivers in Southeastern Brazil. Biol. Bull., 242(1), 27-39. PMid:35245163. http://dx.doi.org/10.1086/718590
    » http://dx.doi.org/10.1086/718590
  • Selleslagh, J., Blanchet, H., Bachelet, G. & Lobry, J., 2015. Feeding habitats, connectivity and origin of organic matter supporting fish populations in an estuary with a reduced intertidal area assessed by stable isotope analysis. Estuaries Coasts, 38(5), 1431-1447. http://dx.doi.org/10.1007/s12237-014-9911-5
    » http://dx.doi.org/10.1007/s12237-014-9911-5
  • Souza, M.L. & Moulton, T.P., 2005. The effects of shrimps on benthic material in a Brazilian island stream. Freshw. Biol., 50(4), 592-602. http://dx.doi.org/10.1111/j.1365-2427.2005.01348.x
    » http://dx.doi.org/10.1111/j.1365-2427.2005.01348.x
  • Taylor, M.D., Fry, B., Becker, A. & Moltschaniwskyj, N., 2017. Recruitment and connectivity influence the role of seagrass as a penaeid nursery habitat in a wave dominated estuary. Sci. Total Environ., 584-585, 622-630. PMid:28131456. http://dx.doi.org/10.1016/j.scitotenv.2017.01.087
    » http://dx.doi.org/10.1016/j.scitotenv.2017.01.087
  • Terui, A., Miyazaki, Y., Yoshioka, A., Kaifu, K., Matsuzaki, S.S. & Washitani, I., 2014. Asymmetric dispersal structures a riverine metapopulation of the freshwater pearl mussel Margaritifera laevis. Ecol. Evol., 4(15), 3004-3014. PMid:25247058. http://dx.doi.org/10.1002/ece3.1135
    » http://dx.doi.org/10.1002/ece3.1135
  • Torati, L.S. & Mantelatto, F.L., 2012. Ontogenetic and evolutionary change of external morphology of the neotropical shrimp Potimirim (Holthuis, 1954) explained by a molecular phylogeny of the genus. J. Crustac. Biol., 32(4), 625-640. http://dx.doi.org/10.1163/193724012X635322
    » http://dx.doi.org/10.1163/193724012X635322
  • Vasconcellos, A.N. & Sanches, F.O., 2009. Análise e espacialização dos manguezais no município de Ubatuba (SP) utilizando-se recursos do sensoriamento remoto. Encicl. Biosf., 5(8), 1-21.
  • Villalobos, A., 1959. Contribución al conocimiento de los Atyidae de México. II (Crustacea, Decapoda). Estudio de algunas especies del género Potimirim (Ortmannia), con descripción de una especie nueva en Brasil. An. Inst. Biol., 30, 269-330.
  • Viozzi, M.F., Del Rio, C.M. & Williner, V., 2021. Tissue-specific isotopic incorporation turnover rates and trophic discrimination factors in the freshwater shrimp Macrobrachium borellii (Crustacea: Decapoda: Palaemonidae). Zool. Stud., 60, e32. PMid:34963785. https://doi.org/10.6620/ZS.2021.60-32
    » https://doi.org/10.6620/ZS.2021.60-32
  • Wickham, H., 2016. ggplot2: elegant graphics for data analysis [online]. New York: Springer-Verlag. Retrieved in 2023, June 1, from https://ggplot2.tidyverse.org
    » https://ggplot2.tidyverse.org
  • Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D., 2023. dplyr: a grammar of data manipulation. R package version 1.1.0 [online]. Vienna: The R Project for Statistical Computing. Retrieved in 2023, June 1, from https://CRAN.R-project.org/package=dplyr
    » https://CRAN.R-project.org/package=dplyr
  • World Register of Marine Species – WoRMS, 2023. Decapoda [online]. Oostende: WoRMS. Retrieved in 2023, June 19, from https://www.marinespecies.org/aphia.php?p=taxdetails&id=1130
    » https://www.marinespecies.org/aphia.php?p=taxdetails&id=1130

Edited by

Associate Editor: Andre Andrian Padial.

Publication Dates

  • Publication in this collection
    21 July 2023
  • Date of issue
    2023

History

  • Received
    25 Nov 2022
  • Accepted
    01 June 2023
Associação Brasileira de Limnologia Av. 24 A, 1515, 13506-900 Rio Claro-SP/Brasil, Tel.:(55 19)3526 4227 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com