Acessibilidade / Reportar erro

Survey of fish species from the Lower Roosevelt River, Southwestern Amazon basin

Levantamento de espécies de peixes do Baixo Rio Roosevelt, Sudoeste da Bacia Amazônica

Abstract:

This study presents an inventory of the ichthyofauna of the lower Roosevelt River sub-basin and its associated tributaries. Fish sampling with fishing nets and measurements of environmental parameters of water occurred in November/2012 (rising water), February/2013 (flooding), May/2013 (falling water) and August/2013 (drought). Depth mean was 8.86 m, water transparency was 0.6 m, conductivity was 22.7 µS.cm-1, pH was 6.59, dissolved oxygen was 7.63 mg.l-1 and temperature was 28°C. The total estimated capture area was 68,829.6 m2 during 2,880 hours. The catch per unit Effort (CPUE) was 0.37 individuals m-2.day-1. Species were spatially aggregated in all sampling points and river water levels. A total of 5,183 individuals distributed in 7 orders, 29 families, 104 genders and 188 species were sampled in this survey. The diversity index was 4.121 and equitability index was 0.789. The Characiforms order was the most abundant with 106 species, followed by Siluriforms with 63 species and Cichliforms with 23 species. The most abundant species was Serrasalmus rhombeus (Linnaeus, 1766) with 327 individuals (5.9%), followed by Chalceus epakros (Cope, 1870) with 309 individuals (5.6%) and Acestrorhynchus microlepis (Schomburgk, 1841) with 250 individuals (4.5%). Trophicity was characterized by omnivorous (28.6%), piscivorous (14.3%), carnivorous (13.8%) and detritivorous (12.8%). According to IBAMA's regulation, 29.25% of captured species presents ornamental potential.

Keywords:
Icthyofauna; Inventory; Biodiversity; Madeira River Basin

Resumo:

Este estudo apresenta um inventário da ictiofauna da sub-bacia do baixo Rio Roosevelt e seus tributários associados. As coletas de peixes com malhadeiras e as medições de parâmetros ambientais da água ocorreram em Novembro/2012 (enchente), Fevereiro/2013 (cheia), Maio/2013 (vazante) e Agosto/2013 (seca). A média da profundidade foi 8,86 m, da transparência da água foi 0,6 m, da condutividade foi 22,7 µS.cm-1, do pH foi 6,59, do oxigênio dissolvido foi 7,63 mg.l-1 e da temperatura da água foi 28°C. A área total de captura estimada foi 68.829,6 m2 durante 2880 horas. A captura por unidade de esforço (CPUE) foi 0,37 indivíduos m-2.dia-1. As espécies foram espacialmente agregadas em todos os pontos de coleta e períodos de coleta. Um total de 5183 peixes em 7 ordens, 29 famílias, 104 gêneros e 188 espécies foram coletados. O índice de diversidade foi 4,121 e o índice de equidade foi 0,789. As ordens Characiforme, Siluriforme e Cichliforme foram as mais abundantes. As espécies Serrasalmus rhombeus Linnaeus 1766 com 327 indivíduos (5,9%), Chalceus epakros (Cope 1870) com 309 indivíduos (5,6%) e Acestrorhynchus microlepis Schomburgk 1841 com 250 indivíduos (4,5%) foram as mais abundantes. Os onívoros (28,6%), piscívoros (14,3%), carnívoros (13,8%) e detritívoros (12,8%) foram os indivíduos mais abundantes. De acordo com o IBAMA, 29,25% das espécies capturadas tem potencial ornamental.

Palavras-chave:
Ictiofauna; Inventário; Biodiversidade; Bacia do Rio Madeira

Introduction

Roosevelt River is a clear water tributary of the right-bank of the Aripuanã River which is an important tributary of the east side of the Madeira River basin (Pedroza et al., 2012PEDROZA, W.S., RIBEIRO, F.R.V., TEIXEIRA, T.F., OHARA, W.M. & RAPP PY-DANIEL, L. 2012. Ichthyofaunal survey of stretches of the Guariba and Rooselvelt Rivers, in Guariba State Park and Guariba Extractive Reserve, Madeira River Basin, Amazonas, Brazil. Check List 8(1):8-15.). Nine different protected areas in the Southeast of Amazonas state comprises the Mosaic of Apuí with approximately 2.5 million hectares (Ribeiro et al., 2011RIBEIRO, F. R. V., PEDROZA, W. S., PY-DANIEL, L. H. R. 2011. A new species of Nemuroglanis (Siluriformes: Heptapteridae) from the rio Guariba, rio Madeira basin, Brazil. Zootaxa 2799: 41-48.). This mosaic has an important role to contain the spread of the arc of deforestation, minimizing the loss of biodiversity. Unsustainable human practices such as hydropower expansion (Lees et al., 2016LEES, A. C., PERES, C.A., FEARNSIDE, P. M., SCHNEIDER, M. & ZUANON, J. A. S. 2016 Hydropower and the future of Amazonian biodiversity. Biodivers. Conserv. 25:451-466.), deforestation (Soares-Filho et al., 2014SOARES-FILHO, B., RAJÃO, R., MACEDO, M., CARNEIRO, A., COSTA, W., COE, M., RODRIGUES, H. & ALENCAR, A. 2014. Cracking Brazil's forest code. Science 344:363-364.) and mining (Meira et al., 2016) are imperiling the remarkable biodiversity of the Amazon River Basin.

Neotropical freshwater fishes are the most diverse on the planet with more than 4,000 species described (Toussaint et al., 2016TOUSSAINT A., CHARPIN N., BROSSE S. & VILLÉGER S. 2016. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Sci. Rep. UK. 6: 22125.), representing about one‐third of all freshwater fishes worldwide (Reis et al., 2016REIS, R.E., ALBERT, J.S., DI DARIO, F., MINCARONE, M.M., PETRY, P. & ROCHA, L.A. 2016. Fish biodiversity and conservation in South America. J. Fish Biol. 89: 12-47.). National policies in most countries in the Latin America historically encouraged unsustainable practices over the preservation of fish biodiversity (Pelicice et al., 2017PELICICE, F. M., AZEVEDO‐SANTOS, V. M., VITULE, J. R S., ORSI, M. L., LIMA JUNIOR, D. P., MAGALHÃES, A. L. B., POMPEU, P. S., PETRERE JR., M., AGOSTINHO, A. A. 2017. Neotropical freshwater fishes imperilled by unsustainable policies. Fish. Fish. 18:1119-1133.). In this case, Neotropical region can be considered a hotspot for fish conservation. However, 28% of the known fauna was described in just the past 11 years and most reasonable estimates for the actual total number of freshwater fishes in the Neotropical region exceed 8000 species (Reis et al., 2016REIS, R.E., ALBERT, J.S., DI DARIO, F., MINCARONE, M.M., PETRY, P. & ROCHA, L.A. 2016. Fish biodiversity and conservation in South America. J. Fish Biol. 89: 12-47.).

Nearly half of the Neotropical fish species are known to occur in Brazil, with at least 2,587 species (Buckup et al. 2007BUCKUP, P. A., MENEZES, N. A. & GHAZZI, M. S. 2007. Catálogo das espécies de peixes de água doce do Brasil. Mus. Nac. Zool., Rio de Janeiro.), but probably more than 1,000 fish species were not yet described (Junk et al., 2007). On the other hand, São Francisco River Basin has 200 fish species (Alves & Pompeu, 2001ALVES, C B. M. & POMPEU P. S. 2001. A fauna de peixes da bacia do rio das Velhas no final do século XX. In Peixes do Rio das Velhas: passado e presente (C.B.M. ALVES & P.S. POMPEU. eds.). SEGRAC, Belo Horizonte, p. 165-187.) and Paraguay River Basin has about 330 estimated species (Reis et al., 2003REIS, F. LANGEANI, L. CASSATI, V.A. BERTACO, C. MOREIRA, P.H.F & LUCINDA. 2003. Genera incertaesedis in Characidae. In Check list of the freshwater fishes o South and Central America (R.E. Reis, S.O. Kullander & C.J. Ferraris Jr., Org). Edipucrs, Porto Alegre, p. 106-169.) which is a reasonable well-studied Brazilian basin. Studies over the Brazilian ichthyofauna are still recent (Camargo & Giarizzo, 2007CAMARGO M. & GIARRIZZO, T. 2007. Fish, Marmelos conservation area (BX044), Madeira River Basin, states of Amazonas and Rondônia, Brazil. Check list 3(4): 291-296.; Perin et al., 2007PERIN, L., SHIBATTA, O. A. & BERNARDE, P. S. 2007. Fish, Machado River basin, Cacoal urbanarea, state of Rondônia, Brazil. Check List 3, 94-97.; Rapp Py-Daniel et al., 2007RAPP PY-DANIEL, L., DEUS, C.P., RIBEIRO, O.M., & SOUSA, L.M. 2007. Peixes. In Biodiversidade do Médio Madeira: Bases científicas para propostas de conservação (L. RappPy-Daniel, C.P. Deus, A.L. Henriques, D.M. Pimpão & O.M. Ribeiro eds.). INPA, Manaus, p. 89-125.; Araújo et al., 2009ARAÚJO, T.R., RIBEIRO, A.C., DORIA, C.R.C. & TORRENTE-VILARA, G. 2009. Composition and trophic structure of the icthyofauna from a stream downriver from Santo Antônio Falls in the Madeira River, Porto Velho, RO. Biota Neotrop., 9 (3): 21-29 http://www.biotaneotropica.org.br/v9n3/en/fullpaper?bn00209032009+en (last access on 28/04/2019).
http://www.biotaneotropica.org.br/v9n3/e...
; Pedroza et al., 2012PEDROZA, W.S., RIBEIRO, F.R.V., TEIXEIRA, T.F., OHARA, W.M. & RAPP PY-DANIEL, L. 2012. Ichthyofaunal survey of stretches of the Guariba and Rooselvelt Rivers, in Guariba State Park and Guariba Extractive Reserve, Madeira River Basin, Amazonas, Brazil. Check List 8(1):8-15.; Queiroz et al., 2013QUEIROZ, L. J.; TORRENTE-VILARA, G.; VIEIRA, F. G.; OHARA, W. M.; ZUANON, J.; DORIA, C. R. C. 2013. Fishes of Cuniã Lake, Madeira River Basin, Brazil. Check List, 9(3): 540-548.) when compared to another Amazonian region (Lauzanne & Loubens, 1985LAUZANNE, L. & G. LOUBENS. 1985. Peces del río Mamoré. ORSTOM, Paris.; Lauzanne et al., 1991LAUZANNE, L., LOUBENS, G. & LE GUENNEC, B. 1991. Liste commentée des poissons de l'Amazonie bolivienne. Revista Hydrobiologia Tropical, 24(1): 61-76.; Chernoff et al., 2000CHERNOFF, B., MACHADO-ALLISON, A., WILLINK, P., SARMIENTO, J., BARRERA, S., MENEZES, N. & ORTEGA, H. 2000. Fishes of three Bolivian Rivers: diversity, distribution and conservation. Interciencia 25(6): 273-283.). Recent studies indicate high species richness in Madeira River tributaries (Rapp Py-Daniel et al., 2007RAPP PY-DANIEL, L., DEUS, C.P., RIBEIRO, O.M., & SOUSA, L.M. 2007. Peixes. In Biodiversidade do Médio Madeira: Bases científicas para propostas de conservação (L. RappPy-Daniel, C.P. Deus, A.L. Henriques, D.M. Pimpão & O.M. Ribeiro eds.). INPA, Manaus, p. 89-125.; Torrente-Vilara et al., 2011TORRENTE-VILARA, G., ZUANON, J., LEPRIEUR, F., OBERDOFF, T. & TEDESCO, P.A. 2011. Effects of natural rapids on a fish assemblage structure in the Madeira River. Ecol. Freshw. Fish. 20(4): 588-597.; Pedroza et al., 2012PEDROZA, W.S., RIBEIRO, F.R.V., TEIXEIRA, T.F., OHARA, W.M. & RAPP PY-DANIEL, L. 2012. Ichthyofaunal survey of stretches of the Guariba and Rooselvelt Rivers, in Guariba State Park and Guariba Extractive Reserve, Madeira River Basin, Amazonas, Brazil. Check List 8(1):8-15.), numbering over 900 species (Queiroz et al., 2013QUEIROZ, L. J.; TORRENTE-VILARA, G.; VIEIRA, F. G.; OHARA, W. M.; ZUANON, J.; DORIA, C. R. C. 2013. Fishes of Cuniã Lake, Madeira River Basin, Brazil. Check List, 9(3): 540-548.).

Most studies of the Amazonian ichthyofaunal diversity have concentrated in the floodplains adjacent to large rivers and next to urban areas, but there are few reports in areas of high conservation value (Costa et al., 2017COSTA, I. D., OHARA, W. M. & ALMEIDA, M. 2017. Fishes from the Jaru Biological Reserve, Machado River drainage, Madeira River basin, Rondônia State, northern Brazil. Biota. Neotrop. 17(1):e20160315 http://www.biotaneotropica.org.br/v17n1/pt/fullpaper?bn00817012017+en (last access on 28/04/2019).
http://www.biotaneotropica.org.br/v17n1/...
). Ichthyological surveys assess the biodiversity of water bodies (Silveira et al., 2010SILVEIRA, L. F., BEISIEGEL, B. M., CURCIO, F. F., VALDUJO, P. H., DIXO, M., VERDADE, V. K., MATTOX, G. M. T. & CUNNINGHAM, P. T. M. 2010. Para que servem os inventários de fauna? Estudos Avançados 24(68):173-207.), resulting in new discoveries of undescribed species (Frota et al., 2016) and basis for conservation actions (Ferreira et al., 2017FERREIRA, F. S., DUARTE, G. S. V., SEVERO-NETO, F., FROEHLICH O. & SÚAREZ, Y. R. 2017. Survey of fish species from plateau streams of the Miranda River Basin in the Upper Paraguay River Region, Brazil. Biota Neotropica 17(3): e20170344 http://www.biotaneotropica.org.br/v17n3/en/fullpaper?bn00417032017+en (last access on 28/04/2019).
http://www.biotaneotropica.org.br/v17n3/...
). Improving scientific information from conservation sites is crucial for guiding policy and management decisions (Willink et al., 2013WILLINK, P. W., ALEXANDER, E. & JONES, C. C. 2013. Using fish assemblages in different habitats to develop a management plan for the Upper Essequibo Conservation Concession, Guyana. Biota Neotropica 13(4):260-268 http://www.biotaneotropica.org.br/v13n4/pt/fullpaper?bn02713042013+en (last accessed on 28/04/2019).
http://www.biotaneotropica.org.br/v13n4/...
), such as for fishery management (Agostinho et al., 2016AGOSTINHO, A.A., GOMES, L.C., SANTOS, N.C.L., ORTEGA, J.C.G. & PELICICE, F.M. 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fish. Res. 173:26-36.). In order to know the ichthyofauna from part of Southwestern Amazon basin, this study provides a survey of fish in the Lower Roosevelt River and some of its tributaries.

Material and Methods

1. Study area

The study area is located at the lower Roosevelt River sub-basin and its small associated tributaries (Figure 1). The Roosevelt River is a clear water tributary on the right bank of the Aripuanã River, one of the most important tributaries on the east side of the Madeira River Basin (Anjos et al., 2016ANJOS, M. R., MACHADO, N. G., SILVA, M. E. P., BASTOS, W. R., MIRANDA, M. R., CARVALHO, D. P., MUSSY, M. H., HOLANDA, I. B. B., BIUDES, M. S. & FULAN, J. A. 2016. Bioaccumulation of methylmercury in fish tissue from the Roosevelt River, Southwestern Amazon basin. Rev. Ambient. Água 11(3):508-518.). The 30 sampling points were distributed over 168 km between parallels 7° and 8° S, and meridians 60° and 61° (Table 1). Riparian forest established along its shores and Open Ombrophilous forest over the sub-basin were well preserved. According to Köppen classification, the regional climate is Am which represents a tropical moonson climate with annual rainfall around 2,800 mm per year (Alvares et al., 2014ALVARES, C. A., STAPE, J. L., SENTELHAS, P. C., GONÇALVES, J. L. M. & SPAROVEK, G. 2014. Köppen's climate classification map for Brazil. Meteorol. Z. 22(6):711-728.). The wet season is from October to March and the dry season from June to August (Vidotto et al., 2007VIDOTTO, E., PESSENDA, L. C. R., RIBEIRO, A.S., FREITAS, H. A. & BENDASSOLLI, J. A. 2007. Dinâmica do ecótono floresta-campo no sul do estado do Amazonas no Holoceno, através de estudos isotópicos e fitossociológicos. Acta Amazon. 37(3):385-400.).

Figure 1
Lower Roosevelt River sub-basin sampling points location, Brazilian Southwest Amazon.

Table 1
Description of sampling points and its location at Lower Roosevelt River, Southwestern Amazon basin.

2. Stream and fish sampling

A graduated ruler and Secchi disk were used to measure water depth and transparency, respectively. A portable multiparameter probe (YSI 6600, YSI Environmental Company, Bahrain) was used in each point to measure conductivity, pH, dissolved oxygen and temperature. Fish sampling lasted 20 days and occurred following river water levels: rising water (November/2012), flooding (February/2013), falling water (May/2013) and drought (August/2013). Chico Mendes Institute for Biodiversity Conservation granted a fishing license (35382-1) for fish collection and transportation.

Fish were sampled using fishing nets of mesh sizes of 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180 and 200 mm with 10 m long and height varying between 1.5 to 4.0 m. Total capture area was 573.58 m2.day-1 per sampling point. Nets were visited every six hours. Sampled fish were anesthetized with Eugenol solution and subsequently fixed by immersion in 4% formaldehyde solution for at least 48 hours. Specimens were then washed and transferred to 70% ethanol.

Fish identification was performed mainly using Lauzanne & Loubens (1985)LAUZANNE, L. & G. LOUBENS. 1985. Peces del río Mamoré. ORSTOM, Paris., Ferreira et al. (1998)FERREIRA, E. J. G., ZUANON, J. A. S. & SANTOS, G. M. 1998. Peixes comerciais do médio Amazonas: região de Santarém, Pará. Ibama, Brasília., Silvano (2001)SILVANO, R.A.M. & BEGOSSI, A. 2001. Seasonal dynamics shery at the Piracicaba River (Brazil). Fish Res., 51: 69-86., Reis et al. (2003)REIS, F. LANGEANI, L. CASSATI, V.A. BERTACO, C. MOREIRA, P.H.F & LUCINDA. 2003. Genera incertaesedis in Characidae. In Check list of the freshwater fishes o South and Central America (R.E. Reis, S.O. Kullander & C.J. Ferraris Jr., Org). Edipucrs, Porto Alegre, p. 106-169., Menezes et al. (2003)MENEZES, N. A., BUCKUP, P. A., FIGUEIREDO, J. L. & MOURA, R. L. 2003. Catálogo das espécies de peixes marinhos do Brasil. Museu de Zoologia da Universidade de São Paulo, São Paulo., Buckup et al. (2007)BUCKUP, P. A., MENEZES, N. A. & GHAZZI, M. S. 2007. Catálogo das espécies de peixes de água doce do Brasil. Mus. Nac. Zool., Rio de Janeiro., Fricke & Eschmeyer (2019)FRICKE, R., ESCHMEYER, W. N. & FONG, J. D. 2019. Species by family/subfamily. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (last access on 28/04/2019).
http://researcharchive.calacademy.org/re...
, Queiroz et al. (2013)QUEIROZ, L. J.; TORRENTE-VILARA, G.; VIEIRA, F. G.; OHARA, W. M.; ZUANON, J.; DORIA, C. R. C. 2013. Fishes of Cuniã Lake, Madeira River Basin, Brazil. Check List, 9(3): 540-548., and Van Der Laan, Fricke & Eschmeyer (2019)VAN DER LAAN, R., FRICKE, R. & ESCHMEYER, W. N. (eds) 2019. Eschmeyer's catalog of fishes: classification. California Academy of Sciences. http://www.calacademy.org/scientists/catalog-of-fishes-classification/ (last access on 15/04/2019).
http://www.calacademy.org/scientists/cat...
. Voucher specimens were cataloged with labels which contained information on location, geographic coordinates, date and time of capture, type of environment, and fishing equipment used. They were deposited in the fish collection at Laboratório de Ictiologia e Ordenamento Pesqueiro do Vale do Rio Madeira (LIOP) in the Federal University of Amazonas (UFAM).

3. Data analysis

Fish with ornamental potential were defined according to IBAMA Normative Instruction number 001, from January 3, 2012. Fish species was checked on the Brazilian Red List established by Ordinances number 444/14 and 445/14 of the Ministry of the Environment.

Results

Depth mean was 8.86 m, water transparency was 0.6 m, conductivity was 22.7 µS.cm-1, pH was 6.59, dissolved oxygen was 7.63 mg.l-1 and temperature was 28°C (Table 2). The total estimated capture area was 68,829.6 m2 during 2,880 hours. The catch per unit effort (CPUE) was 0.37 individuals m-2.day-1. Species were spatially aggregated in all sampling points and river water levels. A total of 5,183 individuals distributed in 7 orders, 29 families, 104 genders and 188 species were sampled in this survey (Table 3). The diversity index was 4.121 and equitability index was 0.789. The Characiforms order was the most abundant with 106 species and 4,246 individuals, followed by Siluriforms with 63 species and 863 individuals and Cichliforms with 23 species and 276 individuals (Figure 2 and Table 3). The most abundant species was Serrasalmus rhombeus (Linnaeus, 1766) with 327 individuals (5.9%), followed by Chalceus epakros (Cope, 1870) with 309 individuals (5.6%) and Acestrorhynchus microlepis (Schomburgk, 1841) with 250 individuals (4.5%). Trophicity (Figure 3) was characterized by omnivorous (28.6%), piscivorous (14.3%), carnivorous (13.8%) and detritivorous (12.8%). According to IBAMA's regulation, 29.25% of captured species presents ornamental potential (Table 3).

Table 2
Environmental variables and Morisita index (If) to the survey of fish species from the Lower Roosevelt River, Southwestern Amazon basin.
Table 3
Survey of fish species from the Lower Roosevelt River, Southwestern Amazon basin, indicating number of captured individuals (N), ornamental potential (OP) and trophicity.

Figure 2
Number of species per families per order from the survey of fish species from the Lower Roosevelt River, Southwestern Amazon basin.

Figure 3
Trophicity from the survey of fish species from the Lower Roosevelt River, Southwestern Amazon basin.

Discussion

Few species (about 2.13%) found in this survey were recorded by Pedroza et al. (2012)PEDROZA, W.S., RIBEIRO, F.R.V., TEIXEIRA, T.F., OHARA, W.M. & RAPP PY-DANIEL, L. 2012. Ichthyofaunal survey of stretches of the Guariba and Rooselvelt Rivers, in Guariba State Park and Guariba Extractive Reserve, Madeira River Basin, Amazonas, Brazil. Check List 8(1):8-15. in the Roosevelt River, indicating a total of 209 species for this study area. The total number of species found in the present study is in accordance with other studies in the Amazon River Basin. Some studies recorded 67 fish species in the Tapajós River (Keppeler et al., 2016KEPPELER, R. W., HALLWASS, G., SILVANO, R. A. M. 2016. Influence of protected areas on fish assemblages and fisheries in a large tropical river. Oryx, 2017, 51(2), 268-279.), 86 species in the Purus River (Anjos et al., 2008ANJOS, H. D. B., ZUANON, J., BRAGA, T. M. P. & SOUSA, K. N. S. 2008. Fish, upper Purus River, state of Acre, Brazil. Check List 4(2): 198-213.), 90 species in the Juruá River (Silvano et al., 2000SILVANO, R. A.M., AMARAL, B. D., OYAKAWA, O. T. 2000. Spatial and Temporal Patterns of Diversity and Distribution of the Upper Juruá River Fish Community (Brazilian Amazon). Environ. Biol. Fish. 57(1):25-35.), 90 species in the Teles Pires River (Dary et al., 2017DARY, E. P., FERREIRA, E., ZUANON, J. & ROPKE, C. P. 2017. Diet and trophic structure of the fish assemblage in the mid-course of the Teles Pires River, Tapajós River basin, Brazil. Neotrop. Ichthyol. 15(4): e160173 http://www.scielo.br/pdf/ni/v15n4/1982-0224-ni-15-04-e160173.pdf (last access on 28/04/2019).
http://www.scielo.br/pdf/ni/v15n4/1982-0...
), 133 species in the Madeira River Basin (Camargo & Giarrizzo, 2007CAMARGO M. & GIARRIZZO, T. 2007. Fish, Marmelos conservation area (BX044), Madeira River Basin, states of Amazonas and Rondônia, Brazil. Check list 3(4): 291-296.), 148 species in the Xingu River (Fitzgerald et al., 2017FITZGERALD, D. B., WINEMILLER, K. O., PÉREZ, M. H. S., SOUSA, L. M. 2017. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology, 98(1):21-31.) and 160 species in the Guariba River (Pedroza et al., 2012PEDROZA, W.S., RIBEIRO, F.R.V., TEIXEIRA, T.F., OHARA, W.M. & RAPP PY-DANIEL, L. 2012. Ichthyofaunal survey of stretches of the Guariba and Rooselvelt Rivers, in Guariba State Park and Guariba Extractive Reserve, Madeira River Basin, Amazonas, Brazil. Check List 8(1):8-15.).

The Amazon River Basin contains the highest fish species diversity of any region on earth (Reis et al., 2003REIS, F. LANGEANI, L. CASSATI, V.A. BERTACO, C. MOREIRA, P.H.F & LUCINDA. 2003. Genera incertaesedis in Characidae. In Check list of the freshwater fishes o South and Central America (R.E. Reis, S.O. Kullander & C.J. Ferraris Jr., Org). Edipucrs, Porto Alegre, p. 106-169.). The biodiversity results from processes operating at multiple spatial and temporal scales (Peláez & Pavanelli, 2018PELÁEZ, O. E., PAVANELLI, C. S. 2018. Environmental heterogeneity and dispersal limitation explain different aspects of β-diversity in Neotropical fish assemblages. Freshw Biol. 64(3):497-505.). Heterogenous environments can contribute to maintain biodiversity (Peláez et al., 2017PELÁEZ, O. E., AZEVEDO, F. M. & PAVANELLI1, C. S. 2017. Environmental heterogeneity explains species turnover but not nestedness in fish assemblages of a Neotropical basin. Acta Limnol. 29:e117.). A strong environmental control on species composition is expected at intermediate spatial scales, where dispersal is neither too high to mask the effects of environmental variables (Heino et al., 2015HEINO, J., SOININEN, J., ALAHUHTA, J., LAPPALAINEN, J. & VIRTANEN, R. 2015. A comparative analysis of metacommunity types in the freshwater realm. Ecol. Evol. 5(7):1525-1537.) nor too low for the differences in species composition to be related to historical processes (Villéger et al., 2013VILLÉGER, S., GRENOUILLET, G. & BROSSE, S. 2013. Decomposing functional β‐diversity reveals that low functional β‐diversity is driven by low functional turnover in European fish assemblages. Global Ecol. Biogeogr. 22(6):671-681.). A major environmental factor on the Amazon Basin system is the water seasonal variation that constitutes an annual hydrological cycle, with changes in water level that can exceed 15 m between high and low water periods that can strongly affect fish assemblages (Scarabotti et al., 2011SCARABOTTI, P. A., LÓPEZ, J. A & POUILLY, M. 2011. Flood pulse and the dynamics of fish assemblage structure from neotropical floodplain lakes. Ecol. Freshw. Fish. 20: 605-618.). Changes in environmental variables over the hydrologic seasons of the year are likely to change the relative importance of biotic interactions such as predation and competition, which may increase when low water crowds populations, creating non-random assortments of fish species (Fernandes et al., 2009FERNANDES, R., L. C. GOMES, F. M. PELICICE & A. A. AGOSTINHO, 2009. Temporal organization of fish assemblages in floodplain lagoons: the role of hydrological connectivity. Environ. Biol. Fish. 85: 99-108.). Abiotic influences such as temperature, oxygen concentration, and transparency also change over the hydrologic cycle and differ among water bodies, which can be the basis of habitat selection among fish (Freitas et al., 2010FREITAS, C. E. C., SIQUEIRA-SOUZA F. K., GUIMARÃES, A. R., SANTOS, F. A. & SANTOS I. L. A. 2010. Interconnectedness during high water maintains similarity in fish assemblages of island floodplain lakes in the Amazonian Basin. Zoologia 27: 931-938.; Miyazono et al., 2010MIYAZONO, S., J. N. AYCOCK, L. E. MIRANDA & T. E. TIETJEN, 2010. Assemblage patterns of fish functional groups relative to habitat connectivity and conditions in floodplain lakes. Ecol. Freshw. Fish. 19(4):578-585.; Van der Wolfshaar et al., 2011VAN DER WOLFSHAAR, K. E., MIDDELKOOP, H., ADDINK, E., WINTER, H. V. & NAGELKERKE, L. A. J. 2011. Linking flow regime, floodplain lake connectivity and fish catch in a large river-floodplain system, the Volga-Akhtuba floodplain (Russian Federation). Ecosystems 14(6):920-934.).

Characiformes and Siluriformes were the predominant orders, following the Neotropical pattern for freshwater fish diversity (Lowell-McConnell, 1999LOWELL-MCCONNELL, R.H. 1999. Estudos ecológicos de comunidades de peixes tropicais. EDUSP, São Paulo.). We emphasize that none of the sampled species are on the Brazilian Red List. The higher number of species registered in this study is probably due to the environmental heterogeneity (Teresa et al., 2010TERESA, F. B., ROMERO, R. M. & LANGEANI, F. 2010. Pisces, Aquidauana and Miranda drainages, upper Paraguay River basin, Mato Grosso do Sul, Brazil. Check List 6(4):596-601.). However, the diversity may have been underestimated. Several sampled species were discriminated with the use of "cf", indicating that the number of new species may be higher. Ten taxa were provisionally identified, due to their uncertain taxonomic status. They may be records of new species, such as Hypophthalmus sp., Cichla sp. and Astyanax sp. Among the sampled species in Lower Roosevelt River sub-basin are included in the ornamental fish list of IBAMA such as Acestrorhynchus microlepis (Schomburgk, 1841), Leporinus fasciatus (Bloch, 1794), Boulengerella maculata (Valenciennes, 1850), Hydroly custatauaia (Toledo-Piza, Menezes & Santos, 1999); Mylo plusasterias (Müller & Troschel, 1844), Mylo plusrubripinnis (Müller & Troschel, 1844), Serrasalmus rhombeus (Linnaeus, 1766); Serrasalmus spilopleura (Kner, 1858) e Pimelodus blochii (Valenciennes, 1840). Some species considered rare due to their shortage in ichthyological collections were sampled in this study, including the Characiform species such as Acestrorhynchus heterolepis (Cope, 1878) and Acestrocephalus pallidus (Menezes, 2003), and the Siluriform species such as Pimelodella steindachneri (Eigenmann, 1917) and Panaquearm brusteri (Lujan, Hidalgo & Stewart, 2010).

The most abundant species were Serrasalmus rhombeus (Linnaeus, 1766) (Serrasalmidae) and Chalceus epakros (Zanata & Toledo-Piza, 2004ZANATA, A. M. & Toledo-Piza, M. 2004. Taxonomic revision of the South American fish genus Chalceus Cuvier (Teleostei: Ostariophysi: Characiformes) with the description of three new species. Zool. J. Soc-Lond., 140: 103-135.) (Characidae). S. rhombeus is the largest piranha species, with adults reaching 50 cm in length, and is considered to be one of the most successful fish species in Amazonian reservoirs (Santo & Santos, 2005SANTOS, G. M. & SANTOS, A. C. M, 2005. Sustentabilidade da pesca na Amazônia. Estud. Av. 19(54):165-182.). It has non-migratory habit, is predominantly carnivorous, and is considered a top-chain species (Goulding, 1988GOULDING, M., CARVALHO, M. L. & FERREIRA, E. J. G. 1988. Rio Negro. Rich Life in Poor Water. Amazonian diversity and foodchain ecology as seen through fish communities. SPB Academic Publishing, The Hague.; Lowell-McConnell, 1987LOWELL-MCCONNEL, R. H. 1987. Ecological studies in tropical fish communities. Cambridge University Press, Cambridge.); therefore, it reflects the environmental quality of the aquatic ecosystem (Borges et al., 2018BORGES, A. C., MONTES, C. S., BARBOSA, L. A., FERREIRA, M. A. P., BERRÊDO, J. F. & ROCHA, R. M. 2018. Integrated use of histological and ultrastructural biomarkers for assessing mercury pollution in piranhas (Serrasalmus rhombeus) from the Amazon mining region. Chemosphere 202:788-796.). This piranha species is a Neotropical predator that occur in many environments of the Amazon Basin (Sá-Oliveira et al., 2017SÁ-OLIVEIRA, J. C., FERRARI, S. F., VASCONSELOS, H. C. G., ARAUJO, A. S., CAMPOS, C. E. C., MATTOS-DIAS, C. A., FECURY, A. A., OLIVEIRA, E., MENDES-JUNIOR, R. N. G. & ISSAC, V. J. 2017. Resource Partitioning between Two Piranhas (Serrasalmus gibbus and Serrasalmus rhombeus) in an Amazonian Reservoir. Sci. World J. 17:8064126.). On the other hand, C. epakros has a much wider distribution throughout the central and lower portions of the Amazon Basin (including the lower course of the Madeira River), middle and upper Orinoco River Basin, the Essequibo River in Guyana and the Nanay River in Peru (Zanata & Toledo-Piza, 2004ZANATA, A. M. & Toledo-Piza, M. 2004. Taxonomic revision of the South American fish genus Chalceus Cuvier (Teleostei: Ostariophysi: Characiformes) with the description of three new species. Zool. J. Soc-Lond., 140: 103-135.).

Our work highlights the importance of conducting fish survey within Roosevelt River Basin. Fish have an important socio-economic role for human communities living along tropical rivers and are a major protein source for these people (Fabré & Alonso, 1998FABRÉ, N. N. & ALONSO, J. C. 1998. Recursos íctios no Alto Amazonas: sua importância para as populações ribeirinhas. Bol. Mus. Para. Emílio Goeldi, Sér. Zool. 14(01):19-55.; Cerdeira et al., 2008CERDEIRA, R. G. P., RUFFINO M. L. & ISSAC, V. J. 2000. Fish catches among riverside communities around Lago Grande de Monte Alegre, lower Amazon. Fisheries Manag. Ecol. 7(4):355-374.; Santos & Santos, 2005SANTOS, G. M. & SANTOS, A. C. M, 2005. Sustentabilidade da pesca na Amazônia. Estud. Av. 19(54):165-182.; Santos et al., 2014). It is important to monitor native fish diversity in this region, both to preserve biodiversity and to ensure sustainable levels of fish stocks for harvesting.

Acknowledgments

The authors would like to thank the "Insitituto Chico Mendes de Conservação da Biodiversidade (ICMBio)" for all the logistical and operational support through the management of "Parque Nacional dos Campos Amazônicos" and its environmental analysts here represented by Bruno Contursi Cambraia (Conservation Unit Chief), Aline Roberta Polli, Cleide Souza Rezende and Leonardo de Castro Machado. A special acknowledgment for the environmental analyst Renato Diniz Dumont, responsible for the implementation of the project "Estudo e Monitoramento da Variação Temporal da Fauna de Peixes na Bacia do Rio Roosevelt - Parque Nacional Campos Amazônicos (PNCA), and the Regional Coordenation of the "Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio)", represented by Simone Nogueira dos Santos. The authors also thank to: the "Universidade Federal do Amazonas (UFAM)" and the "Laboratório de Ictiologia e Ordenamento Pesqueiro do Vale do Rio Madeira (LIOP)", where are deposited the collection of the exemplars collected during the study; the "Programa Áreas Protegidas da Amazônia (ARPA)" for its financial support to the developed research; the "Coordenação de Aperfeiçoamento de Pessoal do Nível Superior (CAPES) for the grant provided during the doctoring period; the "Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Dra. Fabiana Barbosa Gomes for confectioning the location map; and, to Allan Reed Pham Stott for the final English revision.

References

  • AGOSTINHO, A.A., GOMES, L.C., SANTOS, N.C.L., ORTEGA, J.C.G. & PELICICE, F.M. 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fish. Res. 173:26-36.
  • ALVARES, C. A., STAPE, J. L., SENTELHAS, P. C., GONÇALVES, J. L. M. & SPAROVEK, G. 2014. Köppen's climate classification map for Brazil. Meteorol. Z. 22(6):711-728.
  • ALVES, C B. M. & POMPEU P. S. 2001. A fauna de peixes da bacia do rio das Velhas no final do século XX. In Peixes do Rio das Velhas: passado e presente (C.B.M. ALVES & P.S. POMPEU. eds.). SEGRAC, Belo Horizonte, p. 165-187.
  • ANJOS, M. R., MACHADO, N. G., SILVA, M. E. P., BASTOS, W. R., MIRANDA, M. R., CARVALHO, D. P., MUSSY, M. H., HOLANDA, I. B. B., BIUDES, M. S. & FULAN, J. A. 2016. Bioaccumulation of methylmercury in fish tissue from the Roosevelt River, Southwestern Amazon basin. Rev. Ambient. Água 11(3):508-518.
  • ANJOS, H. D. B., ZUANON, J., BRAGA, T. M. P. & SOUSA, K. N. S. 2008. Fish, upper Purus River, state of Acre, Brazil. Check List 4(2): 198-213.
  • ARAÚJO, T.R., RIBEIRO, A.C., DORIA, C.R.C. & TORRENTE-VILARA, G. 2009. Composition and trophic structure of the icthyofauna from a stream downriver from Santo Antônio Falls in the Madeira River, Porto Velho, RO. Biota Neotrop., 9 (3): 21-29 http://www.biotaneotropica.org.br/v9n3/en/fullpaper?bn00209032009+en (last access on 28/04/2019).
    » http://www.biotaneotropica.org.br/v9n3/en/fullpaper?bn00209032009+en
  • BORGES, A. C., MONTES, C. S., BARBOSA, L. A., FERREIRA, M. A. P., BERRÊDO, J. F. & ROCHA, R. M. 2018. Integrated use of histological and ultrastructural biomarkers for assessing mercury pollution in piranhas (Serrasalmus rhombeus) from the Amazon mining region. Chemosphere 202:788-796.
  • BUCKUP, P. A., MENEZES, N. A. & GHAZZI, M. S. 2007. Catálogo das espécies de peixes de água doce do Brasil. Mus. Nac. Zool., Rio de Janeiro.
  • CAMARGO M. & GIARRIZZO, T. 2007. Fish, Marmelos conservation area (BX044), Madeira River Basin, states of Amazonas and Rondônia, Brazil. Check list 3(4): 291-296.
  • CERDEIRA, R. G. P., RUFFINO M. L. & ISSAC, V. J. 2000. Fish catches among riverside communities around Lago Grande de Monte Alegre, lower Amazon. Fisheries Manag. Ecol. 7(4):355-374.
  • CHERNOFF, B., MACHADO-ALLISON, A., WILLINK, P., SARMIENTO, J., BARRERA, S., MENEZES, N. & ORTEGA, H. 2000. Fishes of three Bolivian Rivers: diversity, distribution and conservation. Interciencia 25(6): 273-283.
  • COSTA, I. D., OHARA, W. M. & ALMEIDA, M. 2017. Fishes from the Jaru Biological Reserve, Machado River drainage, Madeira River basin, Rondônia State, northern Brazil. Biota. Neotrop. 17(1):e20160315 http://www.biotaneotropica.org.br/v17n1/pt/fullpaper?bn00817012017+en (last access on 28/04/2019).
    » http://www.biotaneotropica.org.br/v17n1/pt/fullpaper?bn00817012017+en
  • DARY, E. P., FERREIRA, E., ZUANON, J. & ROPKE, C. P. 2017. Diet and trophic structure of the fish assemblage in the mid-course of the Teles Pires River, Tapajós River basin, Brazil. Neotrop. Ichthyol. 15(4): e160173 http://www.scielo.br/pdf/ni/v15n4/1982-0224-ni-15-04-e160173.pdf (last access on 28/04/2019).
    » http://www.scielo.br/pdf/ni/v15n4/1982-0224-ni-15-04-e160173.pdf
  • FABRÉ, N. N. & ALONSO, J. C. 1998. Recursos íctios no Alto Amazonas: sua importância para as populações ribeirinhas. Bol. Mus. Para. Emílio Goeldi, Sér. Zool. 14(01):19-55.
  • FERNANDES, R., L. C. GOMES, F. M. PELICICE & A. A. AGOSTINHO, 2009. Temporal organization of fish assemblages in floodplain lagoons: the role of hydrological connectivity. Environ. Biol. Fish. 85: 99-108.
  • FERREIRA, E. J. G., ZUANON, J. A. S. & SANTOS, G. M. 1998. Peixes comerciais do médio Amazonas: região de Santarém, Pará. Ibama, Brasília.
  • FERREIRA, F. S., DUARTE, G. S. V., SEVERO-NETO, F., FROEHLICH O. & SÚAREZ, Y. R. 2017. Survey of fish species from plateau streams of the Miranda River Basin in the Upper Paraguay River Region, Brazil. Biota Neotropica 17(3): e20170344 http://www.biotaneotropica.org.br/v17n3/en/fullpaper?bn00417032017+en (last access on 28/04/2019).
    » http://www.biotaneotropica.org.br/v17n3/en/fullpaper?bn00417032017+en
  • FITZGERALD, D. B., WINEMILLER, K. O., PÉREZ, M. H. S., SOUSA, L. M. 2017. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology, 98(1):21-31.
  • FREITAS, C. E. C., SIQUEIRA-SOUZA F. K., GUIMARÃES, A. R., SANTOS, F. A. & SANTOS I. L. A. 2010. Interconnectedness during high water maintains similarity in fish assemblages of island floodplain lakes in the Amazonian Basin. Zoologia 27: 931-938.
  • FRICKE, R., ESCHMEYER, W. N. & FONG, J. D. 2019. Species by family/subfamily. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (last access on 28/04/2019).
    » http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp
  • GOULDING, M., CARVALHO, M. L. & FERREIRA, E. J. G. 1988. Rio Negro. Rich Life in Poor Water. Amazonian diversity and foodchain ecology as seen through fish communities. SPB Academic Publishing, The Hague.
  • HEINO, J., SOININEN, J., ALAHUHTA, J., LAPPALAINEN, J. & VIRTANEN, R. 2015. A comparative analysis of metacommunity types in the freshwater realm. Ecol. Evol. 5(7):1525-1537.
  • KEPPELER, R. W., HALLWASS, G., SILVANO, R. A. M. 2016. Influence of protected areas on fish assemblages and fisheries in a large tropical river. Oryx, 2017, 51(2), 268-279.
  • LAUZANNE, L. & G. LOUBENS. 1985. Peces del río Mamoré. ORSTOM, Paris.
  • LAUZANNE, L., LOUBENS, G. & LE GUENNEC, B. 1991. Liste commentée des poissons de l'Amazonie bolivienne. Revista Hydrobiologia Tropical, 24(1): 61-76.
  • LEES, A. C., PERES, C.A., FEARNSIDE, P. M., SCHNEIDER, M. & ZUANON, J. A. S. 2016 Hydropower and the future of Amazonian biodiversity. Biodivers. Conserv. 25:451-466.
  • LOWELL-MCCONNEL, R. H. 1987. Ecological studies in tropical fish communities. Cambridge University Press, Cambridge.
  • LOWELL-MCCONNELL, R.H. 1999. Estudos ecológicos de comunidades de peixes tropicais. EDUSP, São Paulo.
  • MENEZES, N. A., BUCKUP, P. A., FIGUEIREDO, J. L. & MOURA, R. L. 2003. Catálogo das espécies de peixes marinhos do Brasil. Museu de Zoologia da Universidade de São Paulo, São Paulo.
  • MIYAZONO, S., J. N. AYCOCK, L. E. MIRANDA & T. E. TIETJEN, 2010. Assemblage patterns of fish functional groups relative to habitat connectivity and conditions in floodplain lakes. Ecol. Freshw. Fish. 19(4):578-585.
  • PEDROZA, W.S., RIBEIRO, F.R.V., TEIXEIRA, T.F., OHARA, W.M. & RAPP PY-DANIEL, L. 2012. Ichthyofaunal survey of stretches of the Guariba and Rooselvelt Rivers, in Guariba State Park and Guariba Extractive Reserve, Madeira River Basin, Amazonas, Brazil. Check List 8(1):8-15.
  • PELÁEZ, O. E., AZEVEDO, F. M. & PAVANELLI1, C. S. 2017. Environmental heterogeneity explains species turnover but not nestedness in fish assemblages of a Neotropical basin. Acta Limnol. 29:e117.
  • PELÁEZ, O. E., PAVANELLI, C. S. 2018. Environmental heterogeneity and dispersal limitation explain different aspects of β-diversity in Neotropical fish assemblages. Freshw Biol. 64(3):497-505.
  • PELICICE, F. M., AZEVEDO‐SANTOS, V. M., VITULE, J. R S., ORSI, M. L., LIMA JUNIOR, D. P., MAGALHÃES, A. L. B., POMPEU, P. S., PETRERE JR., M., AGOSTINHO, A. A. 2017. Neotropical freshwater fishes imperilled by unsustainable policies. Fish. Fish. 18:1119-1133.
  • PERIN, L., SHIBATTA, O. A. & BERNARDE, P. S. 2007. Fish, Machado River basin, Cacoal urbanarea, state of Rondônia, Brazil. Check List 3, 94-97.
  • QUEIROZ, L. J.; TORRENTE-VILARA, G.; VIEIRA, F. G.; OHARA, W. M.; ZUANON, J.; DORIA, C. R. C. 2013. Fishes of Cuniã Lake, Madeira River Basin, Brazil. Check List, 9(3): 540-548.
  • RAPP PY-DANIEL, L., DEUS, C.P., RIBEIRO, O.M., & SOUSA, L.M. 2007. Peixes. In Biodiversidade do Médio Madeira: Bases científicas para propostas de conservação (L. RappPy-Daniel, C.P. Deus, A.L. Henriques, D.M. Pimpão & O.M. Ribeiro eds.). INPA, Manaus, p. 89-125.
  • REIS, F. LANGEANI, L. CASSATI, V.A. BERTACO, C. MOREIRA, P.H.F & LUCINDA. 2003. Genera incertaesedis in Characidae. In Check list of the freshwater fishes o South and Central America (R.E. Reis, S.O. Kullander & C.J. Ferraris Jr., Org). Edipucrs, Porto Alegre, p. 106-169.
  • REIS, R.E., ALBERT, J.S., DI DARIO, F., MINCARONE, M.M., PETRY, P. & ROCHA, L.A. 2016. Fish biodiversity and conservation in South America. J. Fish Biol. 89: 12-47.
  • RIBEIRO, F. R. V., PEDROZA, W. S., PY-DANIEL, L. H. R. 2011. A new species of Nemuroglanis (Siluriformes: Heptapteridae) from the rio Guariba, rio Madeira basin, Brazil. Zootaxa 2799: 41-48.
  • SÁ-OLIVEIRA, J. C., FERRARI, S. F., VASCONSELOS, H. C. G., ARAUJO, A. S., CAMPOS, C. E. C., MATTOS-DIAS, C. A., FECURY, A. A., OLIVEIRA, E., MENDES-JUNIOR, R. N. G. & ISSAC, V. J. 2017. Resource Partitioning between Two Piranhas (Serrasalmus gibbus and Serrasalmus rhombeus) in an Amazonian Reservoir. Sci. World J. 17:8064126.
  • SANTOS, G. M. & SANTOS, A. C. M, 2005. Sustentabilidade da pesca na Amazônia. Estud. Av. 19(54):165-182.
  • SCARABOTTI, P. A., LÓPEZ, J. A & POUILLY, M. 2011. Flood pulse and the dynamics of fish assemblage structure from neotropical floodplain lakes. Ecol. Freshw. Fish. 20: 605-618.
  • SILVANO, R.A.M. & BEGOSSI, A. 2001. Seasonal dynamics shery at the Piracicaba River (Brazil). Fish Res., 51: 69-86.
  • SILVANO, R. A.M., AMARAL, B. D., OYAKAWA, O. T. 2000. Spatial and Temporal Patterns of Diversity and Distribution of the Upper Juruá River Fish Community (Brazilian Amazon). Environ. Biol. Fish. 57(1):25-35.
  • SILVEIRA, L. F., BEISIEGEL, B. M., CURCIO, F. F., VALDUJO, P. H., DIXO, M., VERDADE, V. K., MATTOX, G. M. T. & CUNNINGHAM, P. T. M. 2010. Para que servem os inventários de fauna? Estudos Avançados 24(68):173-207.
  • SOARES-FILHO, B., RAJÃO, R., MACEDO, M., CARNEIRO, A., COSTA, W., COE, M., RODRIGUES, H. & ALENCAR, A. 2014. Cracking Brazil's forest code. Science 344:363-364.
  • TERESA, F. B., ROMERO, R. M. & LANGEANI, F. 2010. Pisces, Aquidauana and Miranda drainages, upper Paraguay River basin, Mato Grosso do Sul, Brazil. Check List 6(4):596-601.
  • TORRENTE-VILARA, G., ZUANON, J., LEPRIEUR, F., OBERDOFF, T. & TEDESCO, P.A. 2011. Effects of natural rapids on a fish assemblage structure in the Madeira River. Ecol. Freshw. Fish. 20(4): 588-597.
  • TOUSSAINT A., CHARPIN N., BROSSE S. & VILLÉGER S. 2016. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Sci. Rep. UK. 6: 22125.
  • VAN DER LAAN, R., FRICKE, R. & ESCHMEYER, W. N. (eds) 2019. Eschmeyer's catalog of fishes: classification. California Academy of Sciences. http://www.calacademy.org/scientists/catalog-of-fishes-classification/ (last access on 15/04/2019).
    » http://www.calacademy.org/scientists/catalog-of-fishes-classification/
  • VAN DER WOLFSHAAR, K. E., MIDDELKOOP, H., ADDINK, E., WINTER, H. V. & NAGELKERKE, L. A. J. 2011. Linking flow regime, floodplain lake connectivity and fish catch in a large river-floodplain system, the Volga-Akhtuba floodplain (Russian Federation). Ecosystems 14(6):920-934.
  • VIDOTTO, E., PESSENDA, L. C. R., RIBEIRO, A.S., FREITAS, H. A. & BENDASSOLLI, J. A. 2007. Dinâmica do ecótono floresta-campo no sul do estado do Amazonas no Holoceno, através de estudos isotópicos e fitossociológicos. Acta Amazon. 37(3):385-400.
  • VILLÉGER, S., GRENOUILLET, G. & BROSSE, S. 2013. Decomposing functional β‐diversity reveals that low functional β‐diversity is driven by low functional turnover in European fish assemblages. Global Ecol. Biogeogr. 22(6):671-681.
  • WILLINK, P. W., ALEXANDER, E. & JONES, C. C. 2013. Using fish assemblages in different habitats to develop a management plan for the Upper Essequibo Conservation Concession, Guyana. Biota Neotropica 13(4):260-268 http://www.biotaneotropica.org.br/v13n4/pt/fullpaper?bn02713042013+en (last accessed on 28/04/2019).
    » http://www.biotaneotropica.org.br/v13n4/pt/fullpaper?bn02713042013+en
  • ZANATA, A. M. & Toledo-Piza, M. 2004. Taxonomic revision of the South American fish genus Chalceus Cuvier (Teleostei: Ostariophysi: Characiformes) with the description of three new species. Zool. J. Soc-Lond., 140: 103-135.

Publication Dates

  • Publication in this collection
    02 Sept 2019
  • Date of issue
    2019

History

  • Received
    14 Dec 2018
  • Reviewed
    21 June 2019
  • Accepted
    24 July 2019
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br