Acessibilidade / Reportar erro

Estrutura genética de populações naturais de Cryptocarya aschersoniana Mez (Lauraceae) através de marcadores isoenzimáticos

Genetic structure of natural populations of Cryptocarya aschersoniana Mez (Lauraceae) through isozyme markers

Resumos

Pela análise de 39 locos isoenzimáticos polimórficos, estimaram-se as freqüências alélicas referentes a 267 indivíduos de 12 populações naturais de Cryptocarya aschersoniana provenientes de Florestas de Planalto do estado de São Paulo e sul de Minas Gerais, Brasil. Foram obtidas estimativas das estatísticas F de Wright pelo método da análise da variância para estimação não viesada dos parâmetros correspondentes F=F IT, θ P =F ST e f=F IS. Os valores médios obtidos de F^ resultaram em 0,552 < 0,415 < 0,275; os de θ^P foram 0,395 < 0,335 < 0,279; e os de f^ sendo 0,292 < 0,119 < -0,039. Esses resultados indicaram que os indivíduos dentro das populações devem ser panmíticos e que a diversidade entre populações foi bastante alta, sendo superior à que poderia se esperar para famílias com estruturação de irmãos-germanos. Calculando-se θ^P com as populações tomadas duas a duas, testou-se o modelo de isolamento pela distância que se mostrou inadequado para explicar a divergência encontrada entre as populações. O fluxo gênico estimado de 0,4 indivíduos por geração corroborou a pronunciada diferenciação populacional. Devido aos valores insignificantes encontrados de fˆ @ F^IS, o tamanho efetivo de variância de cada população foi equivalente ao número de indivíduos amostrados. Sob um contexto metapopulacional, considerando-se as 12 populações amostradas para a espécie, o tamanho efetivo populacional foi de 15,4 indivíduos (5,77%) para o total amostrado, indicando que a amostragem de diferentes populações deve ser uma estratégia importante para seu manejo.

alozimas; Lauraceae; estrutura genética; Neotrópico; Cryptocarya aschersoniana; Mata de Planalto; Brasil


Through the analysis of 39 polymorphic allozyme loci, allele frequencies were estimated from 267 individuals of 12 natural populations of Cryptocarya aschersoniana native to "Planalto forests" of the state of São Paulo and south of Minas Gerais, Brazil. Estimates of Wright's F statistics were computed through the analysis of variance for obtaining unbiased estimation of corresponding parameters F=F IT, θ P =F ST and f=F IS. Average values of F^ were 0.552 < 0.415 < 0.275; those of θ^P were 0.395 < 0.335 < 0.279; and those of f^ were 0.292 < 0.119 < -0.039. These results indicated that individuals within populations might be panmitic, and that the diversity among populations was fairly high, being superior to what would be expected for groups of plants having a full-sib family structure. From estimates of θ^P obtained for populations taken two at a time, the model of isolation by distance was employed and it has shown to be inadequate for explaining the divergence found among populations. The estimated gene flow of 0.4 migrants per generation corroborated the pronounced populational differentiation. Due to negligible fˆ @ F^IS values found, the variance effective size for each population was equivalent to its sampling number. Under a metapopulation context, considering the 12 populations sampled for the species, the effective population size was 15.4 individuals (5.77%) for the total sampled, indicating that sampling of different populations should be an important strategy for their management.

allozymes; Lauraceae; genetic structure; Neotropics; Cryptocarya aschersoniana; Planalto forest; Brazil


ARTIGOS

Estrutura genética de populações naturais de Cryptocarya aschersoniana Mez (Lauraceae) através de marcadores isoenzimáticos

Genetic structure of natural populations of Cryptocarya aschersoniana Mez (Lauraceae) through isozyme markers

Pedro Luís Rodrigues de MoraesI, II, * * Autor para correspondência: E-mail: plmoraes@cena.usp.br ; Maria Teresa Vitral de Carvalho DerbyshireI, II

IBolsa de Pós-Doutoramento a P.L.R. Moraes (FAPESP 99/05004-5), auxílio à pesquisa (BIOTA/FAPESP 99/05818-2)

IILaboratório de Melhoramento de Plantas, CENA/USP, Caixa Postal 96, 13400-970, Piracicaba, SP, Brasil

ABSTRACT

Through the analysis of 39 polymorphic allozyme loci, allele frequencies were estimated from 267 individuals of 12 natural populations of Cryptocarya aschersoniana native to "Planalto forests" of the state of São Paulo and south of Minas Gerais, Brazil. Estimates of Wright's F statistics were computed through the analysis of variance for obtaining unbiased estimation of corresponding parameters F=FIT, θ P =FST and f=FIS. Average values of F^ were 0.552 < 0.415 < 0.275; those of θ^P were 0.395 < 0.335 < 0.279; and those of f^ were 0.292 < 0.119 < -0.039. These results indicated that individuals within populations might be panmitic, and that the diversity among populations was fairly high, being superior to what would be expected for groups of plants having a full-sib family structure. From estimates of θ^P obtained for populations taken two at a time, the model of isolation by distance was employed and it has shown to be inadequate for explaining the divergence found among populations. The estimated gene flow of 0.4 migrants per generation corroborated the pronounced populational differentiation. Due to negligible f^ @ F^IS values found, the variance effective size for each population was equivalent to its sampling number. Under a metapopulation context, considering the 12 populations sampled for the species, the effective population size was 15.4 individuals (5.77%) for the total sampled, indicating that sampling of different populations should be an important strategy for their management.

Key words: allozymes, Lauraceae, genetic structure, Neotropics, Cryptocarya aschersoniana, Planalto forest, Brazil

RESUMO

Pela análise de 39 locos isoenzimáticos polimórficos, estimaram-se as freqüências alélicas referentes a 267 indivíduos de 12 populações naturais de Cryptocarya aschersoniana provenientes de Florestas de Planalto do estado de São Paulo e sul de Minas Gerais, Brasil. Foram obtidas estimativas das estatísticas F de Wright pelo método da análise da variância para estimação não viesada dos parâmetros correspondentes F=FIT, θ P =FST e f=FIS. Os valores médios obtidos de F^ resultaram em 0,552 < 0,415 < 0,275; os de θ^P foram 0,395 < 0,335 < 0,279; e os de f^ sendo 0,292 < 0,119 < -0,039. Esses resultados indicaram que os indivíduos dentro das populações devem ser panmíticos e que a diversidade entre populações foi bastante alta, sendo superior à que poderia se esperar para famílias com estruturação de irmãos-germanos. Calculando-se θ^P com as populações tomadas duas a duas, testou-se o modelo de isolamento pela distância que se mostrou inadequado para explicar a divergência encontrada entre as populações. O fluxo gênico estimado de 0,4 indivíduos por geração corroborou a pronunciada diferenciação populacional. Devido aos valores insignificantes encontrados de f^ @ F^IS, o tamanho efetivo de variância de cada população foi equivalente ao número de indivíduos amostrados. Sob um contexto metapopulacional, considerando-se as 12 populações amostradas para a espécie, o tamanho efetivo populacional foi de 15,4 indivíduos (5,77%) para o total amostrado, indicando que a amostragem de diferentes populações deve ser uma estratégia importante para seu manejo.

Palavras-chave:alozimas, Lauraceae, estrutura genética, Neotrópico, Cryptocarya aschersoniana, Mata de Planalto, Brasil

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

5. Agradecimentos

Ao Instituto de Botânica, Prefeitura Municipal de Campinas, Fundação José Pedro de Oliveira, Sr. José Carlos Reis de Magalhães, Sr. Djalma Brasil Zabeu, pelas respectivas autorizações de coleta na Fazenda Campininha, nos "Bosques" do município, na Mata de Santa Genebra, na Fazenda Barreiro Rico, e na Fazenda Palmital. Ao Marco Aurélio Nalon pela feitura do mapa de localização das áreas estudadas. Ao Angelo Gilberto Manzatto e Antonio Carlos Scutti, pela logística e auxílio nas coletas na Fazenda São José e na região do sul de Minas Gerais, respectivamente. Aos estagiários Mariana Campanholi Daher e Fernando Henrique Romano, pelo auxílio nas análises laboratoriais. Às críticas e sugestões de dois referees anônimos que em muito contribuíram para o aprimoramento do manuscrito.

6. Referências bibliográficas

Recebido em 09/09/2002

Revisado em 30/10/2002

Publicado em 29/11/2002

  • ALFENAS, A.C., PETERS, I., BRUNE, W. & PASSADOR, G.C. 1991. Eletroforese de proteínas e isoenzimas de fungos e essências florestais. Universidade Federal de Viçosa, Impr. Univ., Viçosa.
  • ASSUMPÇÃO, C.T., LEITÃO FILHO, H.F. & CESAR, O. 1982. Descrição das matas da Fazenda Barreiro Rico, estado de São Paulo. Rev. Bras. Bot. 5:53-66.
  • BELKHIR, K., BORSA, P., CHIKHI, L., RAUFASTE N. & BONHOMME, F. 1996-2001 GENETIX 4.02, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France). ( www.univ-montp2.fr/~genetix/genetix.htm)
  • BOYER, S.H. 1961. Alkaline phosphatase in human sera and placentae. Science 134:1002-1004.
  • BREWBAKER, J.L, UPADHYA, M.D., MAKINEN, Y. & MACDONALD, T. 1968. Isoenzyme polymorphism in flowering plants, III. Gel electrophoretic methods and applications. Physiol. Plant. 21:930-940.
  • BROWN, A.H.D. 1979. Enzyme polymorphism in plant popu-lations. Theor. Pop. Biol. 15:1-42.
  • BUCKLEY, D.P., O'MALLEY, D.M., APSIT, V., PRANCE, G.T. & BAWA, K.S. 1988. Genetics of Brazil nut (Bertholletia excelsa Humb. & Bonpl.: Lecythidaceae). 1. Genetic variation in natural populations. Theor. Appl. Genet. 76:923-928.
  • CESAR, O. & LEITÃO FILHO, H.F. 1990. Estudo florístico quantitativo de mata mesófila semidecídua na Fazenda Barreiro Rico, município de Anhembi, SP. Rev. Bras. Biol. 50:133-147.
  • CHAGALA, E.M. 1996. Inheritance and linkage of allozymes in Pinus strobus L. Silvae Gen. 45:181-187.
  • CLAYTON, J.W. & TRETIAK, D.N. 1972. Amine-citrate buff-ers for pH control in starch gel electrophoresis. J. Fish. Res. Board Can. 29:1169-1172.
  • COCKERHAM, C.C. 1973. Analyses of gene frequencies. Genetics 74:679-700.
  • COCKERHAM, C.C. & WEIR, B.S. 1993. Estimation of gene flow from F-statistics. Evolution 47:855-863.
  • CORNUET, J.-M. & LUIKART, G. 1996. Description and power analysis of two tests for detecting recent popula-tion bottlenecks from allele frequency data. Genetics 144:2001-2014.
  • CROW, J.F. & AOKI, K. 1984. Group selection for polygenic behavioral trait: estimating the degree of population subdivision. Proc. Natl. Acad. Sci. U.S.A. 81:6073-6077.
  • CROW, J.F. & KIMURA, M. 1970. An introduction to popu-lation genetics theory. Harper & Row, New York.
  • EGUIARTE, L.E., BURQUEZ, A., RODRÍGUEZ, J., MARTÍNEZ-RAMOS, M., SARUKHÁN, J. & PIÑERO, D. 1993. Direct and indirect estimates of neighborhood and effective population size in a tropical palm, Astrocaryum mexicanum Evolution 47:75-87.
  • GOTTLIEB, L.D. 1977. Electrophoretic evidence and plant systematics. Ann. MO Bot. Gard. 64:161-180.
  • GOUDET, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86:485-486.
  • GOUDET, J. 2002. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Available from http://www.unil.ch/izea/softwares/fstat.html Updated from Goudet (1995).
  • GUO, S.W. & THOMPSON, E.A. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361 372.
  • HALL, P., ORRELL, L.C. & BAWA, K.S. 1994. Genetic diver-sity and mating system in a tropical tree, Carapa guianensis (Meliaceae). Am. J. Bot. 81:1104-1111.
  • HAMRICK, J.L. & GODT, M.J. 1990. Allozyme diversity in plant species. In Population genetics, breeding and germplasm resources in crop improvement (A.H.D. Brown, M.T. Clegg, A.L. Kahler & B.S. Weir, eds.). Sinauer, Sunderland, MA, p. 43-63.
  • HAMRICK, J.L., LINHART, Y.B. & MITTON, J.B. 1979. Re-lationships between life history characteristics and eletrophoretically detectable genetic variation in plants. Ann. Rev. Ecol. Syst. 10:173-200.
  • HARTL, D.L. & CLARK, A.G. 1989. Principles of population genetics. 2nd. ed. Sinauer Associates, Sunderland.
  • JOLY, C.A., AIDAR, M.P.M., KLINK, C.A., McGRATH, D.G., MOREIRA, A. G., MOUTINHO, P., NEPSTAD, D.C., OLIVEIRA, A.A., POTT, A., RODAL, M.J.N. & SAMPAIO, E.V.S.B. 1999. Evolution of the Brazilian phy-togeography classification systems: implications for biodiversity conservation. Ciência e Cultura 51:331-348.
  • KOSTERMANS, A.J.G.H. 1937. Revision of the Lauraceae II. The genera Endlicheria, Cryptocarya (American spe-cies) and Licaria Med. Bot. Mus. Herb. Rijk. Univ. Utrecht 42:500-609.
  • KOSTERMANS, A.J.G.H. 1938. Revision of the Lauraceae III. The genera Aiouea, Systemonodaphne, Urbanodendron, Mezilaurus; additions and corrections to Licaria and Cryptocarya Recueil. Trav. Bot. Néerl. 35:56-129.
  • KOSTERMANS, A.J.G.H. 1957. Lauraceae. Reinwardtia 4:193-256.
  • LEWONTIN, R.C. & COCKERHAM, C.C. 1959. The good-ness-of-fit test for detecting natural selection in random mating populations. Evolution 13:561-564.
  • LUIKART, G. & CORNUET, J.-M. 1998. Empirical evaluation of a test for identifying recently bottlenecked popula-tions from allele frequency data. Conserv. Biol. 12:228-237.
  • MANLY, B.F.J. 1985. The statistics of natural selection on animal populations. Chapman and Hall, London.
  • MANTEL, N. 1967. The detection of disease clustering and generalized regression approach. Cancer Res. 27:209-220.
  • MILLER, M.P. 1997. Tools for population genetic analyses (TFPGA) 1.3: a Windows program for the analysis of allozyme and molecular population genetic data. Com-puter software distributed by author.
  • MORAES, P.L.R. & ALVES, M.C. 2002. Biometria de frutos e diásporos de Cryptocarya aschersoniana Mez e Cryptocarya moschata Nees (Lauraceae). Biota Neotropica 2(1). (www.biotaneotropica.org.br/v2n1/pt/abstract?article+BN01302012002)
  • MORAES, P.L.R. & MONTEIRO, R. 2002. Taxas de cruzamento em uma população natural de Cryptocarya moschata Nees (Lauraceae). Biota Neotropica 2(2). (www.biotaneotropica.org.br/v2n2/pt/abstract?article+BN01102022002 )
  • MORAES, P.L.R., MONTEIRO, R. & VENCOVSKY, R. 1999. Conservação genética de populações de Cryptocarya moschata Nees (Lauraceae) na Mata Atlântica do estado de São Paulo. Rev. Bras. Bot. 22:237-248. (http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0100-84041999000500004&lng=en&nrm=iso)
  • NASON, J.D., PRESTON, A.R. & HAMRICK, J.L. 1997. Dis-persal and dynamics of genetic structure in fragmented tropical tree populations. In Tropical forest remnants; ecology, management, and conservation of fragmented communities (W.F. Laurence & R.O. Bierregaard, eds). The University of Chicago Press, Chicago, p.304-320.
  • NEI, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-590.
  • NEI, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.
  • NEVO, E. 1978. Genetic variation in natural populations: patterns and theory. Theor. Pop. Biol. 13:121-177.
  • PAGANO, S.N. & LEITÃO FILHO, H.F. 1987. Composição florística do estrato arbóreo de mata mesófila semidecídua, no município de Rio Claro (Estado de São Paulo). Rev. Bras. Bot. 10:37-47.
  • PIRY, S., LUIKART, G. & CORNUET, J.-M. 1999. BOTTLE-NECK: a computer program for detecting recent reduc-tions in the effective population size using allele fre-quency data. J. Hered. 90:502-503.
  • RAYBOULD, A.F., GOUDET, J., MOGG, R.J., GLIDDON, C.J. & GRAY, A.J. 1995. Genetic structure of a linear popula-tion of Beta vulgaris ssp. maritima (sea beet) revealed by isozyme and RFLP analysis. Heredity 76:111-117.
  • RAYMOND, M. & ROUSSET, F. 1995. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86:248-249.
  • ROBINSON, I.P. 1998. Aloenzimas na genética de populações de plantas. In Eletroforese de isoenzimas e proteínas afins: fundamentos e aplicações em plantas e microrganismos (A.C. Alfenas, ed.). Editora UFV, Viçosa, p.329-380.
  • ROCHA, O.J. & LOBO, J.A. 1998. Genetic diversity and out-crossing rates in the guanacaste tree (Enterolobium cyclocarpum Jacq.) in the dry forests of Costa Rica. In Recent Advances in Biotechnology for Tree Conserva-tion and Management, Proceedings of an IFS Workshop. International Foundation for Science (IFS), Stockholm, p.65-81.
  • ROUSSET, F. 1997. Genetic differentiation and estimation of gene flow from F-Statistics under isolation by distance. Genetics 145:1219-1228.
  • SCANDALIOS, J.G. 1965. Genetic isozyme variations in Zea mays University of Hawaii, Honolulu. (PhD Thesis).
  • SCANDALIOS, J.G. 1969. Genetic control of multiple mo-lecular forms of enzymes in plants. Biochem. Genet 3:37-79
  • SLATKIN, M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264-279.
  • SLATKIN, M. & BARTON, N.H. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349-1368.
  • SOKAL, R.R. 1979. Testing statistical significance of geo-graphic variation patterns. Syst. Zool. 28:227-232.
  • SOKAL, R.R. & ROHLF, F.J. 1995. Biometry. The principles and practice of statistics in biological research, 3rd ed. W.H. Freeman and Co., New York.
  • SOLTIS, D.E., HAUFLER, C.H., DARROW, D.C. & GASTONY, G.J. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buff-ers, and staining schedules. Am. Fern J. 73:9-27.
  • SOUSA, V.A. 2001. Population genetic studies in Araucaria angustifolia (Bert.) O. Ktze. Cuvillier Verlag, Göttingen.
  • STUBER, C.W., WENDEL, J.F., GOODMAN, M.M. & SMITH, J.S.C. 1988. Techniques and scoring procedures for starch gel electrophoresis in enzymes from maize (Zea mays L.). Technical Bulletin 286, North Carolina State University, Raleigh.
  • VENCOVSKY, R. 1997. Biometrical approaches for molecu-lar markers: estimation of effective population size. In International Workshop on Agricultural Biotechnology, 1997. Proceedings. ESALQ-USP, Piracicaba, Cook Col-lege - New Jersey Agricultural Experiment Station, The State University of New Jersey, Rutgers.
  • WAHLUND, S. 1928. Zusammensetzung von populationen und Korrelationserscheinungen vom Standpunkt der vererbungslehre aus betrachtet. Hereditas 11:65-106.
  • WALLACE, B. 1958. The comparison of observed and cal-culated zygotic distributions. Evolution 12:113-115.
  • WEIR, B.S. 1996. Genetic data analysis II: methods for dis-crete population genetic data. Sinauer Associates, Sunderland.
  • WORKMAN, P.L. 1969. The analysis of simple genetic poly-morphisms. Human Biol. 41:97-114.
  • WRIGHT, S. 1969. Evolution and the genetics of popula-tions. v.2. The theory of gene frequencies. The Univer-sity of Chicago Press, Chicago.
  • WRIGHT, S. 1978. Evolution and the genetics of popula-tions. v.4. Variability within and among populations. The University of Chicago Press, Chicago.
  • *
    Autor para correspondência: E-mail:
  • Datas de Publicação

    • Publicação nesta coleção
      11 Jun 2013
    • Data do Fascículo
      2002

    Histórico

    • Aceito
      29 Nov 2002
    • Revisado
      30 Out 2002
    • Recebido
      09 Set 2002
    Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
    E-mail: contato@biotaneotropica.org.br