Acessibilidade / Reportar erro

Length-dry mass regressions for Leptonema (Trichoptera, Hydropsychidae) larvae in a Neotropical headwater stream

Equações de comprimento-massa seca para larvas de Leptonema (Trichoptera, Hydropsychidae) em um riacho de cabeceira Neotropical

Abstract:

Aim

The objectives of this study were to evaluate which allometric measurements of Leptonema larvae are most suitable in order to develop mathematical equations to describe biomass relationships for the population of this taxon in a reference condition headwater stream.

Methods

We measured four body dimensions (body length, interocular distance, horizontal width of cephalic capsule and vertical width of the cephalic capsule) of 65 Leptonema larvae, which were collected in February 2022, in the Taboões spring, Serra do Rola Moça State Park, Minas Gerais, using a Surber sampler. For the determination of allometric measurements, each individual was photographed under a dissecting stereomicroscope (Leica M80) equipped with a digital camera. Each photographed specimen's length was measured using the Motic Image Plus 2.0 software. After measuring the linear body dimension and direct measurement of the biomass, we used these values ​​to calculate the length-mass mathematical equations. To the equations use power models: DM = a Lb, where a/b are constants, DM is the dry mass, L is the linear body dimension.

Results

Among body dimensions of Leptonema larvae, body length showed the greatest range of variation, with values ranging from 4.03 to 25.28 mm, followed by head capsule vertical width (0.51 - 2.69 mm), head capsule horizontal width (0.55 - 2.22 mm) and interocular distance (0.24 - 1.88 mm). Our results show that body length provided the best-fitting equation for estimating biomass (R2 = 0.90). However, we observed a close fit between the other allometric measures, including high coefficients of determination, head capsule horizontal width (R2 = 0.85), interocular distance (R2 = 0.82), head capsule vertical width (R2 = 0.78).

Conclusions

These results will be useful in providing the best allometric measurement and equations to estimate the biomass of Leptonema larvae from the tropics.

Keywords:
allometric measures; biomass; body dimensions; invertebrates

Resumo

Objetivo

Os objetivos deste estudo foram avaliar quais medidas alométricas do corpo das larvas de Leptonema são mais adequadas, a fim de desenvolver equações matemáticas para descrever as relações de biomassa para a população deste táxon em riachos de cabeceira.

Métodos

Foram medidas quatro dimensões corporais (comprimento corporal, distância interocular, largura horizontal da cápsula cefálica e largura vertical da cápsula cefálica) de 65 larvas de Leptonema, que foram coletadas no mês de fevereiro de 2022, no manancial Taboões, Parque Estadual da Serra do Rola Moça, Minas Gerais, utilizando amostrador Surber. Para a determinação das medidas alométricas, cada indivíduo foi fotografado em um estereomicroscópio dissecante (Leica M80) equipado com câmera digital. O comprimento de cada espécime foi medido usando o software Motic Image Plus 2.0. Após a medição da dimensão corporal linear e medição direta da biomassa, utilizamos esses valores para calcular equações comprimento-massa. Para às equações, usamos modelos de potência: DM = a Lb, onde a/b são constantes, DM é a massa seca, L é a dimensão corporal linear.

Resultados

O comprimento do corpo apresentou a maior variação, com valores variando de 4,03 a 25,28 mm, seguido pela largura vertical da cápsula cefálica (0,51 - 2,69 mm), largura horizontal da cápsula cefálica (0,55 - 2,22 mm) e distância interocular (0,24 - 1,88 mm). Nossos resultados mostram que o comprimento do corpo forneceu a equação de melhor ajuste para estimar a biomassa (R2 = 0,90). No entanto, observamos um ajuste próximo entre as demais medidas alométricas, retornando altos coeficientes de determinação, largura horizontal da cápsula cefálica (R2 = 0,85), distância interocular (R2 = 0,82), largura vertical da cápsula cefálica (R2= 0,78).

Conclusões

Esses resultados podem ser úteis para fornecer as melhores medidas alométricas e equações para estimar a biomassa de larvas de Leptonema de riachos tropicais.

Palavras-chave:
medidas alométricas; biomassa; dimensões corporais; invertebrados


1. Introduction

The biomass of aquatic macroinvertebrates is an important metric for estimating energetic processes in lotic ecosystems, such as trophic relationships between functional feeding groups, population growth rates, secondary production of communities (Benke et al., 1999Benke, A.C., Huryn, A.D., Smock, L.A., & Wallace, J.B., 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. N. Am. Benthol. Soc. 18(3), 308-343. http://dx.doi.org/10.2307/1468447.
http://dx.doi.org/10.2307/1468447...
; Gjoni et al., 2022Gjoni, V., Marle, P., Ibelings, B.W., & Castella, E., 2022. Size-abundance relationships of freshwater macroinvertebrates in two contrasting floodplain channels of Rhone River. Water 14(5), 794. http://dx.doi.org/10.3390/w14050794.
http://dx.doi.org/10.3390/w14050794...
) and energy balance of ecosystems (Steele et al., 2007Steele, J.H., Collie, J.S., Bisagni, J.J., Gifford, D.J., Fogarty, M.J., Link, J.S., Sullivan, B.K., Sieracki, M.E., Beet, A.R., Mountain, D.G., Durbin, E.G., Palka, D., & Stockhausen, W.T., 2007. Balancing end-to-end budgets of the Georges Bank ecosystem. Prog. Oceanogr. 74(4), 423-448. http://dx.doi.org/10.1016/j.pocean.2007.05.003.
http://dx.doi.org/10.1016/j.pocean.2007....
). However, directly weighing each organism is an impractical and often error-prone process, especially in terms of weighing dry mass or ash-free dry mass (Edwards et al., 2009Edwards, F.K.L., Armand, L., Vincent, H.M., & Jones, I.J., 2009. The relationship between length, mass and preservation time for three species of freshwater leeches (Hirudinea). Fundam. Appl. Limnol. 173(4), 321-327. http://dx.doi.org/10.1127/1863-9135/2009/0173-0321.
http://dx.doi.org/10.1127/1863-9135/2009...
). To avoid such problems, some studies suggest to estimate biomass indirectly, using length-mass equations (González et al., 2002González, J.M., Basaguren, A., & Pozo, J., 2002. Size-mass relationships of stream invertebrates in a northern Spain stream. Hydrobiologia 489(1/3), 131-137. http://dx.doi.org/10.1023/A:1023220501921.
http://dx.doi.org/10.1023/A:102322050192...
; Horta et al., 2006Horta, F., Tavares, L., & Antunes, M., 2006. Assessment of benthic macroinvertebrate habitat suitability in a tropical watershed [online]. Retrieved in 2023, Jan 11, from http://labs.icb.ufmg.br/benthos/index_arquivos/pdfs_pagina/fe2009.pdf
http://labs.icb.ufmg.br/benthos/index_ar...
; Edwards et al., 2009Edwards, F.K.L., Armand, L., Vincent, H.M., & Jones, I.J., 2009. The relationship between length, mass and preservation time for three species of freshwater leeches (Hirudinea). Fundam. Appl. Limnol. 173(4), 321-327. http://dx.doi.org/10.1127/1863-9135/2009/0173-0321.
http://dx.doi.org/10.1127/1863-9135/2009...
).

Indirect equation-based methods are faster and more efficient and have the advantage of keeping the taxon preserved for future evaluations (e.g., molecular analysis; Towers et al., 1994Towers, D.J., Henderson, I.M., & Veltman, C.J., 1994. Predicting dry weight of New Zealand aquatic macroinvertebrates from linear dimensions. N. Z. J. Mar. Freshw. Res. 28(2), 159-166. http://dx.doi.org/10.1080/00288330.1994.9516604.
http://dx.doi.org/10.1080/00288330.1994....
), without causing loss of the organism in the drying process (Mährlein et al., 2016Mährlein, M., Pätzig, M., Brauns, M., & Dolman, A.M., 2016. Length-mass relationships for lake macroinvertebrates corrected for back-transformation and preservation effects. Hydrobiologia 768(1), 37-50. http://dx.doi.org/10.1007/s10750-015-2526-4.
http://dx.doi.org/10.1007/s10750-015-252...
). Thus, it is usual to establish length-mass relationships of taxa using the available literature (Benke et al., 1999Benke, A.C., Huryn, A.D., Smock, L.A., & Wallace, J.B., 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. N. Am. Benthol. Soc. 18(3), 308-343. http://dx.doi.org/10.2307/1468447.
http://dx.doi.org/10.2307/1468447...
; González et al., 2002González, J.M., Basaguren, A., & Pozo, J., 2002. Size-mass relationships of stream invertebrates in a northern Spain stream. Hydrobiologia 489(1/3), 131-137. http://dx.doi.org/10.1023/A:1023220501921.
http://dx.doi.org/10.1023/A:102322050192...
; Martins et al., 2014Martins, R.T., Melo, A.S., Gonçalves Junior, J.F., & Hamada, N., 2014. Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zool. 31(4), 337-342. http://dx.doi.org/10.1590/S1984-46702014000400005.
http://dx.doi.org/10.1590/S1984-46702014...
). However, it is important that these data are used with caution, as they may not take into account the environmental and geographic variations of the studied area (Méthot et al., 2012Méthot, G., Hudon, C., Gagnon, P., Pinel-Alloul, B., Armellin, A., & Poirier, A.T., 2012. Macroinvertebrate size-mass relationships: how specific should they be? Freshw. Sci. 31(3), 750-764. http://dx.doi.org/10.1899/11-120.1.
http://dx.doi.org/10.1899/11-120.1...
), overestimating the true body mass.

Although there are studies that estimate the biomass of some freshwater invertebrate taxa from tropical regions (Martins et al., 2014Martins, R.T., Melo, A.S., Gonçalves Junior, J.F., & Hamada, N., 2014. Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zool. 31(4), 337-342. http://dx.doi.org/10.1590/S1984-46702014000400005.
http://dx.doi.org/10.1590/S1984-46702014...
; Dekanová et al., 2022Dekanová, V., Venarsky, M.P., & Bunn, S.E., 2022. Length-mass relationships of Australian aquatic invertebrates. Austral Ecol. 47(1), 120-126. http://dx.doi.org/10.1111/aec.13077.
http://dx.doi.org/10.1111/aec.13077...
), much of the available literature has been compiled for taxa by North American and European literature (e.g., Benke et al., 1999Benke, A.C., Huryn, A.D., Smock, L.A., & Wallace, J.B., 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. N. Am. Benthol. Soc. 18(3), 308-343. http://dx.doi.org/10.2307/1468447.
http://dx.doi.org/10.2307/1468447...
; González et al., 2002González, J.M., Basaguren, A., & Pozo, J., 2002. Size-mass relationships of stream invertebrates in a northern Spain stream. Hydrobiologia 489(1/3), 131-137. http://dx.doi.org/10.1023/A:1023220501921.
http://dx.doi.org/10.1023/A:102322050192...
; Sabo et al., 2002Sabo, J.L., Bastow, J.L., & Power, M.E., 2002. Length-mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. J. N. Am. Benthol. Soc. 21(2), 336-343. http://dx.doi.org/10.2307/1468420.
http://dx.doi.org/10.2307/1468420...
; Edwards et al., 2009Edwards, F.K.L., Armand, L., Vincent, H.M., & Jones, I.J., 2009. The relationship between length, mass and preservation time for three species of freshwater leeches (Hirudinea). Fundam. Appl. Limnol. 173(4), 321-327. http://dx.doi.org/10.1127/1863-9135/2009/0173-0321.
http://dx.doi.org/10.1127/1863-9135/2009...
; Méthot et al., 2012Méthot, G., Hudon, C., Gagnon, P., Pinel-Alloul, B., Armellin, A., & Poirier, A.T., 2012. Macroinvertebrate size-mass relationships: how specific should they be? Freshw. Sci. 31(3), 750-764. http://dx.doi.org/10.1899/11-120.1.
http://dx.doi.org/10.1899/11-120.1...
; Mährlein et al., 2016Mährlein, M., Pätzig, M., Brauns, M., & Dolman, A.M., 2016. Length-mass relationships for lake macroinvertebrates corrected for back-transformation and preservation effects. Hydrobiologia 768(1), 37-50. http://dx.doi.org/10.1007/s10750-015-2526-4.
http://dx.doi.org/10.1007/s10750-015-252...
). Furthermore, length-body mass relationships should be taxon-specific, as there may be a different relationship for each taxon (Baumgärtner & Rothhaupt, 2003Baumgärtner, D., & Rothhaupt, K., 2003. Predictive length-dry mass regressions for freshwater invertebrates in a Pre-Alpine Lake Littoral. Int. Rev. Hydrobiol. 88(5), 453-463. http://dx.doi.org/10.1002/iroh.200310632.
http://dx.doi.org/10.1002/iroh.200310632...
; Becker et al., 2009Becker, B., Moretti, M.S., & Callisto, M., 2009. Length-dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: calamoceratidae). Aquat. Insects 31(3), 227-234. http://dx.doi.org/10.1080/01650420902787549.
http://dx.doi.org/10.1080/01650420902787...
). Therefore, studies on the biomass of aquatic insects should consider the specificity of each region.

Aquatic insects of the Hydropsychidae family are among the most diverse and abundant groups of freshwater ecosystems (Pes, 2005Pes, A.M.O., 2005. Taxonomia, estrutura e riqueza das assembleias de larvas e pupas de Trichoptera (Insecta), em igarapés na Amazônia central [Tese de doutorado em Ciências Biológicas]. Manaus: Instituto Nacional de Pesquisas da Amazônia. Retrieved in 2023, Jan 11, from https://repositorio.inpa.gov.br/handle/1/12343
https://repositorio.inpa.gov.br/handle/1...
), with relevance to ecological processes, such as nutrient cycling and energy flow (Balachandran et al., 2012Balachandran, C.S., Dinakaran, M.D., Chandran, S., & Ramachandra, T.V., 2012. Diversity and distribution of aquatic insects in Aghanashini River of Central Western Ghats, India. In: LAKE 2012: National Conference on Conservation and Management of Wetland Ecosystems. Kottayam, Kerala: School of Environmental Sciences, Mahatma Gandhi University. Retrieved in 2023, Jan 11, from https://wgbis.ces.iisc.ac.in/energy/water/paper/lake2012_aquatic_insects/aquatic_insects.pdf
https://wgbis.ces.iisc.ac.in/energy/wate...
). Among the genera of this family, Leptonema is widely distributed in the tropics, comprising a significant proportion of the invertebrate biomass of tropical streams (Muñoz-Quesada, 1999Muñoz-Quesada, F., 1999. Género Leptonema (Trichoptera : Hydropsychidae) en Costa Rica. Rev. Biol. Trop. (Online), 47, 959-1006. Retrieved in 2023, Jan 11, from http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77441999000400032&lng=en&tlng=em
http://www.scielo.sa.cr/scielo.php?scrip...
). Leptonema larvae preferentially occur in rocky bottom habitats with strong water currents (Buss et al., 2004Buss, D.F., Baptista, D.F., Nessimian, J.L., & Egler, M., 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518(1-3), 179-188. http://dx.doi.org/10.1023/B:HYDR.0000025067.66126.1c.
http://dx.doi.org/10.1023/B:HYDR.0000025...
), where they filter small particles of organic matter in the water column (Gholizadeh & Heydarzadeh, 2020Gholizadeh, M., & Heydarzadeh, M., 2020. Functional feeding groups of macroinvertebrates and their relationship with environmental parameters, case study: in Zarin-Gol river. Iran. J. Fish. Sci. 19, 2532-2543. https://doi.org/10.22092/ijfs.2019.118132.
https://doi.org/10.22092/ijfs.2019.11813...
), forming an important link in the transfer of energy between the trophic chains. Thus, the structure of a Leptonema population can be a useful tool for understanding different ecological issues of headwater streams, including thermodynamic indicators (e.g., Linares et al., 2018Linares, M., Callisto, M., & Marques, J.C., 2018. Compliance of secondary production and eco-exergy as indicators of benthic macroinvertebrates assemblages’ response to canopy cover conditions in Neotropical headwater streams. Sci. Total Environ. 613-614, 1543-1550. PMid:28882459. http://dx.doi.org/10.1016/j.scitotenv.2017.08.282.
http://dx.doi.org/10.1016/j.scitotenv.20...
; 2020Linares, M.S., Callisto, M., & Marques, J.C., 2020. Assessing biological diversity and thermodynamic indicators in the dam decommissioning process. Ecol. Indic. 109, 105832. http://dx.doi.org/10.1016/j.ecolind.2019.105832.
http://dx.doi.org/10.1016/j.ecolind.2019...
), fluvial mesocosm studies assessing drift movements (Calapez et al., 2017Calapez, A.R., Branco, P., Santos, J.M., Ferreira, T., Hein, T., Brito, A.G., & Feio, M.J., 2017. Macroinvertebrate short-term responses to flow variation and oxygen depletion: a mesocosm approach. Sci. Total Environ. 599-600, 1202-1212. PMid:28514838. http://dx.doi.org/10.1016/j.scitotenv.2017.05.056.
http://dx.doi.org/10.1016/j.scitotenv.20...
).

In this study, the main objectives were to evaluate which allometric measurements of the Leptonema body larvae are most suitable in order to develop mathematical equations to describe biomass relationships for the population of this taxon in a headwater stream. We want to identify which allometric measurements (body length, interocular distance, horizontal width of the cephalic capsule and vertical width of the cephalic capsule) of Leptonema larvae show higher correlation to biomass. We expect that body length is a better predictor of biomass, because it has a wide measurement range between allometric measurements.

2. Methods

2.1. Study area

Leptonema larvae were sampled in the Taboões headwater stream (20°03'38 “S - 44°03'03” W), located in the Serra do Rola Moça State Park (PESRM), Minas Gerais state, Southeastern Brazil. The PESRM covers an area of 3,942 hectares and is located in a transition area between the Atlantic Forest and Cerrado (Reis & Machado, 2019Reis, D.L.R., & Machado, M.M.M., 2019. Modelagem do potencial geoturístico do parque estadual serra do rola moça - MG. RA’E GA, 46(2), 171-184. http://dx.doi.org/10.5380/raega.v46i2.62314.
http://dx.doi.org/10.5380/raega.v46i2.62...
), in the Rio São Francisco River basin. The Taboões stream is a reference site for human water supply with waters of excellent quality (special quality, Brazilian water classification by Brasil, 2000Brasil, Conselho Nacional do Meio Ambiente - CONAMA, 2000. Define os critérios de balneabilidade em águas brasileiras (Resolução CONAMA nº 274, de 29 de outubro de 2000). Diário Oficial da União [da] República Federativa do Brasil, Poder Executivo, Brasília, DF. Retrieved in 2023, Jan 11, from http://pnqa.ana.gov.br/Publicacao/Resolu%C3%A7%C3%A3o_Conama_274_Balneabilidade.pdf
...
), 250 L/s discharge. According to the Köppen system, the climate is classified as Cwb (altitude tropical), with rainy summers and dry winters (Brandão et al., 1997Brandão, M., Ferreira, P.B.D., & Araújo, M.G., 1997. Mais uma contribuição para o conhecimento da Cadeia do Espinhaço em Minas Gerais - VI: Serra do Rola-Moça [online]. Retrieved in 2023, Jan 11, from https://www.livrariaepamig.com.br/docs/daphne-v-7-n-4/
https://www.livrariaepamig.com.br/docs/d...
). The average annual precipitation varies between 1,300-2,100 mm and the average temperature between 18º-21º C (Meyer et al., 2004Meyer, S.T., Silva, A., Marco Júnior, P., & Meira Neto, J.A.A., 2004. Composição florística da vegetação arbórea de um trecho de floresta de galeria do Parque Estadual do Rola-Moça na Região Metropolitana de Belo Horizonte, MG, Brasil. Acta Bot. Bras. 18(4), 701-709. http://dx.doi.org/10.1590/S0102-33062004000400001.
http://dx.doi.org/10.1590/S0102-33062004...
).

2.2. Sampling and laboratory procedures

In the Taboões stream, a 50 meter transect was established, and the sediment substrate at 22 sampling points was collected using a Surber sampler (area of 0.9 m2 and mesh of 250μm). Each sample was immediately sorted on a white tray, and all Leptonema larvae were individually deposited in 2 ml eppendorf-type microtubes, without the addition of preservatives and properly identified. The material was packed in a thermal box with ice and taken to the laboratory.

2.3. Length-mass equation calculations

In the laboratory, Leptonema specimens were identified (Pes, 2005Pes, A.M.O., 2005. Taxonomia, estrutura e riqueza das assembleias de larvas e pupas de Trichoptera (Insecta), em igarapés na Amazônia central [Tese de doutorado em Ciências Biológicas]. Manaus: Instituto Nacional de Pesquisas da Amazônia. Retrieved in 2023, Jan 11, from https://repositorio.inpa.gov.br/handle/1/12343
https://repositorio.inpa.gov.br/handle/1...
) under a stereomicroscope, and then each individual was photographed under a dissecting stereomicroscope (Leica M80 model) equipped with a digital camera (Leica IC 80 HD model). For the determination of allometric measurements (Benke et al., 1999Benke, A.C., Huryn, A.D., Smock, L.A., & Wallace, J.B., 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. N. Am. Benthol. Soc. 18(3), 308-343. http://dx.doi.org/10.2307/1468447.
http://dx.doi.org/10.2307/1468447...
; Mährlein et al., 2016Mährlein, M., Pätzig, M., Brauns, M., & Dolman, A.M., 2016. Length-mass relationships for lake macroinvertebrates corrected for back-transformation and preservation effects. Hydrobiologia 768(1), 37-50. http://dx.doi.org/10.1007/s10750-015-2526-4.
http://dx.doi.org/10.1007/s10750-015-252...
), four measurements of linear body length were chosen as a predictor of biomass: (i) body length; (ii) interocular distance; (iii) horizontal width of the cephalic capsule and; (iv) vertical width of the cephalic capsule (Figure 1). To determine body length, the distance from the anterior section of the head to the posterior section of the last abdominal segment was measured. Interocular distance was measured as the minimum distance between the eyes. For the horizontal width of the cephalic capsule, we measure the widest section of the head. Vertical width of the cephalic capsule was measured from the anterior part of the head to the beginning of the pronotum. Each photographed specimen's length was measured using the Motic Image Plus 2.0 software. Measurements of length and mass were performed with unbroken individuals, containing all appendages.

Figure 1
Black lines illustrate the measured body parts for Leptonema larvae. (A) body length, (B) interocular distance, (C) horizontal width of the cephalic capsule, and (D) vertical width of the cephalic capsule.

The measured individuals were placed individually in pre-weighed porcelain crucibles, dried in an oven at 60°C for 48 h (Becker et al., 2009Becker, B., Moretti, M.S., & Callisto, M., 2009. Length-dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: calamoceratidae). Aquat. Insects 31(3), 227-234. http://dx.doi.org/10.1080/01650420902787549.
http://dx.doi.org/10.1080/01650420902787...
), allowed to cool in a desiccator and their dry mass measured on a balance with ± 0.001 g accuracy. Subsequently, to estimate the ash weight, the individuals were incinerated in a muffle furnace at 550°C for 4 hours, and their ash mass was measured by the same procedure.

After the direct measurement of biomass, we used these values to calculate the length-mass equations for each of the measurements of linear body length (body length, interocular distance, horizontal width of the cephalic capsule, vertical width of the cephalic capsule). We also calculated a Pearson correlation between each measurement of linear body length and biomass. The power model was calculated for the four body dimensions of Leptonema larvae, using the least squares method. The adjustment of the equations was performed by the coefficient of determination (R2) and the level of significance (p < 0.01) obtained by a Generalized Linear Model (GLM) using a Gaussian distribution. All calculations were made using the R software (R Core Team, 2015R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing [online]. Retrieved in 2023, Jan 11, from http://rproject.org
http://rproject.org...
).

Body length measurements and biomass measurements of the 65 Leptonema larvae were used for statistical analysis. To arrive at the equations that determine the length-mass relationship, we used models that predict mass as a power function of a linear dimension.

D M = a L b (1)

where a/b are constants, DM is the dry mass, L is the linear body dimension (total body length, interocular distance, horizontal width of the cephalic capsule and vertical width of the cephalic capsule). Equation 1 is often converted to linear form using a logarithmic transformation (Equations 2 and 3):

l o g 10 D M = L o g a + b l o g L (2)

or

i n l i n e a r f o r m : l n D M = l n a + b . l n L (3)

3. Results

Among body dimensions of Leptonema larvae, body length showed the greatest range of variation, with values ranging from 4.03 to 25.28 mm, followed by head capsule vertical width (0.51 - 2.69 mm), head capsule horizontal width (0.55 - 2.22 mm) and interocular distance (0.24 - 1.88 mm) (Table 1).

Table 1
Range, mean, standard deviation (SD), coefficient of variation (CV = (SD / mean)*100, in 100%) and number of observations (N) for body dimensions and body mass of Leptonema larvae from Taboões stream.

Regression analyses show the length-to-mass relationship for body length, interocular distance, horizontal width of the cephalic capsule and horizontal width of the cephalic capsule of Leptonema larvae. Length-mass curves for the Leptonema larvae, using linear and logarithmic scales, of the power function (Figure 2).

Figure 2
Length-mass curves for the Leptonema larvae from the Taboões stream for: body length (A), interocular distance (B), horizontal width of the cephalic capsule (C), and vertical width of the cephalic capsule (D), using both linear (open circles) and logarithmic (filled squares) scales. The power equation is DM = aLb, where DM = dry mass, L = linear length and a/b are constants.

The equations generated for each linear body length are listed in Table 2. All allometric body dimensions of Leptonema larvae showed significance relation for biomass (p < 0.01). Body length showed the best fit to estimate biomass, followed by horizontal head size, interocular distance, and vertical head size (Table 2).

Table 2
Power function equations for length-mass body of Leptonema larvae and generalized linear model (GLM) results.

4. Discussion

Our results showed that the power models presented a high correlation coefficient, explaining 78% to 90% of the variation in biomass of Leptonema larvae as a function of the allometric measurements used (body length, interocular distance, horizontal head size and vertical head size). In fact, our results are in line with other studies in the tropical region (e.g., Becker et al., 2009Becker, B., Moretti, M.S., & Callisto, M., 2009. Length-dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: calamoceratidae). Aquat. Insects 31(3), 227-234. http://dx.doi.org/10.1080/01650420902787549.
http://dx.doi.org/10.1080/01650420902787...
; Silva et al., 2010Silva, E.C., Molozzi, J., & Callisto, M., 2010. Size-mass relationships of Melanoides tuberculatus (Thiaridae: Gastropoda) in a eutrophic reservoir. Zool. 27(5), 691-695. http://dx.doi.org/10.1590/S1984-46702010000500004.
http://dx.doi.org/10.1590/S1984-46702010...
). This reinforces that power models for length-mass of aquatic macroinvertebrates provide satisfactory results for the relationship between body dimensions and biomass of freshwater invertebrates, including Leptonema larvae.

Although all length-mass relationships were significant across the entire range of allometric dimensions, body length was the best predictor, explaining up to 90% of the biomass variation. The result of this study supports our hypothesis that body length provides a better estimate of biomass for Leptonema larvae. Because it has a wider measurement range, body length is a measure often used to estimate insect larvae biomass (e.g., Genkai-Kato & Miyasaka, 2007Genkai-Kato, M., & Miyasaka, H., 2007. Length-weight relationships of four predatory stonefly species in Japan. Limnology 8(2), 171-174. http://dx.doi.org/10.1007/s10201-007-0210-8.
http://dx.doi.org/10.1007/s10201-007-021...
; Mährlein et al., 2016Mährlein, M., Pätzig, M., Brauns, M., & Dolman, A.M., 2016. Length-mass relationships for lake macroinvertebrates corrected for back-transformation and preservation effects. Hydrobiologia 768(1), 37-50. http://dx.doi.org/10.1007/s10750-015-2526-4.
http://dx.doi.org/10.1007/s10750-015-252...
). Similar results were found by Martins et al. (2014)Martins, R.T., Melo, A.S., Gonçalves Junior, J.F., & Hamada, N., 2014. Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zool. 31(4), 337-342. http://dx.doi.org/10.1590/S1984-46702014000400005.
http://dx.doi.org/10.1590/S1984-46702014...
, who found that body length was the best biomass predictor for a population of Phylloicus elektoros (Calamoceratidae, Trichoptera) in the Brazilian Central Amazon.

Allometric measurements for intraocular distance, vertical head size, and horizontal head size also showed high correlation with biomass. These body dimensions were also used by Cressa (1999)Cressa, C., 1999. Dry mass estimates of some tropical aquatic insects. Rev. Biol. Trop. 47, 133-141. https://doi.org/10.15517/rbt.v47i1-2.19062.
https://doi.org/10.15517/rbt.v47i1-2.190...
and Becker et al. (2009)Becker, B., Moretti, M.S., & Callisto, M., 2009. Length-dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: calamoceratidae). Aquat. Insects 31(3), 227-234. http://dx.doi.org/10.1080/01650420902787549.
http://dx.doi.org/10.1080/01650420902787...
, due to sclerotized linear dimensions such as cephalic capsule width and pronotum length being less subject to distortions, breaks and deformations under individual manipulations (Johnston & Cunjak, 1999Johnston, T.A., & Cunjak, R.A., 1999. Dry mass-length relationships for benthic insects: a review with new data from Catamaran Brook, New Brunswick, Canada. Freshw. Biol. 41(4), 653-674. http://dx.doi.org/10.1046/j.1365-2427.1999.00400.x.
http://dx.doi.org/10.1046/j.1365-2427.19...
; Becker et al., 2009Becker, B., Moretti, M.S., & Callisto, M., 2009. Length-dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: calamoceratidae). Aquat. Insects 31(3), 227-234. http://dx.doi.org/10.1080/01650420902787549.
http://dx.doi.org/10.1080/01650420902787...
), when compared to body length. Becker (2005)Becker, G., 2005. Life cycle of Agapetus fuscipes (Trichoptera, Glossosomatidae) in a first-order upland stream in central Germany. Limnologica 35(1-2), 52-60. http://dx.doi.org/10.1016/j.limno.2005.01.003.
http://dx.doi.org/10.1016/j.limno.2005.0...
, studying the life cycle of Agapetus fuscipes (Trichoptera) in a stream in Germany, found that pronotum length is a reliable measure for different larval instars of the species. However, in our study, adjusted regression of sclerotized structures provided a lower fit than body length.

Preservation of invertebrates in ethanol or formaldehyde, often indispensable due to the amount and time required to process the collected samples (Nolte, 1990Nolte, U., 1990. Chironomid biomass determination from larval shape. Freshw. Biol. 24(3), 443-451. http://dx.doi.org/10.1111/j.1365-2427.1990.tb00723.x.
http://dx.doi.org/10.1111/j.1365-2427.19...
; Dekanová et al., 2022Dekanová, V., Venarsky, M.P., & Bunn, S.E., 2022. Length-mass relationships of Australian aquatic invertebrates. Austral Ecol. 47(1), 120-126. http://dx.doi.org/10.1111/aec.13077.
http://dx.doi.org/10.1111/aec.13077...
), can lead to the loss of more than 50% of their biomass (Silva et al., 2010Silva, E.C., Molozzi, J., & Callisto, M., 2010. Size-mass relationships of Melanoides tuberculatus (Thiaridae: Gastropoda) in a eutrophic reservoir. Zool. 27(5), 691-695. http://dx.doi.org/10.1590/S1984-46702010000500004.
http://dx.doi.org/10.1590/S1984-46702010...
). Preservatives substances can dissolve lipids that are present in the larval body, mainly during the first three weeks after conservation, reducing biomass estimates (Wetzel et al., 2005Wetzel, M.A., Leuchs, H., & Koop, J.H.E., 2005. Preservation effects on wet weight, dry weight, and ash-free dry weight biomass estimates of four common estuarine macro-invertebrates: no difference between ethanol and formalin. Helgol. Mar. Res. 59(3), 206-213. http://dx.doi.org/10.1007/s10152-005-0220-z.
http://dx.doi.org/10.1007/s10152-005-022...
; Benke & Huryn, 2010Benke, A.C., & Huryn, A.D., 2010. Benthic invertebrate production-facilitating answers to ecological riddles in freshwater ecosystems. J. N. Am. Benthol. Soc. 29(1), 264-285. http://dx.doi.org/10.1899/08-075.1.
http://dx.doi.org/10.1899/08-075.1...
). In our study, Leptonema larvae were kept at low temperature (-20°C), without preservatives and all measurements were performed on unharmed individuals, which allowed a concise and safe determination of the relation between the biomass and the four body dimensions studied.

5. Conclusions

In conclusion, it was observed that the body length presented the best fit to estimate the Leptonema biomass, corroborating our initial hypothesis. However, all other allometric measurements studied provided good estimates for the biomass of this taxon. The power model described the length-mass relationships well and may be a good choice for studies with other aquatic insect species. Likewise, our results also reinforce the need for more length-mass studies of aquatic insects in the tropical region. We believe that, in order to obtain more reliable results, data on the length-mass relationship should be obtained based on the population of the studied region. Although we may have more than one species for Leptonema larvae, we assume that multiple species differences are not relevant for genera biomass equations. As the larvae are so similar that only specialists could identify them if present, we can safely assume that they are similar enough for not have significant differences in the measurements used in this study. Therefore, the results presented here may be useful to determine the biomass of Leptonema larvae from the Neotropical Savanna. It is important to highlight that the length-dry mass equations can contribute to approaches with thermodynamic indicators for macroinvertebrate assemblages and will serve as a basis for future experimental studies in a mesocosm system, in order to test the Leptonema response to multiple pressures, such as flow change of water and oxygen depletion in streams of the Brazilian neotropical biome.

Acknowledgements

We are grateful for financial supports from R&D Aneel-Cemig GT-599 and GT-611, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001. AMC received a scientific initiation grant from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). PHMA received a postdoctoral scholarship from R&D Aneel-Cemig GT-611. MSL received a postdoctoral scholarship from R&D Aneel-Cemig GT-599. MC was awarded a Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) research productivity grant 304060/2020-8 and FAPEMIG research grant PPM 00104-18. We appreciate the suggestions by an anonymous reviewer and by Victor Saito, associate editor.

  • Cite as: Coelho, A.M. et al. Length-dry mass regressions for Leptonema (Trichoptera, Hydropsychidae) larvae in a Neotropical headwater stream. Acta Limnologica Brasiliensia, 2023, vol. 35, e5.

References

  • Balachandran, C.S., Dinakaran, M.D., Chandran, S., & Ramachandra, T.V., 2012. Diversity and distribution of aquatic insects in Aghanashini River of Central Western Ghats, India. In: LAKE 2012: National Conference on Conservation and Management of Wetland Ecosystems. Kottayam, Kerala: School of Environmental Sciences, Mahatma Gandhi University. Retrieved in 2023, Jan 11, from https://wgbis.ces.iisc.ac.in/energy/water/paper/lake2012_aquatic_insects/aquatic_insects.pdf
    » https://wgbis.ces.iisc.ac.in/energy/water/paper/lake2012_aquatic_insects/aquatic_insects.pdf
  • Baumgärtner, D., & Rothhaupt, K., 2003. Predictive length-dry mass regressions for freshwater invertebrates in a Pre-Alpine Lake Littoral. Int. Rev. Hydrobiol. 88(5), 453-463. http://dx.doi.org/10.1002/iroh.200310632
    » http://dx.doi.org/10.1002/iroh.200310632
  • Becker, B., Moretti, M.S., & Callisto, M., 2009. Length-dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: calamoceratidae). Aquat. Insects 31(3), 227-234. http://dx.doi.org/10.1080/01650420902787549
    » http://dx.doi.org/10.1080/01650420902787549
  • Becker, G., 2005. Life cycle of Agapetus fuscipes (Trichoptera, Glossosomatidae) in a first-order upland stream in central Germany. Limnologica 35(1-2), 52-60. http://dx.doi.org/10.1016/j.limno.2005.01.003
    » http://dx.doi.org/10.1016/j.limno.2005.01.003
  • Benke, A.C., & Huryn, A.D., 2010. Benthic invertebrate production-facilitating answers to ecological riddles in freshwater ecosystems. J. N. Am. Benthol. Soc. 29(1), 264-285. http://dx.doi.org/10.1899/08-075.1
    » http://dx.doi.org/10.1899/08-075.1
  • Benke, A.C., Huryn, A.D., Smock, L.A., & Wallace, J.B., 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. N. Am. Benthol. Soc. 18(3), 308-343. http://dx.doi.org/10.2307/1468447
    » http://dx.doi.org/10.2307/1468447
  • Brandão, M., Ferreira, P.B.D., & Araújo, M.G., 1997. Mais uma contribuição para o conhecimento da Cadeia do Espinhaço em Minas Gerais - VI: Serra do Rola-Moça [online]. Retrieved in 2023, Jan 11, from https://www.livrariaepamig.com.br/docs/daphne-v-7-n-4/
    » https://www.livrariaepamig.com.br/docs/daphne-v-7-n-4/
  • Brasil, Conselho Nacional do Meio Ambiente - CONAMA, 2000. Define os critérios de balneabilidade em águas brasileiras (Resolução CONAMA nº 274, de 29 de outubro de 2000). Diário Oficial da União [da] República Federativa do Brasil, Poder Executivo, Brasília, DF. Retrieved in 2023, Jan 11, from http://pnqa.ana.gov.br/Publicacao/Resolu%C3%A7%C3%A3o_Conama_274_Balneabilidade.pdf
    » » http://pnqa.ana.gov.br/Publicacao/Resolu%C3%A7%C3%A3o_Conama_274_Balneabilidade.pdf
  • Buss, D.F., Baptista, D.F., Nessimian, J.L., & Egler, M., 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518(1-3), 179-188. http://dx.doi.org/10.1023/B:HYDR.0000025067.66126.1c
    » http://dx.doi.org/10.1023/B:HYDR.0000025067.66126.1c
  • Calapez, A.R., Branco, P., Santos, J.M., Ferreira, T., Hein, T., Brito, A.G., & Feio, M.J., 2017. Macroinvertebrate short-term responses to flow variation and oxygen depletion: a mesocosm approach. Sci. Total Environ. 599-600, 1202-1212. PMid:28514838. http://dx.doi.org/10.1016/j.scitotenv.2017.05.056
    » http://dx.doi.org/10.1016/j.scitotenv.2017.05.056
  • Cressa, C., 1999. Dry mass estimates of some tropical aquatic insects. Rev. Biol. Trop. 47, 133-141. https://doi.org/10.15517/rbt.v47i1-2.19062
    » https://doi.org/10.15517/rbt.v47i1-2.19062
  • Dekanová, V., Venarsky, M.P., & Bunn, S.E., 2022. Length-mass relationships of Australian aquatic invertebrates. Austral Ecol. 47(1), 120-126. http://dx.doi.org/10.1111/aec.13077
    » http://dx.doi.org/10.1111/aec.13077
  • Edwards, F.K.L., Armand, L., Vincent, H.M., & Jones, I.J., 2009. The relationship between length, mass and preservation time for three species of freshwater leeches (Hirudinea). Fundam. Appl. Limnol. 173(4), 321-327. http://dx.doi.org/10.1127/1863-9135/2009/0173-0321
    » http://dx.doi.org/10.1127/1863-9135/2009/0173-0321
  • Genkai-Kato, M., & Miyasaka, H., 2007. Length-weight relationships of four predatory stonefly species in Japan. Limnology 8(2), 171-174. http://dx.doi.org/10.1007/s10201-007-0210-8
    » http://dx.doi.org/10.1007/s10201-007-0210-8
  • Gholizadeh, M., & Heydarzadeh, M., 2020. Functional feeding groups of macroinvertebrates and their relationship with environmental parameters, case study: in Zarin-Gol river. Iran. J. Fish. Sci. 19, 2532-2543. https://doi.org/10.22092/ijfs.2019.118132
    » https://doi.org/10.22092/ijfs.2019.118132
  • Gjoni, V., Marle, P., Ibelings, B.W., & Castella, E., 2022. Size-abundance relationships of freshwater macroinvertebrates in two contrasting floodplain channels of Rhone River. Water 14(5), 794. http://dx.doi.org/10.3390/w14050794
    » http://dx.doi.org/10.3390/w14050794
  • González, J.M., Basaguren, A., & Pozo, J., 2002. Size-mass relationships of stream invertebrates in a northern Spain stream. Hydrobiologia 489(1/3), 131-137. http://dx.doi.org/10.1023/A:1023220501921
    » http://dx.doi.org/10.1023/A:1023220501921
  • Horta, F., Tavares, L., & Antunes, M., 2006. Assessment of benthic macroinvertebrate habitat suitability in a tropical watershed [online]. Retrieved in 2023, Jan 11, from http://labs.icb.ufmg.br/benthos/index_arquivos/pdfs_pagina/fe2009.pdf
    » http://labs.icb.ufmg.br/benthos/index_arquivos/pdfs_pagina/fe2009.pdf
  • Johnston, T.A., & Cunjak, R.A., 1999. Dry mass-length relationships for benthic insects: a review with new data from Catamaran Brook, New Brunswick, Canada. Freshw. Biol. 41(4), 653-674. http://dx.doi.org/10.1046/j.1365-2427.1999.00400.x
    » http://dx.doi.org/10.1046/j.1365-2427.1999.00400.x
  • Linares, M., Callisto, M., & Marques, J.C., 2018. Compliance of secondary production and eco-exergy as indicators of benthic macroinvertebrates assemblages’ response to canopy cover conditions in Neotropical headwater streams. Sci. Total Environ. 613-614, 1543-1550. PMid:28882459. http://dx.doi.org/10.1016/j.scitotenv.2017.08.282
    » http://dx.doi.org/10.1016/j.scitotenv.2017.08.282
  • Linares, M.S., Callisto, M., & Marques, J.C., 2020. Assessing biological diversity and thermodynamic indicators in the dam decommissioning process. Ecol. Indic. 109, 105832. http://dx.doi.org/10.1016/j.ecolind.2019.105832
    » http://dx.doi.org/10.1016/j.ecolind.2019.105832
  • Mährlein, M., Pätzig, M., Brauns, M., & Dolman, A.M., 2016. Length-mass relationships for lake macroinvertebrates corrected for back-transformation and preservation effects. Hydrobiologia 768(1), 37-50. http://dx.doi.org/10.1007/s10750-015-2526-4
    » http://dx.doi.org/10.1007/s10750-015-2526-4
  • Martins, R.T., Melo, A.S., Gonçalves Junior, J.F., & Hamada, N., 2014. Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zool. 31(4), 337-342. http://dx.doi.org/10.1590/S1984-46702014000400005
    » http://dx.doi.org/10.1590/S1984-46702014000400005
  • Méthot, G., Hudon, C., Gagnon, P., Pinel-Alloul, B., Armellin, A., & Poirier, A.T., 2012. Macroinvertebrate size-mass relationships: how specific should they be? Freshw. Sci. 31(3), 750-764. http://dx.doi.org/10.1899/11-120.1
    » http://dx.doi.org/10.1899/11-120.1
  • Meyer, S.T., Silva, A., Marco Júnior, P., & Meira Neto, J.A.A., 2004. Composição florística da vegetação arbórea de um trecho de floresta de galeria do Parque Estadual do Rola-Moça na Região Metropolitana de Belo Horizonte, MG, Brasil. Acta Bot. Bras. 18(4), 701-709. http://dx.doi.org/10.1590/S0102-33062004000400001
    » http://dx.doi.org/10.1590/S0102-33062004000400001
  • Muñoz-Quesada, F., 1999. Género Leptonema (Trichoptera : Hydropsychidae) en Costa Rica. Rev. Biol. Trop. (Online), 47, 959-1006. Retrieved in 2023, Jan 11, from http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77441999000400032&lng=en&tlng=em
    » http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77441999000400032&lng=en&tlng=em
  • Nolte, U., 1990. Chironomid biomass determination from larval shape. Freshw. Biol. 24(3), 443-451. http://dx.doi.org/10.1111/j.1365-2427.1990.tb00723.x
    » http://dx.doi.org/10.1111/j.1365-2427.1990.tb00723.x
  • Pes, A.M.O., 2005. Taxonomia, estrutura e riqueza das assembleias de larvas e pupas de Trichoptera (Insecta), em igarapés na Amazônia central [Tese de doutorado em Ciências Biológicas]. Manaus: Instituto Nacional de Pesquisas da Amazônia. Retrieved in 2023, Jan 11, from https://repositorio.inpa.gov.br/handle/1/12343
    » https://repositorio.inpa.gov.br/handle/1/12343
  • R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing [online]. Retrieved in 2023, Jan 11, from http://rproject.org
    » http://rproject.org
  • Reis, D.L.R., & Machado, M.M.M., 2019. Modelagem do potencial geoturístico do parque estadual serra do rola moça - MG. RA’E GA, 46(2), 171-184. http://dx.doi.org/10.5380/raega.v46i2.62314
    » http://dx.doi.org/10.5380/raega.v46i2.62314
  • Sabo, J.L., Bastow, J.L., & Power, M.E., 2002. Length-mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. J. N. Am. Benthol. Soc. 21(2), 336-343. http://dx.doi.org/10.2307/1468420
    » http://dx.doi.org/10.2307/1468420
  • Silva, E.C., Molozzi, J., & Callisto, M., 2010. Size-mass relationships of Melanoides tuberculatus (Thiaridae: Gastropoda) in a eutrophic reservoir. Zool. 27(5), 691-695. http://dx.doi.org/10.1590/S1984-46702010000500004
    » http://dx.doi.org/10.1590/S1984-46702010000500004
  • Steele, J.H., Collie, J.S., Bisagni, J.J., Gifford, D.J., Fogarty, M.J., Link, J.S., Sullivan, B.K., Sieracki, M.E., Beet, A.R., Mountain, D.G., Durbin, E.G., Palka, D., & Stockhausen, W.T., 2007. Balancing end-to-end budgets of the Georges Bank ecosystem. Prog. Oceanogr. 74(4), 423-448. http://dx.doi.org/10.1016/j.pocean.2007.05.003
    » http://dx.doi.org/10.1016/j.pocean.2007.05.003
  • Towers, D.J., Henderson, I.M., & Veltman, C.J., 1994. Predicting dry weight of New Zealand aquatic macroinvertebrates from linear dimensions. N. Z. J. Mar. Freshw. Res. 28(2), 159-166. http://dx.doi.org/10.1080/00288330.1994.9516604
    » http://dx.doi.org/10.1080/00288330.1994.9516604
  • Wetzel, M.A., Leuchs, H., & Koop, J.H.E., 2005. Preservation effects on wet weight, dry weight, and ash-free dry weight biomass estimates of four common estuarine macro-invertebrates: no difference between ethanol and formalin. Helgol. Mar. Res. 59(3), 206-213. http://dx.doi.org/10.1007/s10152-005-0220-z
    » http://dx.doi.org/10.1007/s10152-005-0220-z

Edited by

Associate Editor: Victor Satoru Saito.

Publication Dates

  • Publication in this collection
    03 Apr 2023
  • Date of issue
    2023

History

  • Received
    18 Jan 2023
  • Accepted
    03 Mar 2023
Associação Brasileira de Limnologia Av. 24 A, 1515, 13506-900 Rio Claro-SP/Brasil, Tel.:(55 19)3526 4227 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com