Accessibility / Report Error

Biofumigation with species of the Brassicaceae family: a review

Biofumigação com espécies da família Brassicaceae: uma revisão

ABSTRACT:

Biofumigation involves the release of volatile biocidal compounds in the soil through the incorporation of certain plants and their residues. Species of the Brassicaceae family are the most widely used plants for biofumigation. These plants contain glucosinolates, which produce compounds, such as isothiocyanates, following enzymatic hydrolysis, with scientifically proven fungicidal effects. The most commonly used brassica species belong to the genera Brassica, Raphanus, Sinapis, and Eruca. In addition to the release of compounds in the soil, complementary mechanisms, such as the supply of organic matter and nutrients, and improvement of the soil structure, also play a role in biofumigation. In the past two decades, several studies on the use of brassica residues in biofumigation have been published, showing promising results in the management of soil pathogens (fungi and oomycetes, nematodes, bacteria, and protozoa), weed seeds, and insects. Usage of new biofumigation compounds has also been validated in recent years, including the development of patented technological products such as liquid formulations and pellets. The objective of this article was to review these new developments, beginning with concepts related to biofumigation, and to discuss the mechanisms of action of compounds involving brassica species and the recommendations on usage. Promising examples of the use of this technique are also presented, further detailing the advances in basic and applied knowledge on the subject.

Key words:
Brassica spp.; soil pathogens; glucosinolates; isothiocyanates; green manure.

RESUMO:

A biofumigação consiste na liberação de compostos biocidas voláteis no solo a partir da incorporação de determinadas plantas e de seus resíduos. As espécies da família Brassicaceae são as plantas mais utilizadas na biofumigação. Em sua constituição, possuem os glucosinolatos que, após hidrólise enzimática, produzem compostos como os isotiocianatos com efeito biofungicida comprovado cientificamente. As espécies de brássicas mais utilizadas pertencem aos gêneros Brassica, Raphanus, Sinapis e Eruca. Além da liberação de compostos no solo, mecanismos complementares como o fornecimento de matéria orgânica, nutrientes e melhoria da estrutura do solo, também desempenham papel complementar na biofumigação. Diversos estudos foram publicados nas últimas duas décadas com a utilização de resíduos de brássicas na biofumigação e apresentaram resultados promissores no manejo de patógenos de solo (fungos e oomicetos, nematóides, bactérias e protozoários), sementes de plantas daninhas e insetos. Novas formas de utilização também foram validadas nos últimos anos, inclusive com o desenvolvimento de produtos tecnológicos patenteados como formulações líquidas e pellets. Nesta revisão, objetivamos apresentar estes novos desdobramentos iniciando com os conceitos relacionados à biofumigação. Em seguida, apresentamos os mecanismos de ação e compostos envolvidos; as espécies de brássicas, produtos e recomendações para sua utilização; e exemplos promissores de adoção da técnica a nível mundial. Pretende-se, dessa forma, detalhar os avanços no conhecimento básico e aplicado do assunto.

Palavras-chave:
Brassica spp.; patógenos de solo; glucosinolatos; isotiocianatos; adubação verde.

INTRODUCTION:

The management of soil-borne phytopathogens is a challenge in agricultural production (DIXON & TILSTON, 2010DIXON, G. R.; TILSTON E. L. Soil-borne pathogens and their interactions with the soil environment. In: DIXON, G. R.; TILSTON, E. L. Soil Microbiology and Sustainable Crop Production. Dordrecht, Netherlands: Springer, 2010. Cap. 6, p. 197-271.; GAMLIEL & BRUGGEN, 2016GAMLIEL, A.; BRUGGEN, A. H. C. Maintaining soil health for crop production in organic greenhouses. Scientia Horticulturae, v.208, p.120-130, 2016. Available from <Available from https://doi.org/10.1016/j.scienta.2015.12.030 >. Accessed: Sep. 15, 2019. doi: 10.1016/j.scienta.2015.12.030.
https://doi.org/10.1016/j.scienta.2015.1...
; LOBO JÚNIOR et al., 2018LOBO JÚNIOR, M. L. et al. Panorama da pesquisa com patógenos radiculares no Brasil. In: LOPES, U. P.; MICHEREFF, S. J. (eds). Desafios do Manejo de Doenças Radiculares Causadas por Fungos . Recife: EDUFRPE , 2018. Cap.2, p.17-34.; DUTTA et al., 2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
). Under intensive conventional cultivation systems, volatile chemical compounds of nonspecific action are used frequently in a practice known as soil fumigation (LADHALAKSHMI et al., 2015LADHALAKSHMI, D. et al. Biofumigation in crop disease management. In: GANESAN, S. et al. Sustainable Crop Disease Management using Natural Products. Boston: CAB International, 2015. Cap.19, p.389-402.; LEITE & LOPES, 2018LEITE, I. C. H.; LOPES, U. P. Controle químico de patógenos radiculares. In: LOPES, U. P.; MICHEREFF, S. J. (eds). Desafios do Manejo de Doenças Radiculares Causadas por Fungos. Recife: EDUFRPE, 2018. Cap. 11, p. 179-192.). Methyl bromide (CH3Br) is a classic example of a product used for this purpose and, until it was prohibited, around three-quarters of its consumption worldwide was associated with soil fumigation for cultivation of vegetable species (EPSTEIN, 2014EPSTEIN, L. Fifty Years Since Silent Spring. Annual Review of Phytopathology, v.52, p.377-402, 2014. Available from: <Available from: https://doi.org/10.1146/annurev-phyto-102313-045900 >. Accessed: Sep. 20, 2019. doi: 10.1146/annurev-phyto-102313-045900.
https://doi.org/10.1146/annurev-phyto-10...
). Its prohibition led to limitations in some production sectors, such as vegetables, flowers, and seedlings, and a race began in the search for CH3Br substitutes (BAKER et al., 1996BAKER, L. W. et al. Ambient air concentrations of pesticides in California. Environmental Science & Technology, v.30, p.365-1368, 1996. Available from <Available from https://doi.org/10.1021/es950608l >. Accessed: Nov. 20, 2019. doi: 10.1021/es950608l.
https://doi.org/10.1021/es950608l...
; EPSTEIN, 2014EPSTEIN, L. Fifty Years Since Silent Spring. Annual Review of Phytopathology, v.52, p.377-402, 2014. Available from: <Available from: https://doi.org/10.1146/annurev-phyto-102313-045900 >. Accessed: Sep. 20, 2019. doi: 10.1146/annurev-phyto-102313-045900.
https://doi.org/10.1146/annurev-phyto-10...
; PRASAD et al., 2015PRASAD, P. et al. Biofumigation: Success and Prospects in Soilborne Plant Disease Management. International Journal of Applied And Pure Science and Agriculture, v.1, n.6, p.47-59, 2015. Available from <Available from https://ijapsa.com/published-papers/volume-1/issue-6/biofumigation-success-and-prospects-in-soilborne-plant-disease-management.pdf >. Accessed: Sep. 8, 2019.
https://ijapsa.com/published-papers/volu...
). These substitutes included metam sodium (C2H4NNaS2) and dazomet (C5H10N2S2) (AGROFIT, 2020AGROFIT. Sistema de Agrotóxicos Fitossanitários do Ministério da Agricultura. 2020. Available from: <Available from: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons >. Accessed: Apr. 15, 2020.
http://agrofit.agricultura.gov.br/agrofi...
), both of which are precursors of the volatile compound methyl isothiocyanate.

However, regardless of the product used, fumigation aims to sterilize the soil, which is incompatible with the philosophy and principles of production systems that value the biological activity of the soil, such as organic or agroecological systems (LADHALAKSHMI et al., 2015LADHALAKSHMI, D. et al. Biofumigation in crop disease management. In: GANESAN, S. et al. Sustainable Crop Disease Management using Natural Products. Boston: CAB International, 2015. Cap.19, p.389-402.; BRUGGEN & FINCKH, 2016BRUGGEN, A. H. C.; FINCKH, M. R. Plant diseases and management approaches in organic farming systems. Annual Review of Phytopathology, v.54, p.25-54, 2016. Available from: <Available from: https://www.annualreviews.org/doi/10.1146/annurev-phyto-080615-100123 >. Accessed: Dec. 20, 2019. doi: 10.1146/annurev-phyto-080615-100123.
https://www.annualreviews.org/doi/10.114...
; GAMLIEL & BRUGGEN, 2016GAMLIEL, A.; BRUGGEN, A. H. C. Maintaining soil health for crop production in organic greenhouses. Scientia Horticulturae, v.208, p.120-130, 2016. Available from <Available from https://doi.org/10.1016/j.scienta.2015.12.030 >. Accessed: Sep. 15, 2019. doi: 10.1016/j.scienta.2015.12.030.
https://doi.org/10.1016/j.scienta.2015.1...
). Since the 1990s, studies have investigated alternative proposals or techniques that may be used to replace fumigation with synthetic chemical compounds (KIRKEGAARD et al., 1993KIRKEGAARD, J.A. et al. Biofumigation - using Brassica species to control pests and diseases in horticulture and agriculture. In: WRATTEN, N.: MAILER, R. J. Proceedings of the 9th Australian Research Assembly on Brassicas. Wagga Wagga, The Assembly, 1993. p.77-82.; MATTHIESSEN & KIRKEGAARD, 2006MATTHIESSEN, J. N.; KIRKEGAARD, J. A. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, v.25, p.235-65, 2006. Available from: <Available from: https://doi.org/10.1080/07352680600611543 > Accessed: Jun. 12, 2019. doi: 10.1080/07352680600611543.
https://doi.org/10.1080/0735268060061154...
; KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; MORRIS et al., 2020MORRIS, E. K. et al. Effective methods of biofumigation: a meta-analysis. Plant and Soil, v.446, p.379-392, 2020. Available from: <Available from: https://doi.org/10.1007/s11104-019-04352-y >. Accessed: Apr. 15, 2020. doi: 10.1007/s11104-019-04352-y.
https://doi.org/10.1007/s11104-019-04352...
). One of these techniques is biofumigation, which involves the application or incorporation of residues from plant species capable of releasing gases with bioactive or biofumigant action. Biofumigation is effective at controlling phytopathogens that cause disease in plants (fungi, oomycetes, nematodes, and bacteria), insects, and weed seeds (KARAVINA & MANDUMBU, 2012KARAVINA, C.; MANDUMBU, R. Biofumigation for crop protection: potential for adoption in Zimbabwe. Journal of Animal & Plant Sciences, v.14, n.3, 1996-2005, 2012. Available from: <Available from: http://www.m.elewa.org/JAPS/2012/14.3/3.pdf >. Accessed: Apr. 18, 2020.
http://www.m.elewa.org/JAPS/2012/14.3/3....
; LADHALAKSHMI et al., 2015; PRASAD et al., 2015; GUREL et al., 2018GUREL, F. B. et al. Biofumigation: Opportunities and challenges for control of soilborne diseases in nursery production. Plant Health Progress, v. 19, n. 4, p. 332-337, 2018. Available from: <Available from: https://doi.org/10.1094/PHP-08-18-0049-RV >. Accessed: May, 15, 2020. doi: 10.1094/PHP-08-18-0049-RV.
https://doi.org/10.1094/PHP-08-18-0049-R...
; DUTTA et al., 2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
).

Plant species from the Brassicaceae family have been widely used and studied for biofumigation due to the presence of compounds, including glucosinolates (GSLs), which, after enzymatic hydrolysis, release bioactive gases such as isothiocyanates (GIMSING & KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; NTALLI & CARBONI, 2017NTALLI, N.; CABONI, P. A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochemistry Reviews, v. 6, n.5, p.827-834, 2017. Available from: <Available from: https://doi.org/10.1007/s11101-017-9491-7 >. Accessed: Apr. 16, 2020. doi: 10.1007/s11101-017-9491-7.
https://doi.org/10.1007/s11101-017-9491-...
). Brassica or cruciferous plants, a generic name given to species of the Brassicaceae family, are widely consumed by humans and animals, and used for the production of edible and industrial oils (RAHMAN et al., 2018RAHMAN, M. et al. Brassicaceae mustards: Traditional and agronomic uses in Australia and New Zealand. Molecules, v.23, n.1, 2018. Available from: <Available from: https://www.ncbi.nlm.nih.gov/pubmed/29361740 >. Accessed: Apr. 15, 2020. doi: doi:10.3390/molecules23010231.
https://www.ncbi.nlm.nih.gov/pubmed/2936...
; UGRENOVIĆ et al., 2019UGRENOVIĆ, V. et al. Effect of Brassicaceae as cover crops. Selekcija I Semenarstvo, v.25, n.2, p.1-8, 2019. Available from: <Available from: http://dx.doi.org/10.5937/SelSem1902001U >. Accessed: Apr. 15, 2020. doi: doi:10.3390/molecules23010231.
http://dx.doi.org/10.5937/SelSem1902001U...
). Generally, these plants grow quickly and produce large amounts of biomass. They also provide good soil coverage and are highly efficient at absorbing nutrients (UGRENOVIĆ et al., 2019UGRENOVIĆ, V. et al. Effect of Brassicaceae as cover crops. Selekcija I Semenarstvo, v.25, n.2, p.1-8, 2019. Available from: <Available from: http://dx.doi.org/10.5937/SelSem1902001U >. Accessed: Apr. 15, 2020. doi: doi:10.3390/molecules23010231.
http://dx.doi.org/10.5937/SelSem1902001U...
). Among the Brassicaceae family, species of the genera Brassica, Raphanus, Sinapis, and Eruca are the most commonly used for biofumigation (MATTHIESSEN & KIRKEGAARD, 2006MATTHIESSEN, J. N.; KIRKEGAARD, J. A. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, v.25, p.235-65, 2006. Available from: <Available from: https://doi.org/10.1080/07352680600611543 > Accessed: Jun. 12, 2019. doi: 10.1080/07352680600611543.
https://doi.org/10.1080/0735268060061154...
; CLARKSON et al., 2015CLARKSON, J. et al. Biofumigation for the control of soil-borne diseases. EPI-AGRI. Soil-borne diseases. 2015. Available from <Available from https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf >. Accessed: Sep. 16, 2019.
https://ec.europa.eu/eip/agriculture/sit...
; HANSCHEN & WINKELMANN, 2020HANSCHEN, F. S.; WINKELMANN, T. Biofumigation for fighting replant disease- A Review. Agronomy, v.10, n.3, 2020. Available from: <Available from: https://doi.org/10.3390/agronomy10030425 >. Accessed: Apr. 15, 2020. doi: 10.3390/agronomy10030425.
https://doi.org/10.3390/agronomy10030425...
; MORRIS et al., 2020MORRIS, E. K. et al. Effective methods of biofumigation: a meta-analysis. Plant and Soil, v.446, p.379-392, 2020. Available from: <Available from: https://doi.org/10.1007/s11104-019-04352-y >. Accessed: Apr. 15, 2020. doi: 10.1007/s11104-019-04352-y.
https://doi.org/10.1007/s11104-019-04352...
).

The technique can be summarized with a sequence of events, beginning with the cultivation of brassica, followed by cutting and fragmentation, incorporation of biomass into the soil, and the addition of water. This process results in the release of bioactive substances, nutrient cycling, increased levels of organic matter in the soil; and consequently, improved physical, chemical, and biological properties (KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; CLARKSON et al., 2015CLARKSON, J. et al. Biofumigation for the control of soil-borne diseases. EPI-AGRI. Soil-borne diseases. 2015. Available from <Available from https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf >. Accessed: Sep. 16, 2019.
https://ec.europa.eu/eip/agriculture/sit...
). Substantial technological advances have already been achieved in terms of tests and validation, and commercial products based on the cake obtained from pressing brassica seeds are available for oil extraction, liquid formulations, pellets, leaf extracts, and brassica-based oils (LORD et al., 2011LORD, J. S., et al. Biofumigation for control of pale potato cyst nematodes: activity of brassica leaf extracts and green manures on Globodera pallida in vitro and in soil. Journal of Agricultural and Food Chemistry, v.59, p.7882-7890, 2011. Available from: <Available from: https://doi.org/10.1021/jf200925k > Accessed: Jun. 12, 2019. doi: 10.1021/jf200925k.
https://doi.org/10.1021/jf200925k...
; NICOLA et al., 2013NICOLA, G.R. et al. A new biobased liquid formulation with biofumigant and fertilizing properties for drip irrigation distribution. Industrial Crops and Products, v.42, p.113-118, 2013. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2012.05.018 >. Accessed: Jul. 15, 2019. doi: 10.1016/j.indcrop.2012.05.018.
https://doi.org/10.1016/j.indcrop.2012.0...
; CURTO et al., 2016CURTO, G. et al. Biofumigant effect of new defatted seed meals against the southern root‐knot nematode, Meloidogyne incognita. Annals of applied biology, v.169, n.1, 17-26, 2016. Available from: <Available from: https://doi.org/10.1111/aab.12275 >. Accessed: Apr. 19, 2020. doi: 10.1111/aab.12275.
https://doi.org/10.1111/aab.12275...
; WEI et al., 2016WEI, F. et al. Effects of individual and combined use of bio-fumigation-derived products on the viability of Verticillium dahliae microsclerotia in soil. Crop Protection, v.79, p.170-176, 2016. Available from: <Available from: https://doi.org/10.1016/j.cropro.2015.09.008 >. Accessed: Dec. 18, 2019. doi: 10.1016/j.cropro.2015.09.008.
https://doi.org/10.1016/j.cropro.2015.09...
; SERRANO-PÉREZ et al., 2017; RONCATO et al., 2018RONCATO, S. C. et al. Control of Meloidogyne incognita in tomato by crambe extract using different application forms. Summa Phytopathologica, v.44, n.3, p.261-266, 2018. Available from: <Available from: https://doi.org/10.1590/0100-5405/179533 >. Accessed: May, 7, 2020. doi: 10.1590/0100-5405/179533>.
https://doi.org/10.1590/0100-5405/179533...
; RUBAYET et al., 2018RUBAYET, M. T. et al. Effect of biofumigation and soil solarization on stem canker and black scurf diseases of potato (Solanum tuberosum L.) caused by Rhizoctonia solani isolate PR2. Advances in Agricultural Science, v.6, n.3, p.33-48, 2018. Available from: <Available from: https://aaasjournal.org/submission/index.php/aaas/article/view/80 >. Accessed: Apr. 19, 2020.
https://aaasjournal.org/submission/index...
; PONTES et al., 2019PONTES, N. C. et al. Soil fumigation with mustard essential oil to control bacterial wilt in tomato. European Journal of Plant Pathology , v.155, p.435-444. 2019. Available from: <Available from: https://doi.org/10.1007/s10658-019-01777-0 >. Accessed: Apr. 20, 2020. doi: 10.1007/s10658-019-01777-0.
https://doi.org/10.1007/s10658-019-01777...
). To date, species of the Brassicaceae family have been tested and used in various countries such as Italy, India, Australia, China, the United Kingdom, Spain, the United States, Argentina, South Africa, Germany, Switzerland (MATTHIESSEN & KIRKEGAARD, 2006MATTHIESSEN, J. N.; KIRKEGAARD, J. A. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, v.25, p.235-65, 2006. Available from: <Available from: https://doi.org/10.1080/07352680600611543 > Accessed: Jun. 12, 2019. doi: 10.1080/07352680600611543.
https://doi.org/10.1080/0735268060061154...
; KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; DONALD et al., 2010DONALD, D. et al. Managing Soilborne Diseases in Vegetables: Rotation with green manure and biofumigant crops shows disease control & yield benefits. Victoria: Department of Primary Industries, 2010. Available from: <Available from: https://ausveg.com.au/app/data/technical-insights/docs/VG07125_Soilborne_Diseases_brochure.pdf >. Accessed: Nov. 27, 2019.
https://ausveg.com.au/app/data/technical...
; PERNIOLA et al., 2012PERNIOLA, O. S et al. Biofumigación con Brassicáceas: actividad supresora sobre Fusarium graminearum. Revista de la Facultad de Agronomía, v.111, n.1, p.48-53, 2012. Available from: <Available from: http://revista.agro.unlp.edu.ar/index.php/revagro/article/view/71 >. Accessed: Apr. 16, 2020.
http://revista.agro.unlp.edu.ar/index.ph...
; LAZZERI et al., 2013LAZZERI, L. et al. The Brassicaceae biofumigation system for plant cultivation and defence. An Italian twenty-year experience of study and application. Acta Hortic, v.1005, p.375-382, 2013. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2013.1005.44 > Accessed: Sep. 8, 2019. doi: 10.17660/ActaHortic.2013.1005.44.
https://doi.org/10.17660/ActaHortic.2013...
; MICHEL, 2014MICHEL, V.V. Ten years of biofumigation research in Switzerland. Aspects of Applied Biology, v.126, p.33-42, 2014. Available from: <Available from: http://link.ira.agroscope.ch/en-US/publication/34214 >. Accessed: Sep. 8, 2019.
http://link.ira.agroscope.ch/en-US/publi...
; LADHALAKSHMI et al., 2015LADHALAKSHMI, D. et al. Biofumigation in crop disease management. In: GANESAN, S. et al. Sustainable Crop Disease Management using Natural Products. Boston: CAB International, 2015. Cap.19, p.389-402.; WEI et al., 2016; PAN et al., 2017PAN, X. et al. Effect of oriental mustard (Brassica juncea) seed meal for control of dollar spot on creeping bentgrass (Agrostis stolonifera) Turf. International Turfgrass Society Research Journal, v.13, n.1, p.166-174, 2017. Available from: <Available from: https://doi.org/10.2134/itsrj2016.06.0455 >. Accessed: Apr. 17, 2020. doi: 10.2134/itsrj2016.06.0455.
https://doi.org/10.2134/itsrj2016.06.045...
; RÍOS et al., 2017RÍOS, P. et al. Brassica-based seedmeal biofumigation to control Phytophthora cinnamomi in the Spanish “dehesa” oak trees. Phytopathologia Mediterranea, v.56, n.3, p.392-399, 2017. Available from: <Available from: https://doi.org/10.14601/Phytopathol_Mediterr-20771 >. Accessed: Apr. 22, 2020. doi: 10.14601/Phytopathol_Mediterr-20771.
https://doi.org/10.14601/Phytopathol_Med...
; DANEEL et al., 2018DANEEL, M. et al. The host status of Brassicaceae to Meloidogyne and their effects as cover and biofumigant crops on root-knot nematode populations associated with potato and tomato under South African field conditions. Crop protection, v.110, p.198-206, 2018. Available from: <Available from: https://doi.org/10.1016/j.cropro.2017.09.001 >. Accessed: May, 02, 2020. doi: 10.1016/j.cropro.2017.09.001.
https://doi.org/10.1016/j.cropro.2017.09...
; DUTTA et al., 2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
; JIN et al., 2019JIN, X. et al. Rotations with Indian mustard and wild rocket suppressed cucumber Fusarium wilt disease and changed rhizosphere bacterial communities. Microorganisms, v.7, n.2, p.57, 2019. Available from: <Available from: http://dx.doi.org/10.3390/microorganisms7020057 >. Accessed: Mar. 19, 2020. doi: 10.3390/microorganisms7020057.
http://dx.doi.org/10.3390/microorganisms...
; CAMPANELLA et al., 2020; HANSCHEN & WINKELMANN, 2020HANSCHEN, F. S.; WINKELMANN, T. Biofumigation for fighting replant disease- A Review. Agronomy, v.10, n.3, 2020. Available from: <Available from: https://doi.org/10.3390/agronomy10030425 >. Accessed: Apr. 15, 2020. doi: 10.3390/agronomy10030425.
https://doi.org/10.3390/agronomy10030425...
; MORRIS et al., 2020MORRIS, E. K. et al. Effective methods of biofumigation: a meta-analysis. Plant and Soil, v.446, p.379-392, 2020. Available from: <Available from: https://doi.org/10.1007/s11104-019-04352-y >. Accessed: Apr. 15, 2020. doi: 10.1007/s11104-019-04352-y.
https://doi.org/10.1007/s11104-019-04352...
), and Brazil (OLIVEIRA et al., 2011OLIVEIRA, R. D. L. et al. Glucosinolate content and nematicidal activity of Brazilian wild mustard tissues against Meloidogyne incognita in tomato. Plant and Soil , v. 341, n. 1-2, p. 155-164, 2011. Available from: <Available from: https://doi.org/10.1007/s11104-010-0631-8 >. Accessed: Apr. 20, 2020. doi: 10.1007/s11104-010-0631-8.
https://doi.org/10.1007/s11104-010-0631-...
; BARROS et al., 2014BARROS, A. F. et al. Exposure time of second stage juveniles to volatiles emitted by neem and mustard macerates and biofumigation against Meloidogyne incognita. Nematropica, v.44, n.2, p.190-199, 2014. Available from: <Available from: https://journals.flvc.org/nematropica/article/view/84284 >. Accessed: Mar. 15, 2019.
https://journals.flvc.org/nematropica/ar...
; RONCATO et al., 2018). Results obtained around the world have been promising. A meta-analysis including information from 934 biofumigation tests with brassica residues, reported a decreased incidence of diseases and an increase of around 30% in the productivity of different crops (MORRIS et al., 2020).

Studies on the use of Brassicaceae family plants in biofumigation have advanced in recent decades. This literature review was conducted to collate this information and encourage research and the use of these plants in biofumigation. This review was organized into the following six sections: (1) biofumigation concepts, benefits, and mechanisms of action; (2) main volatile compounds released in the soil following decomposition of residues of Brassicaceae family species involved in the suppression of phytopathogens, insects, and weed species; 3) main brassica species used in biofumigation, their forms of use, and management; 4) main controlled agents and examples of successful and promising experiences; 5) limitations of the technique and current knowledge gaps; 6) non-brassica species and organic residues with similar potential and future prospects.

Biofumigation - definition, benefits, and mechanisms of action

The term biofumigation was initially proposed to describe a disease control technique that incorporated plants or plant residues into the soil to release volatile biocidal compounds during their decomposition (KIRKEGAARD et al., 1993KIRKEGAARD, J.A. et al. Biofumigation - using Brassica species to control pests and diseases in horticulture and agriculture. In: WRATTEN, N.: MAILER, R. J. Proceedings of the 9th Australian Research Assembly on Brassicas. Wagga Wagga, The Assembly, 1993. p.77-82.; TSROR et al. 2007TSROR, L. et al. Biofumigation for the control of soilborne diseases. Acta horticulturae, v.747, 389-394, 2007. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2007.747.48 >. Accessed: Nov. 17, 2019. doi: 10.17660/ActaHortic.2007.747.48.
https://doi.org/10.17660/ActaHortic.2007...
; LADHALAKSHMI et al., 2015LADHALAKSHMI, D. et al. Biofumigation in crop disease management. In: GANESAN, S. et al. Sustainable Crop Disease Management using Natural Products. Boston: CAB International, 2015. Cap.19, p.389-402.; PRASAD et al., 2015PRASAD, P. et al. Biofumigation: Success and Prospects in Soilborne Plant Disease Management. International Journal of Applied And Pure Science and Agriculture, v.1, n.6, p.47-59, 2015. Available from <Available from https://ijapsa.com/published-papers/volume-1/issue-6/biofumigation-success-and-prospects-in-soilborne-plant-disease-management.pdf >. Accessed: Sep. 8, 2019.
https://ijapsa.com/published-papers/volu...
; HANSCHEN & WINKELMANN, 2020HANSCHEN, F. S.; WINKELMANN, T. Biofumigation for fighting replant disease- A Review. Agronomy, v.10, n.3, 2020. Available from: <Available from: https://doi.org/10.3390/agronomy10030425 >. Accessed: Apr. 15, 2020. doi: 10.3390/agronomy10030425.
https://doi.org/10.3390/agronomy10030425...
). This term was originally proposed by J. A. Kirkegaard to describe the process of cultivation, fragmentation, and incorporation of brassica residues (generic name given to species belonging to the Brassicaceae family) with the aim of releasing volatile compounds by the hydrolysis of GSLs present in the tissues of these plants (KIRKEGAARD et al., 1993KIRKEGAARD, J.A. et al. Biofumigation - using Brassica species to control pests and diseases in horticulture and agriculture. In: WRATTEN, N.: MAILER, R. J. Proceedings of the 9th Australian Research Assembly on Brassicas. Wagga Wagga, The Assembly, 1993. p.77-82.). Isothiocyanates (ITCs) are among the biologically active products obtained from GSL hydrolysis (GIMSING & KIRKEGAARD, 2009GIMSING, A. L.; KIRKEGAARD, J. A. Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochemistry Reviews, v.8, n.1, p.299-310, 2009. Available from <Available from https://doi.org/10.1007/s11101-008-9105-5 >. Accessed: Dec. 15, 2019. doi: 10.1007/s11101-008-9105-5.
https://doi.org/10.1007/s11101-008-9105-...
; KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; CLARKSON et al., 2015CLARKSON, J. et al. Biofumigation for the control of soil-borne diseases. EPI-AGRI. Soil-borne diseases. 2015. Available from <Available from https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf >. Accessed: Sep. 16, 2019.
https://ec.europa.eu/eip/agriculture/sit...
; MAWAR & LODHA, 2015MAWAR, R.; LODHA, S. Suppression of soilborne plant pathogens by cruciferous residues. In: MEGHVANSI, M.; VARMA, A. (eds). Organic Amendments and Soil Suppressiveness in Plant Disease Management. Cham: Springer , 2015. Cap.20, p.413-433.; PRASAD et al., 2015). Notably, the volatile compound (methyl isothiocyanate) released by the synthetic fumigants (metam sodium and dazomet) currently sold in Brazil is also an ITC (AGROFIT, 2020).

The term biofumigation integrates a broader phenomenon by involving a series of allelopathic effects that have been empirically observed in brassica for centuries (PRASAD et al., 2015PRASAD, P. et al. Biofumigation: Success and Prospects in Soilborne Plant Disease Management. International Journal of Applied And Pure Science and Agriculture, v.1, n.6, p.47-59, 2015. Available from <Available from https://ijapsa.com/published-papers/volume-1/issue-6/biofumigation-success-and-prospects-in-soilborne-plant-disease-management.pdf >. Accessed: Sep. 8, 2019.
https://ijapsa.com/published-papers/volu...
). Currently, a more detailed approach to biofumigation research has demonstrated its positive effects on disease control, thereby improving our understanding of the processes and mechanisms involved, and its practical application (DIXON & TILSTON, 2010DIXON, G. R.; TILSTON E. L. Soil-borne pathogens and their interactions with the soil environment. In: DIXON, G. R.; TILSTON, E. L. Soil Microbiology and Sustainable Crop Production. Dordrecht, Netherlands: Springer, 2010. Cap. 6, p. 197-271.; LAZZERI et al., 2013LAZZERI, L. et al. The Brassicaceae biofumigation system for plant cultivation and defence. An Italian twenty-year experience of study and application. Acta Hortic, v.1005, p.375-382, 2013. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2013.1005.44 > Accessed: Sep. 8, 2019. doi: 10.17660/ActaHortic.2013.1005.44.
https://doi.org/10.17660/ActaHortic.2013...
; CURTO et al., 2016CURTO, G. et al. Biofumigant effect of new defatted seed meals against the southern root‐knot nematode, Meloidogyne incognita. Annals of applied biology, v.169, n.1, 17-26, 2016. Available from: <Available from: https://doi.org/10.1111/aab.12275 >. Accessed: Apr. 19, 2020. doi: 10.1111/aab.12275.
https://doi.org/10.1111/aab.12275...
; WEI et al., 2016WEI, F. et al. Effects of individual and combined use of bio-fumigation-derived products on the viability of Verticillium dahliae microsclerotia in soil. Crop Protection, v.79, p.170-176, 2016. Available from: <Available from: https://doi.org/10.1016/j.cropro.2015.09.008 >. Accessed: Dec. 18, 2019. doi: 10.1016/j.cropro.2015.09.008.
https://doi.org/10.1016/j.cropro.2015.09...
; MORALES-RODRÍGUEZ et al., 2018MORALES-RODRÍGUEZ, C. et al. Application of Trichoderma spp. complex and biofumigation to control damping-off of Pinus radiata D. Don caused by Fusarium circinatum Nirenberg and O’Donnell. Forests, v.9, n.7, p.421, 2018. Available from: <Available from: https://doi.org/10.3390/f9070421 >. Accessed: Mar. 16, 2020. doi: 10.3390/f9070421.
https://doi.org/10.3390/f9070421...
; DUTTA et al., 2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
; JIN et al., 2019JIN, X. et al. Rotations with Indian mustard and wild rocket suppressed cucumber Fusarium wilt disease and changed rhizosphere bacterial communities. Microorganisms, v.7, n.2, p.57, 2019. Available from: <Available from: http://dx.doi.org/10.3390/microorganisms7020057 >. Accessed: Mar. 19, 2020. doi: 10.3390/microorganisms7020057.
http://dx.doi.org/10.3390/microorganisms...
; CAMPANELLA et al., 2020CAMPANELLA, V. et al. Management of common root rot and Fusarium foot rot of wheat using Brassica carinata break crop green manure. Crop Protection, v.130, 2020. Available from: <Available from: https://doi.org/10.1016/j.cropro.2019.105073 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cropro.2019.105073.
https://doi.org/10.1016/j.cropro.2019.10...
; HANSCHEN & WINKELMANN, 2020HANSCHEN, F. S.; WINKELMANN, T. Biofumigation for fighting replant disease- A Review. Agronomy, v.10, n.3, 2020. Available from: <Available from: https://doi.org/10.3390/agronomy10030425 >. Accessed: Apr. 15, 2020. doi: 10.3390/agronomy10030425.
https://doi.org/10.3390/agronomy10030425...
; MORRIS et al., 2020MORRIS, E. K. et al. Effective methods of biofumigation: a meta-analysis. Plant and Soil, v.446, p.379-392, 2020. Available from: <Available from: https://doi.org/10.1007/s11104-019-04352-y >. Accessed: Apr. 15, 2020. doi: 10.1007/s11104-019-04352-y.
https://doi.org/10.1007/s11104-019-04352...
). This concept has been expanded and popularized to cover the use of a series of organic vegetable materials and animal production residues (GIMSING & KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; KIRKEGAARD, 2009, PRASAD et al., 2015; KUMAR et al., 2018KUMAR, G. N. K. et al. Disease management by Biofumigation in organic farming system. Journal of Pharmacognosy and Phytochemistry, v.7, n.4, p.676-679, 2018. Available from: <Available from: http://www.phytojournal.com/archives/2018/vol7issue4/PartK/7-3-654-578.pdf >. Accessed: Sep. 8, 2019.
http://www.phytojournal.com/archives/201...
; DUTTA et al., 2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
). Therefore, the concept of biofumigation has been extended to include the aerobic disinfestation of soil by the addition of residues or organic matter, resulting in the release of volatile compounds during decomposition that exert toxicity on undesirable soil organisms (MATTHIESSEN & KIRKEGAARD, 2006MATTHIESSEN, J. N.; KIRKEGAARD, J. A. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, v.25, p.235-65, 2006. Available from: <Available from: https://doi.org/10.1080/07352680600611543 > Accessed: Jun. 12, 2019. doi: 10.1080/07352680600611543.
https://doi.org/10.1080/0735268060061154...
; BRUGGEN & FINCKH, 2016BRUGGEN, A. H. C.; FINCKH, M. R. Plant diseases and management approaches in organic farming systems. Annual Review of Phytopathology, v.54, p.25-54, 2016. Available from: <Available from: https://www.annualreviews.org/doi/10.1146/annurev-phyto-080615-100123 >. Accessed: Dec. 20, 2019. doi: 10.1146/annurev-phyto-080615-100123.
https://www.annualreviews.org/doi/10.114...
; GAMLIEL & BRUGGEN, 2016GAMLIEL, A.; BRUGGEN, A. H. C. Maintaining soil health for crop production in organic greenhouses. Scientia Horticulturae, v.208, p.120-130, 2016. Available from <Available from https://doi.org/10.1016/j.scienta.2015.12.030 >. Accessed: Sep. 15, 2019. doi: 10.1016/j.scienta.2015.12.030.
https://doi.org/10.1016/j.scienta.2015.1...
).

Biofumigation is different from another similar technique known as anaerobic biodesinfestation or anaerobic soil disinfestation. In this case, easily decomposed organic materials are incorporated in the soil in high amounts to stimulate rapid microbial growth. This leads to oxygen depletion due to increased microbial respiration (BRUGGEN & FINCKH, 2016BRUGGEN, A. H. C.; FINCKH, M. R. Plant diseases and management approaches in organic farming systems. Annual Review of Phytopathology, v.54, p.25-54, 2016. Available from: <Available from: https://www.annualreviews.org/doi/10.1146/annurev-phyto-080615-100123 >. Accessed: Dec. 20, 2019. doi: 10.1146/annurev-phyto-080615-100123.
https://www.annualreviews.org/doi/10.114...
; GAMLIEL & BRUGGEN, 2016GAMLIEL, A.; BRUGGEN, A. H. C. Maintaining soil health for crop production in organic greenhouses. Scientia Horticulturae, v.208, p.120-130, 2016. Available from <Available from https://doi.org/10.1016/j.scienta.2015.12.030 >. Accessed: Sep. 15, 2019. doi: 10.1016/j.scienta.2015.12.030.
https://doi.org/10.1016/j.scienta.2015.1...
; WEI et al., 2016WEI, F. et al. Effects of individual and combined use of bio-fumigation-derived products on the viability of Verticillium dahliae microsclerotia in soil. Crop Protection, v.79, p.170-176, 2016. Available from: <Available from: https://doi.org/10.1016/j.cropro.2015.09.008 >. Accessed: Dec. 18, 2019. doi: 10.1016/j.cropro.2015.09.008.
https://doi.org/10.1016/j.cropro.2015.09...
) and the release of toxic compounds and gases from the decomposition of organic matter (LARREGLA et al., 2015LARREGLA, S. et al. Biodisinfestation with organic amendments for soil fatigue and soil-Borne pathogens control in protected pepper crops. In: MEGHVANSI, M.; VARMA, A. Organic Amendments and Soil Suppressiveness in Plant Disease Management. Cham: Springer, 2015. Cap.21, p.437-456.). Different types of residue can be used in this process, including brassica (ROSSKOPF et al., 2015ROSSKOPF, E. N. et al. Anaerobic Soil Disinfestation and Soilborne Pest Management In: MEGHVANSI, M.; VARMA, A. (eds). Organic Amendments and Soil Suppressiveness in Plant Disease Management. Cham: Springer , 2015. Cap. 13, p. 277-306.). Despite the consensus among most experts and researchers, there are some disagreements about these terminologies and the differences between the two methods, which can lead to misinterpretation.

Aerobic biofumigation can be combined with other techniques, such as soil solarization (LADHALAKSHMI et al., 2015LADHALAKSHMI, D. et al. Biofumigation in crop disease management. In: GANESAN, S. et al. Sustainable Crop Disease Management using Natural Products. Boston: CAB International, 2015. Cap.19, p.389-402.; GAMLIEL & BRUGGEN, 2016GAMLIEL, A.; BRUGGEN, A. H. C. Maintaining soil health for crop production in organic greenhouses. Scientia Horticulturae, v.208, p.120-130, 2016. Available from <Available from https://doi.org/10.1016/j.scienta.2015.12.030 >. Accessed: Sep. 15, 2019. doi: 10.1016/j.scienta.2015.12.030.
https://doi.org/10.1016/j.scienta.2015.1...
), in which the soil temperature is increased by utilizing the incident solar energy on previously moistened soil covered with transparent polyethylene film (GAMLIEL & KATAN, 2009GAMLIEL, A.; KATAN, J. Control of plant disease through soil solarization. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell, 2009. Cap. 10, p. 196-220.). In this case, some researchers prefer to name the combination of these two techniques as ‘soil biosolarization’ (ROS et al., 2008ROS, M. et al. Effects of biosolarization as methyl bromide alternative for Meloidogyne incognita control on quality of soil under pepper. Biology and Fertility of Soils, v.45, p.37-44, 2008. Available from: <Available from: https://link.springer.com/article/10.1007/s00374-008-0307-1 >. Accessed: Sep. 8, 2019. doi: 10.1007/s00374-008-0307-1.
https://link.springer.com/article/10.100...
; VILLALOBOS et al., 2013VILLALOBOS, J. A. M.; et al. Producción de chile (Capsicum annuum L.) a campo abierto con biofumigación del suelo. Durango: INIFAP, 2013. Available from: <Available from: http://biblioteca.inifap.gob.mx:8080/jspui/handle/123456789/4097 >. Accessed: Sep. 02, 2019.
http://biblioteca.inifap.gob.mx:8080/jsp...
). This combination enhances their effects, especially in tropical regions where solar radiation is abundant (ROS et al., 2008; BARRAU et al., 2009BARRAU, C. et al. Brassica carinata for control of Phytophthora spp. in strawberry field crops. Revista de Ciências Agrárias, v.32, n.2, p.135-138, 2009. Available from: <Available from: http://www.scielo.mec.pt/pdf/rca/v32n2/v32n2a13.pdf >. Accessed: Mar. 18, 2020.
http://www.scielo.mec.pt/pdf/rca/v32n2/v...
; VILLALOBOS et al., 2013; GAMLIEL & BRUGGEN, 2016; ROS et al., 2016).

Biofumigation with the incorporation of brassica residues has other effects in addition to the release of ITCs (MATTHIESSEN & KIRKEGAARD, 2006MATTHIESSEN, J. N.; KIRKEGAARD, J. A. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, v.25, p.235-65, 2006. Available from: <Available from: https://doi.org/10.1080/07352680600611543 > Accessed: Jun. 12, 2019. doi: 10.1080/07352680600611543.
https://doi.org/10.1080/0735268060061154...
; GIMSING & KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; HANSCHEN & WINKELMANN, 2020HANSCHEN, F. S.; WINKELMANN, T. Biofumigation for fighting replant disease- A Review. Agronomy, v.10, n.3, 2020. Available from: <Available from: https://doi.org/10.3390/agronomy10030425 >. Accessed: Apr. 15, 2020. doi: 10.3390/agronomy10030425.
https://doi.org/10.3390/agronomy10030425...
), which may enhance the suppression of soilborne phytopathogens (CLARKSON et al., 2015CLARKSON, J. et al. Biofumigation for the control of soil-borne diseases. EPI-AGRI. Soil-borne diseases. 2015. Available from <Available from https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf >. Accessed: Sep. 16, 2019.
https://ec.europa.eu/eip/agriculture/sit...
). These effects include increased organic matter content in the soil, with consequent improvements in physical properties and water retention, improved soil fertility due to nutrient cycling and supply, and improved microbial activity (CLARKSON et al., 2015; PRASAD et al., 2015PRASAD, P. et al. Biofumigation: Success and Prospects in Soilborne Plant Disease Management. International Journal of Applied And Pure Science and Agriculture, v.1, n.6, p.47-59, 2015. Available from <Available from https://ijapsa.com/published-papers/volume-1/issue-6/biofumigation-success-and-prospects-in-soilborne-plant-disease-management.pdf >. Accessed: Sep. 8, 2019.
https://ijapsa.com/published-papers/volu...
; NTALLI & CARBONI, 2017NTALLI, N.; CABONI, P. A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochemistry Reviews, v. 6, n.5, p.827-834, 2017. Available from: <Available from: https://doi.org/10.1007/s11101-017-9491-7 >. Accessed: Apr. 16, 2020. doi: 10.1007/s11101-017-9491-7.
https://doi.org/10.1007/s11101-017-9491-...
). However, a full understanding of this multiplicity of effects on disease suppression remains to be elucidated (CLARKSON et al., 2015).

The efficiency of biofumigation in disease control varies according to the phytopathogen and its sensitivity to the ITCs released during GSL hydrolysis (FAN et al., 2008FAN, C. M. et al. Potential biofumigation effects of Brassica oleracea var. caulorapa on growth of fungi. Journal of Phytopathology, v.156, n.6, p.321-325, 2008. Available from: <Available from: https://doi.org/10.1111/j.1439-0434.2007.01343.x >. Accessed: Apr. 15, 2020. doi: 10.1111/j.1439-0434.2007.01343.x.
https://doi.org/10.1111/j.1439-0434.2007...
; MAWAR & LODHA, 2015MAWAR, R.; LODHA, S. Suppression of soilborne plant pathogens by cruciferous residues. In: MEGHVANSI, M.; VARMA, A. (eds). Organic Amendments and Soil Suppressiveness in Plant Disease Management. Cham: Springer , 2015. Cap.20, p.413-433.). For example, Pythium species have been reported to be least sensitive to these compounds (MAWAR & LODHA, 2015). Efficiency can also vary according to the life cycle phase of the pathogen and is higher during the active phases, such as fungal mycelia, and lower in survival structures (KUMAR et al., 2018KUMAR, G. N. K. et al. Disease management by Biofumigation in organic farming system. Journal of Pharmacognosy and Phytochemistry, v.7, n.4, p.676-679, 2018. Available from: <Available from: http://www.phytojournal.com/archives/2018/vol7issue4/PartK/7-3-654-578.pdf >. Accessed: Sep. 8, 2019.
http://www.phytojournal.com/archives/201...
). However, effects on survival structures, especially on Verticillium spp., have also been reported (DIXON & TILSTON, 2010DIXON, G. R.; TILSTON E. L. Soil-borne pathogens and their interactions with the soil environment. In: DIXON, G. R.; TILSTON, E. L. Soil Microbiology and Sustainable Crop Production. Dordrecht, Netherlands: Springer, 2010. Cap. 6, p. 197-271.; NEUBAUER et al., 2014NEUBAUER, C. et al. Biofumigation potential of Brassicaceae cultivars to Verticillium dahliae. European Journal of Plant Pathology , v.140, n.2, p.341-352, 2014. Available from: <Available from: https://doi.org/10.1007/s10658-014-0467-9 >. Accessed: Mar. 12, 2020. doi: 10.1007/s10658-014-0467-9.
https://doi.org/10.1007/s10658-014-0467-...
; MAWAR & LODHA, 2015).

Glucosinolates and isothiocyanates

Glucosinolates (GSLs) are secondary metabolites of some plants compounds containing sulfur and nitrogen (KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; LADHALAKSHMI et al., 2015LADHALAKSHMI, D. et al. Biofumigation in crop disease management. In: GANESAN, S. et al. Sustainable Crop Disease Management using Natural Products. Boston: CAB International, 2015. Cap.19, p.389-402.), especially those of the Brassicaceae, Capparidaceae, Tropaeolaceae, Moringaceae, and Amaryllidaceae families (KARAVINA & MANDUMBU, 2012KARAVINA, C.; MANDUMBU, R. Biofumigation for crop protection: potential for adoption in Zimbabwe. Journal of Animal & Plant Sciences, v.14, n.3, 1996-2005, 2012. Available from: <Available from: http://www.m.elewa.org/JAPS/2012/14.3/3.pdf >. Accessed: Apr. 18, 2020.
http://www.m.elewa.org/JAPS/2012/14.3/3....
; LADHALAKSHMI et al., 2015). More than 200 GSLs are reported to occur in about 3,500 plant species of the Brassicaceae family (DUTTA et al., 2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
). These compounds can be divided into three groups according to the type of side-chain in their molecules: aromatic, aliphatic, or indole, the hydrolysis of which result in products with different biological activities (ROSA et al., 1997ROSA, E. A. S. et al. GSLs in crop plants. Horticultural Reviews, v.19, p.99-215, 1997. Available from: <Available from: https://www.wiley.com/en-us/Horticultural+Reviews%2C+Volume+19-p-9780471165293 >. Accessed: Nov. 15, 2019.
https://www.wiley.com/en-us/Horticultura...
; KIRKEGAARD, 2009; GIMSING & KIRKEGAARD, 2009GIMSING, A. L.; KIRKEGAARD, J. A. Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochemistry Reviews, v.8, n.1, p.299-310, 2009. Available from <Available from https://doi.org/10.1007/s11101-008-9105-5 >. Accessed: Dec. 15, 2019. doi: 10.1007/s11101-008-9105-5.
https://doi.org/10.1007/s11101-008-9105-...
).

Plants containing GSLs also produce a hydrolytic enzyme (thioglucosidase hydrolase), commonly known as myrosinase. In intact tissues, there is a physical separation between GSLs and hydrolytic enzymes (ROSA et al., 1997ROSA, E. A. S. et al. GSLs in crop plants. Horticultural Reviews, v.19, p.99-215, 1997. Available from: <Available from: https://www.wiley.com/en-us/Horticultural+Reviews%2C+Volume+19-p-9780471165293 >. Accessed: Nov. 15, 2019.
https://www.wiley.com/en-us/Horticultura...
; GIMSING & KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; LADHALAKSHMI et al., 2015LADHALAKSHMI, D. et al. Biofumigation in crop disease management. In: GANESAN, S. et al. Sustainable Crop Disease Management using Natural Products. Boston: CAB International, 2015. Cap.19, p.389-402.; NTALLI & CARBONI, 2017NTALLI, N.; CABONI, P. A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochemistry Reviews, v. 6, n.5, p.827-834, 2017. Available from: <Available from: https://doi.org/10.1007/s11101-017-9491-7 >. Accessed: Apr. 16, 2020. doi: 10.1007/s11101-017-9491-7.
https://doi.org/10.1007/s11101-017-9491-...
; HANSCHEN & WINKELMANN, 2020HANSCHEN, F. S.; WINKELMANN, T. Biofumigation for fighting replant disease- A Review. Agronomy, v.10, n.3, 2020. Available from: <Available from: https://doi.org/10.3390/agronomy10030425 >. Accessed: Apr. 15, 2020. doi: 10.3390/agronomy10030425.
https://doi.org/10.3390/agronomy10030425...
). However, with tissue maceration or degradation due to insect attack, mechanical damage, or phytopathogen infection, contact between the enzyme and GSLs is increased. This contact triggers GSL hydrolysis and the consequent release of ITCs, such as organic cyanides and thiocyanates (LADHALAKSHMI et al., 2015). The ITCs released through GSL hydrolysis with aliphatic and aromatic chains (KIRKEGAARD, 2009) have high bioactivity and are often associated with efficient disease control (GIMSING & KIRKEGAARD, 2009). Other compounds can be released during the decomposition of brassica tissues (GIMSING & KIRKEGAARD, 2009; HANSCHEN & WINKELMANN, 2020), such as methyl sulfide, dimethyl sulfide, dimethyl disulfide, carbon disulfide, and methanethiol, which can also improve the efficiency of biofumigation (LORD et al., 2011LORD, J. S., et al. Biofumigation for control of pale potato cyst nematodes: activity of brassica leaf extracts and green manures on Globodera pallida in vitro and in soil. Journal of Agricultural and Food Chemistry, v.59, p.7882-7890, 2011. Available from: <Available from: https://doi.org/10.1021/jf200925k > Accessed: Jun. 12, 2019. doi: 10.1021/jf200925k.
https://doi.org/10.1021/jf200925k...
).

Both the disruption of plant tissues and the presence of water are essential for ITC release (GIMSING & KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; KIRKEGAARD, 2009). Hydrolysis reactions occur in the presence of water, and increased soil moisture can increase the efficiency of ITC generation and release (PRASAD et al., 2015PRASAD, P. et al. Biofumigation: Success and Prospects in Soilborne Plant Disease Management. International Journal of Applied And Pure Science and Agriculture, v.1, n.6, p.47-59, 2015. Available from <Available from https://ijapsa.com/published-papers/volume-1/issue-6/biofumigation-success-and-prospects-in-soilborne-plant-disease-management.pdf >. Accessed: Sep. 8, 2019.
https://ijapsa.com/published-papers/volu...
; KUMAR et al., 2018KUMAR, G. N. K. et al. Disease management by Biofumigation in organic farming system. Journal of Pharmacognosy and Phytochemistry, v.7, n.4, p.676-679, 2018. Available from: <Available from: http://www.phytojournal.com/archives/2018/vol7issue4/PartK/7-3-654-578.pdf >. Accessed: Sep. 8, 2019.
http://www.phytojournal.com/archives/201...
). Notably, the use of dry or dehydrated vegetable tissues does not affect GSL and myrosinase conservation in brassica tissues (MICHEL, 2014MICHEL, V.V. Ten years of biofumigation research in Switzerland. Aspects of Applied Biology, v.126, p.33-42, 2014. Available from: <Available from: http://link.ira.agroscope.ch/en-US/publication/34214 >. Accessed: Sep. 8, 2019.
http://link.ira.agroscope.ch/en-US/publi...
).

GLS hydrolysis occurs rapidly, and ITCs and other hydrolysis products generally have a short lifespan in the soil, with a rapid decrease in their concentration within a few days and a mean soil persistence of up to 14 days (KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.). However, residues with high GSL levels can inhibit the growth of microorganisms for up to two weeks after use (MARSCHNER & RENGEL, 2010MARSCHNER, P.; RENGEL, Z. The effects of plant breeding on soil microbes. In: DIXON, G. R.; TILSTON, E. L. Soil Microbiology and Sustainable Crop Production. Dordrecht, Netherlands: Springer , 2010. Cap. 8, p. 297-315.).

Main brassicas and products used, and forms of usage

The brassica species used in biofumigation must possess high GSL levels. However, the procedures of using brassicas can vary according to the species, target organism to be controlled, and context of the production system. Worldwide, the main forms of use included: previous cultivation followed by incorporation as green manure; rotational cultivation; addition and incorporation of fresh or dry vegetable residues (MATTHIESSEN & KIRKEGAARD, 2006MATTHIESSEN, J. N.; KIRKEGAARD, J. A. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, v.25, p.235-65, 2006. Available from: <Available from: https://doi.org/10.1080/07352680600611543 > Accessed: Jun. 12, 2019. doi: 10.1080/07352680600611543.
https://doi.org/10.1080/0735268060061154...
; KIRKEGAARD, 2009; CLARKSON et al., 2015CLARKSON, J. et al. Biofumigation for the control of soil-borne diseases. EPI-AGRI. Soil-borne diseases. 2015. Available from <Available from https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf >. Accessed: Sep. 16, 2019.
https://ec.europa.eu/eip/agriculture/sit...
; CAMPANELLA et al., 2020; MORRIS et al., 2020MORRIS, E. K. et al. Effective methods of biofumigation: a meta-analysis. Plant and Soil, v.446, p.379-392, 2020. Available from: <Available from: https://doi.org/10.1007/s11104-019-04352-y >. Accessed: Apr. 15, 2020. doi: 10.1007/s11104-019-04352-y.
https://doi.org/10.1007/s11104-019-04352...
); and addition of industrial residues, such as cakes from seed pressing, for oil extraction (KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; CURTO et al., 2016CURTO, G. et al. Biofumigant effect of new defatted seed meals against the southern root‐knot nematode, Meloidogyne incognita. Annals of applied biology, v.169, n.1, 17-26, 2016. Available from: <Available from: https://doi.org/10.1111/aab.12275 >. Accessed: Apr. 19, 2020. doi: 10.1111/aab.12275.
https://doi.org/10.1111/aab.12275...
; PAN et al., 2017PAN, X. et al. Effect of oriental mustard (Brassica juncea) seed meal for control of dollar spot on creeping bentgrass (Agrostis stolonifera) Turf. International Turfgrass Society Research Journal, v.13, n.1, p.166-174, 2017. Available from: <Available from: https://doi.org/10.2134/itsrj2016.06.0455 >. Accessed: Apr. 17, 2020. doi: 10.2134/itsrj2016.06.0455.
https://doi.org/10.2134/itsrj2016.06.045...
). Commercial products and formulations registered as BiofenceTM (pellets and liquids), which contain high GSL levels (LAZZERI et al., 2013LAZZERI, L. et al. The Brassicaceae biofumigation system for plant cultivation and defence. An Italian twenty-year experience of study and application. Acta Hortic, v.1005, p.375-382, 2013. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2013.1005.44 > Accessed: Sep. 8, 2019. doi: 10.17660/ActaHortic.2013.1005.44.
https://doi.org/10.17660/ActaHortic.2013...
; NICOLA et al., 2013NICOLA, G.R. et al. A new biobased liquid formulation with biofumigant and fertilizing properties for drip irrigation distribution. Industrial Crops and Products, v.42, p.113-118, 2013. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2012.05.018 >. Accessed: Jul. 15, 2019. doi: 10.1016/j.indcrop.2012.05.018.
https://doi.org/10.1016/j.indcrop.2012.0...
; WEI et al., 2016WEI, F. et al. Effects of individual and combined use of bio-fumigation-derived products on the viability of Verticillium dahliae microsclerotia in soil. Crop Protection, v.79, p.170-176, 2016. Available from: <Available from: https://doi.org/10.1016/j.cropro.2015.09.008 >. Accessed: Dec. 18, 2019. doi: 10.1016/j.cropro.2015.09.008.
https://doi.org/10.1016/j.cropro.2015.09...
; SERRANO-PÉREZ et al., 2017), have also been used and evaluated in Italy, England, and Spain. Likewise, some companies have marketed seeds of certain Brassica juncea (‘ISCI 20’ and ‘ISCI 99’) and Eruca sativa (‘Nemat’) cultivars, as they contain high GSL levels, and are recommended for cultivation and for use as biofumigants (TRIUMPH, 2015TRIUMPH ITALIA. Catalogo. 2015. Available from: <Available from: http://www.ortobiodomestico.com/catalogo/files/assets/basic-html/index.html#1 >. Accessed: Jun. 28, 2020.
http://www.ortobiodomestico.com/catalogo...
). At experimental levels, the use of brassica essential oils (DHINGRA et al., 2013DHINGRA, O. D. et al. Potential of soil fumigation with mustard essential oil to substitute biofumigation by cruciferous plant species. Tropical plant pathology, v.38, n.4, p.337-342, 2013. Available from: <Available from: https://doi.org/10.1590/S1982-56762013005000014 >. Accessed: Mar. 27, 2020. doi: 10.1590/S1982-56762013005000014.
https://doi.org/10.1590/S1982-5676201300...
; PONTES et al., 2019PONTES, N. C. et al. Soil fumigation with mustard essential oil to control bacterial wilt in tomato. European Journal of Plant Pathology , v.155, p.435-444. 2019. Available from: <Available from: https://doi.org/10.1007/s10658-019-01777-0 >. Accessed: Apr. 20, 2020. doi: 10.1007/s10658-019-01777-0.
https://doi.org/10.1007/s10658-019-01777...
) and leaf extracts (LORD et al., 2011LORD, J. S., et al. Biofumigation for control of pale potato cyst nematodes: activity of brassica leaf extracts and green manures on Globodera pallida in vitro and in soil. Journal of Agricultural and Food Chemistry, v.59, p.7882-7890, 2011. Available from: <Available from: https://doi.org/10.1021/jf200925k > Accessed: Jun. 12, 2019. doi: 10.1021/jf200925k.
https://doi.org/10.1021/jf200925k...
; RONCATO et al., 2018RONCATO, S. C. et al. Control of Meloidogyne incognita in tomato by crambe extract using different application forms. Summa Phytopathologica, v.44, n.3, p.261-266, 2018. Available from: <Available from: https://doi.org/10.1590/0100-5405/179533 >. Accessed: May, 7, 2020. doi: 10.1590/0100-5405/179533>.
https://doi.org/10.1590/0100-5405/179533...
; RUBAYET et al., 2018RUBAYET, M. T. et al. Effect of biofumigation and soil solarization on stem canker and black scurf diseases of potato (Solanum tuberosum L.) caused by Rhizoctonia solani isolate PR2. Advances in Agricultural Science, v.6, n.3, p.33-48, 2018. Available from: <Available from: https://aaasjournal.org/submission/index.php/aaas/article/view/80 >. Accessed: Apr. 19, 2020.
https://aaasjournal.org/submission/index...
) are also promising (Tables 1 2, 3, 4, 5 and 6).

Table 1
Promising experimental results obtained for the control of fungi using biofumigation with plant species of the Brassicaceae family.
Table 2
Promising experimental results obtained in the control of Fusarium spp. using biofumigation with plant species of the Brassicaceae family.
Table 3
Promising experimental results obtained in the control of oomycetes using biofumigation with plant species of the Brassicaceae family.
Table 4
Promising experimental results obtained in the control of nematodes using biofumigation with plant species of the Brassicaceae family.

Table 5
Promising experimental results obtained in the control of phytopathogenic bacteria and protozoa using biofumigation with plant species of the Brassicaceae family.

Table 6
Promising experimental results obtained in the control of weeds and insects using biofumigation with plant species of the Brassicaceae family.

The strategy to be used should be chosen considering local conditions, farm planning, and the fragmentation and incorporation methods of the biomass produced, or availability of residues or commercial products in nearby locations, in addition to acquisition and transportation costs (KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.).

The Brassicaceae family species most used for biofumigation belong to the genera Brassica, Raphanus, Sinapis, and Eruca (Tables 1 to 6). Of these, several mustard species are highlighted, including Brassica juncea, B. carinata, B. nigra, B. campestris, and Sinapsis alba; radish (Raphanus sativus); arugula (Eruca sativa) (OJAGHIAN et al., 2012OJAGHIAN, M. R. et al. In vitro biofumigation of Brassica tissues against potato stem rot caused by Sclerotinia sclerotiorum. The Plant Pathology Journal, v.28, n.2, p.185-190, 2012. Available from: <Available from: http://dx.doi.org/10.5423/PPJ-OA-11-2011-0206 >. Accessed: Mar. 15, 2020. doi: 10.5423/PPJ-OA-11-2011-0206.
http://dx.doi.org/10.5423/PPJ-OA-11-2011...
; CLARKSON et al., 2015CLARKSON, J. et al. Biofumigation for the control of soil-borne diseases. EPI-AGRI. Soil-borne diseases. 2015. Available from <Available from https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf >. Accessed: Sep. 16, 2019.
https://ec.europa.eu/eip/agriculture/sit...
; HANSCHEN & WINKELMANN, 2020HANSCHEN, F. S.; WINKELMANN, T. Biofumigation for fighting replant disease- A Review. Agronomy, v.10, n.3, 2020. Available from: <Available from: https://doi.org/10.3390/agronomy10030425 >. Accessed: Apr. 15, 2020. doi: 10.3390/agronomy10030425.
https://doi.org/10.3390/agronomy10030425...
; MORRIS et al., 2020MORRIS, E. K. et al. Effective methods of biofumigation: a meta-analysis. Plant and Soil, v.446, p.379-392, 2020. Available from: <Available from: https://doi.org/10.1007/s11104-019-04352-y >. Accessed: Apr. 15, 2020. doi: 10.1007/s11104-019-04352-y.
https://doi.org/10.1007/s11104-019-04352...
); and Brassica oleracea, mainly cabbage (B. oleracea var. capitata) (MATTHIESSEN & KIRKEGAARD, 2006MATTHIESSEN, J. N.; KIRKEGAARD, J. A. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, v.25, p.235-65, 2006. Available from: <Available from: https://doi.org/10.1080/07352680600611543 > Accessed: Jun. 12, 2019. doi: 10.1080/07352680600611543.
https://doi.org/10.1080/0735268060061154...
; TSROR et al., 2007TSROR, L. et al. Biofumigation for the control of soilborne diseases. Acta horticulturae, v.747, 389-394, 2007. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2007.747.48 >. Accessed: Nov. 17, 2019. doi: 10.17660/ActaHortic.2007.747.48.
https://doi.org/10.17660/ActaHortic.2007...
; VILLALOBOS et al., 2013VILLALOBOS, J. A. M.; et al. Producción de chile (Capsicum annuum L.) a campo abierto con biofumigación del suelo. Durango: INIFAP, 2013. Available from: <Available from: http://biblioteca.inifap.gob.mx:8080/jspui/handle/123456789/4097 >. Accessed: Sep. 02, 2019.
http://biblioteca.inifap.gob.mx:8080/jsp...
; BANDYOPADHYAY & KHALKO, 2016BANDYOPADHYAY, S.; KHALKO, S. Biofumigation - An eco-friendly approach for managing bacterial wilt and soft rot disease of ginger. Indian Phytopathology, v.69, n.1, p.53-56, 2016. Available from: <Available from: https://bit.ly/2RV1gpUbiofumigation >. Accessed: Apr. 17, 2020.
https://bit.ly/2RV1gpUbiofumigation...
). These species control several target organisms; although, the level of suppression and sensitivity can also vary (KIRKEGAARD & MATTHIESSEN, 2004KIRKEGAARD, J.; MATTHIESSEN, J. Developing and refining the biofumigation concept. Agroindustria, v.3, p.233-239, 2004. Available from <Available from http://hdl.handle.net/102.100.100/181385?index=1 >. Accessed: Nov. 17, 2019.
http://hdl.handle.net/102.100.100/181385...
; FAN et al., 2008FAN, C. M. et al. Potential biofumigation effects of Brassica oleracea var. caulorapa on growth of fungi. Journal of Phytopathology, v.156, n.6, p.321-325, 2008. Available from: <Available from: https://doi.org/10.1111/j.1439-0434.2007.01343.x >. Accessed: Apr. 15, 2020. doi: 10.1111/j.1439-0434.2007.01343.x.
https://doi.org/10.1111/j.1439-0434.2007...
; CAMPANELLA et al., 2020).

Some important aspects must be considered when the previous brassica cultivation is used as green manure, or is included in a crop rotation program, such as species versus climatic conditions, time of year, and susceptibility to target organism (KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; DONALD et al., 2010DONALD, D. et al. Managing Soilborne Diseases in Vegetables: Rotation with green manure and biofumigant crops shows disease control & yield benefits. Victoria: Department of Primary Industries, 2010. Available from: <Available from: https://ausveg.com.au/app/data/technical-insights/docs/VG07125_Soilborne_Diseases_brochure.pdf >. Accessed: Nov. 27, 2019.
https://ausveg.com.au/app/data/technical...
; LU et al., 2010LU, P. et al. Biofumigation with Brassica plants and its effect on the inoculum potential of Fusarium yellows of Brassica crops. European Journal of Plant Pathology, v.126, n.3, p.387-402, 2010. Available from: <Available from: https://doi.org/10.1007/s10658-009-9543-y >. Accessed: May, 1, 2020. doi: 10.1007/s10658-009-9543-y.
https://doi.org/10.1007/s10658-009-9543-...
; LAZZERI et al., 2013; KRASNOW & HAUSBECK, 2015KRASNOW, C. S.; HAUSBECK, M. K. Pathogenicity of Phytophthora capsici to Brassica vegetable crops and biofumigation cover crops (Brassica spp.). Plant disease, v.99, n.12, p.1721-1726, 2015. Available from: <Available from: https://doi.org/10.1094/PDIS-03-15-0271-RE >. Accessed: Mar. 18, 2020. doi: 10.1094/PDIS-03-15-0271-RE.
https://doi.org/10.1094/PDIS-03-15-0271-...
). Species and cultivars with good climatic adaptation to local conditions, rusticity, high biomass yield, and that non-host the pathogen or pest to be controlled should be prioritized.

Aspects that may improve the efficiency of the technique must be considered when biomass is incorporated into the soil. These aspects included: the species to be incorporated and their cycle phase, fragmentation and incorporation method, soil moisture, and method of waterproofing of the soil surface. The accumulation of GSLs in brassica depends on the developmental stage of each species. However, in general, higher levels are observed during vegetative growth with decreasing levels observed after flowering (KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.). Thus, in most cases, the pre-flowering phase is the most suitable for cutting and incorporation (DONALD et al., 2010DONALD, D. et al. Managing Soilborne Diseases in Vegetables: Rotation with green manure and biofumigant crops shows disease control & yield benefits. Victoria: Department of Primary Industries, 2010. Available from: <Available from: https://ausveg.com.au/app/data/technical-insights/docs/VG07125_Soilborne_Diseases_brochure.pdf >. Accessed: Nov. 27, 2019.
https://ausveg.com.au/app/data/technical...
; KARAVINA & MANDUMBU, 2012KARAVINA, C.; MANDUMBU, R. Biofumigation for crop protection: potential for adoption in Zimbabwe. Journal of Animal & Plant Sciences, v.14, n.3, 1996-2005, 2012. Available from: <Available from: http://www.m.elewa.org/JAPS/2012/14.3/3.pdf >. Accessed: Apr. 18, 2020.
http://www.m.elewa.org/JAPS/2012/14.3/3....
; DUTTA et al., 2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
; CAMPANELLA et al., 2020CAMPANELLA, V. et al. Management of common root rot and Fusarium foot rot of wheat using Brassica carinata break crop green manure. Crop Protection, v.130, 2020. Available from: <Available from: https://doi.org/10.1016/j.cropro.2019.105073 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cropro.2019.105073.
https://doi.org/10.1016/j.cropro.2019.10...
). Biomass cutting and fragmentation procedures can also interfere with the efficiency of the technique; the more uneven and larger the fragments, the more heterogeneous the distribution and release of volatile compounds. This decreases biofumigation efficiency (KARAVINA & MANDUMBU, 2012; MAWAR & LODHA, 2015MAWAR, R.; LODHA, S. Suppression of soilborne plant pathogens by cruciferous residues. In: MEGHVANSI, M.; VARMA, A. (eds). Organic Amendments and Soil Suppressiveness in Plant Disease Management. Cham: Springer , 2015. Cap.20, p.413-433.). Vegetal materials cultivated in the area or brought from other places should be well-fragmented and immediately incorporated into the soil, at a depth of 15-20 cm, using a rotary hoe or disk harrow (KUMAR et al., 2018KUMAR, G. N. K. et al. Disease management by Biofumigation in organic farming system. Journal of Pharmacognosy and Phytochemistry, v.7, n.4, p.676-679, 2018. Available from: <Available from: http://www.phytojournal.com/archives/2018/vol7issue4/PartK/7-3-654-578.pdf >. Accessed: Sep. 8, 2019.
http://www.phytojournal.com/archives/201...
). Another essential factor is soil humidity, since water is essential for GSL hydrolysis following cell rupture; therefore, the soil must be irrigated up to field capacity immediately after the incorporation of residues to optimize this reaction (MATTHIESSEN & KIRKEGAARD, 2006MATTHIESSEN, J. N.; KIRKEGAARD, J. A. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, v.25, p.235-65, 2006. Available from: <Available from: https://doi.org/10.1080/07352680600611543 > Accessed: Jun. 12, 2019. doi: 10.1080/07352680600611543.
https://doi.org/10.1080/0735268060061154...
; GIMSING & KIRKEGAARD, 2009GIMSING, A. L.; KIRKEGAARD, J. A. Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochemistry Reviews, v.8, n.1, p.299-310, 2009. Available from <Available from https://doi.org/10.1007/s11101-008-9105-5 >. Accessed: Dec. 15, 2019. doi: 10.1007/s11101-008-9105-5.
https://doi.org/10.1007/s11101-008-9105-...
; KIRKEGAARD, 2009; DONALD et al., 2010; KUMAR et al., 2018; DUTTA et al., 2019). Additionally, as many of the products released during GSL hydrolysis are volatile, losses can be reduced if the soil is covered with transparent plastic film after incorporation (CLARKSON et al., 2015CLARKSON, J. et al. Biofumigation for the control of soil-borne diseases. EPI-AGRI. Soil-borne diseases. 2015. Available from <Available from https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf >. Accessed: Sep. 16, 2019.
https://ec.europa.eu/eip/agriculture/sit...
; ROS et al., 2016ROS, C. et al. El cultivo de brásicas para biosolarización reduce las poblaciones de Meloidogyne incognita en los invernaderos de pimiento del Sudeste de España. Revista de la Asociación Interprofesional para el Desarrollo Agrario (AIDA), v.112, n.2, p.109-126, 2016. Available from: <Available from: http://dx.doi.org/10.12706/itea.2016.008 >. Accessed: Mar. 18, 2020. doi: 10.12706/itea.2016.008.
http://dx.doi.org/10.12706/itea.2016.008...
; DUTTA et al., 2019), or if the surface is sealed with a roller and/or irrigation (DONALD et al., 2010). According to Kirkegaard (2009), the use of plastic is not mandatory, despite increasing the efficiency of volatile compound retention (KIRKEGAARD, 2009). The incorporation of residues into the soil can also coincide with standard plastic mulching, which is commonly used for some crops, including strawberry-growing systems (KIRKEGAARD, 2009; BRUGGEN et al., 2016BRUGGEN, A. H. C. et al. Plant disease management in organic farming systems. Pest Management Science, v. 72, n. 1, p. 30-44, 2016. Available from: <Available from: https://doi.org/10.1002/ps.4145 >. Accessed: Jun. 28, 2020. doi: 10.1002/ps.4145.
https://doi.org/10.1002/ps.4145...
).

Signs of phytotoxicity have been reported in crops introduced soon after the incorporation of brassica; therefore, it is advisable to wait for a minimum of 2 weeks between biofumigation and the planting of subsequent crops to ensure the dissipation of phytotoxic compounds (KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; CLARKSON et al., 2015CLARKSON, J. et al. Biofumigation for the control of soil-borne diseases. EPI-AGRI. Soil-borne diseases. 2015. Available from <Available from https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf >. Accessed: Sep. 16, 2019.
https://ec.europa.eu/eip/agriculture/sit...
; MAWAR & LODHA, 2015MAWAR, R.; LODHA, S. Suppression of soilborne plant pathogens by cruciferous residues. In: MEGHVANSI, M.; VARMA, A. (eds). Organic Amendments and Soil Suppressiveness in Plant Disease Management. Cham: Springer , 2015. Cap.20, p.413-433.). When plastic film is used, it can be removed after 3-4 weeks, and the soil should be slightly stirred to allow gases to be exhausted from the soil. The next crop can be planted 24 hours after this procedure (KUMAR et al., 2018KUMAR, G. N. K. et al. Disease management by Biofumigation in organic farming system. Journal of Pharmacognosy and Phytochemistry, v.7, n.4, p.676-679, 2018. Available from: <Available from: http://www.phytojournal.com/archives/2018/vol7issue4/PartK/7-3-654-578.pdf >. Accessed: Sep. 8, 2019.
http://www.phytojournal.com/archives/201...
).

In addition to fresh biomass, such as green manure, brassicas have been used in different ways for soil biofumigation in commercial production areas (LAZZERI et al., 2013LAZZERI, L. et al. The Brassicaceae biofumigation system for plant cultivation and defence. An Italian twenty-year experience of study and application. Acta Hortic, v.1005, p.375-382, 2013. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2013.1005.44 > Accessed: Sep. 8, 2019. doi: 10.17660/ActaHortic.2013.1005.44.
https://doi.org/10.17660/ActaHortic.2013...
). Examples included the use of residues as the cake resulting from seed pressing for oil extraction (CURTO et al., 2016CURTO, G. et al. Biofumigant effect of new defatted seed meals against the southern root‐knot nematode, Meloidogyne incognita. Annals of applied biology, v.169, n.1, 17-26, 2016. Available from: <Available from: https://doi.org/10.1111/aab.12275 >. Accessed: Apr. 19, 2020. doi: 10.1111/aab.12275.
https://doi.org/10.1111/aab.12275...
), liquid formulations (NICOLA et al., 2013NICOLA, G.R. et al. A new biobased liquid formulation with biofumigant and fertilizing properties for drip irrigation distribution. Industrial Crops and Products, v.42, p.113-118, 2013. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2012.05.018 >. Accessed: Jul. 15, 2019. doi: 10.1016/j.indcrop.2012.05.018.
https://doi.org/10.1016/j.indcrop.2012.0...
), and pellets (WEI et al., 2016WEI, F. et al. Effects of individual and combined use of bio-fumigation-derived products on the viability of Verticillium dahliae microsclerotia in soil. Crop Protection, v.79, p.170-176, 2016. Available from: <Available from: https://doi.org/10.1016/j.cropro.2015.09.008 >. Accessed: Dec. 18, 2019. doi: 10.1016/j.cropro.2015.09.008.
https://doi.org/10.1016/j.cropro.2015.09...
; SERRANO-PÉREZ et al., 2017SERRANO-PÉREZ, P. et al. Efficacy of Brassica carinata pellets to inhibit mycelial growth and chlamydospores germination of Phytophthora nicotianae at different temperature regimes. Scientia horticulturae, v.216, p.126-133, 2017. Available from: <Available from: https://doi.org/10.1016/j.scienta.2017.01.002 >. Accessed: Nov. 18, 2019. doi: 10.1016/j.scienta.2017.01.002.
https://doi.org/10.1016/j.scienta.2017.0...
). The cake is an interesting form of use, because the seeds tend to accumulate GSL during ripening; the concentration of these compounds is 8-10 times higher than that in other parts of the plants (LAZERRI et al., 2013). One example is the use of residues from Abyssinian mustard seed pressing (Brassica carinata) to produce biodiesel and derived products, which are rich in GSLs and can be used in the production of biofumigants (KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; LAZZERI et al., 2013; NICOLA et al., 2013; LADHALAKSHMI et al., 2015LADHALAKSHMI, D. et al. Biofumigation in crop disease management. In: GANESAN, S. et al. Sustainable Crop Disease Management using Natural Products. Boston: CAB International, 2015. Cap.19, p.389-402.; CURTO et al., 2016; WEI et al., 2016; SERRANO-PÉREZ et al., 2017). Cakes resulting from brassica seed pressing (defatted seed meal - DSM), as well as their derived technological products, can be used for the production of vegetable species both in Brazil and globally. These materials contain high GSL levels and are sources of nitrogen and other nutrients (MATTHIESSEN & KIRKEGAARD, 2006MATTHIESSEN, J. N.; KIRKEGAARD, J. A. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, v.25, p.235-65, 2006. Available from: <Available from: https://doi.org/10.1080/07352680600611543 > Accessed: Jun. 12, 2019. doi: 10.1080/07352680600611543.
https://doi.org/10.1080/0735268060061154...
; LADHALAKSHMI et al., 2015; CURTO et al., 2016; DUTTA et al., 2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
; HANSCHEN & WINKELMANN, 2020HANSCHEN, F. S.; WINKELMANN, T. Biofumigation for fighting replant disease- A Review. Agronomy, v.10, n.3, 2020. Available from: <Available from: https://doi.org/10.3390/agronomy10030425 >. Accessed: Apr. 15, 2020. doi: 10.3390/agronomy10030425.
https://doi.org/10.3390/agronomy10030425...
).

There are several practical examples and technological Brassica spp. products patented for use as biofumigants to control pathogens (LAZZERI et al., 2013LAZZERI, L. et al. The Brassicaceae biofumigation system for plant cultivation and defence. An Italian twenty-year experience of study and application. Acta Hortic, v.1005, p.375-382, 2013. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2013.1005.44 > Accessed: Sep. 8, 2019. doi: 10.17660/ActaHortic.2013.1005.44.
https://doi.org/10.17660/ActaHortic.2013...
; NICOLA et al., 2013NICOLA, G.R. et al. A new biobased liquid formulation with biofumigant and fertilizing properties for drip irrigation distribution. Industrial Crops and Products, v.42, p.113-118, 2013. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2012.05.018 >. Accessed: Jul. 15, 2019. doi: 10.1016/j.indcrop.2012.05.018.
https://doi.org/10.1016/j.indcrop.2012.0...
; LADHALAKSHMI et al., 2015LADHALAKSHMI, D. et al. Biofumigation in crop disease management. In: GANESAN, S. et al. Sustainable Crop Disease Management using Natural Products. Boston: CAB International, 2015. Cap.19, p.389-402.). Likewise, it is possible to buy mustard cultivars that are selected and marketed for cultivation to incorporate biomass for soil biofumigation (TRIUMPH, 2015).

In general, the principles of disease control using biofumigants based on industrial residues or press cakes for oil extraction are consistent with those using organic fertilizers. However, they are optimized in terms of time and agricultural space, as they do not involve the pre-cultivation of brassica for later incorporation (KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.). Another technology being development is pellets obtained from plants or parts of the plant rich in GSLs. The in vitro bioactivity of these pellets against Pythium and Rhizoctonia was reported by LAZZERI et al. in 2004LAZZERI, L. et al. Biocidal plant dried pellets for biofumigation. Industrial Crops and Products, v.20, p.59-65, 2004. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2003.12.018 >. Accessed: Sep. 8, 2019. doi: 10.1016/j.indcrop.2003.12.018.
https://doi.org/10.1016/j.indcrop.2003.1...
. For example, B. carinata seed cake pellets were obtained after pressing for oil extraction. This product is registered in Italy as BioFenceTM (Triumph Italia SPA, Cerealetoscana Group) and has demonstrated satisfactory results in the control of Phytophthora nicotianae (SERRANO-PÉREZ et al., 2017SERRANO-PÉREZ, P. et al. Efficacy of Brassica carinata pellets to inhibit mycelial growth and chlamydospores germination of Phytophthora nicotianae at different temperature regimes. Scientia horticulturae, v.216, p.126-133, 2017. Available from: <Available from: https://doi.org/10.1016/j.scienta.2017.01.002 >. Accessed: Nov. 18, 2019. doi: 10.1016/j.scienta.2017.01.002.
https://doi.org/10.1016/j.scienta.2017.0...
).

The hydrophobic nature of GSL degradation products has enabled the development of liquid formulations based on vegetable oil emulsion in water and residues from B. carinata seed oil extraction (LAZZERI et al., 2011LAZZERI, L. et al. Bio-based products from Brassica carinata A. Braun oils and defatted meals by a second generation biorefinery approach. Proc. 19th European Biomass Conference. Berlin, Germany, .6-10., p.1080-1092. 2011. Available from: <Available from: http://www.etaflorence.it/proceedings/?detail=7244 >. Accessed: Dec. 18, 2019. doi: 10.5071/19thEUBCE2011-OA12.5.
http://www.etaflorence.it/proceedings/?d...
; LAZZERI et al., 2013; NICOLA et al., 2013NICOLA, G.R. et al. A new biobased liquid formulation with biofumigant and fertilizing properties for drip irrigation distribution. Industrial Crops and Products, v.42, p.113-118, 2013. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2012.05.018 >. Accessed: Jul. 15, 2019. doi: 10.1016/j.indcrop.2012.05.018.
https://doi.org/10.1016/j.indcrop.2012.0...
). This formulation was developed for use via drip irrigation, and has demonstrated good results in the control of Meloidogyne incognita and Verticilium dahliae (NICOLA et al., 2013; WEI et al., 2016WEI, F. et al. Effects of individual and combined use of bio-fumigation-derived products on the viability of Verticillium dahliae microsclerotia in soil. Crop Protection, v.79, p.170-176, 2016. Available from: <Available from: https://doi.org/10.1016/j.cropro.2015.09.008 >. Accessed: Dec. 18, 2019. doi: 10.1016/j.cropro.2015.09.008.
https://doi.org/10.1016/j.cropro.2015.09...
). According to WEI et al. (2016), depending on the characteristics of this formulation, a liquid version of BioFenceTM may be more efficient at releasing ITCs than the efficiency observed with pellets, as it facilitates the dispersion of the active ingredient through the soil.

Promising results using brassicas in biofumigation

Fifty reports published over the last 20 years were selected to systematically analyze the accumulated data on the use of brassicas for biofumigation (Tables 1 to 6). Some important results reported in periods prior to this can be found in KIRKEGAARD & MATTHIESSEN (2004KIRKEGAARD, J.; MATTHIESSEN, J. Developing and refining the biofumigation concept. Agroindustria, v.3, p.233-239, 2004. Available from <Available from http://hdl.handle.net/102.100.100/181385?index=1 >. Accessed: Nov. 17, 2019.
http://hdl.handle.net/102.100.100/181385...
) and MATTHISSEN & KIRKEGAARD (2006).

The present survey included tests that used brassica species to control fungi (Tables 1 and 2), oomycetes (Table 3), nematodes (Table 4), phytopathogenic bacteria, and protozoa (Table 5); weeds; and insects, including some species that are stored product pests (Table 6). Notably, in this analysis, the pathogen Plasmodiophora brassicae was grouped as a protozoan, considering different publications and recent phylogenetic analyses that included this species in the protist supergroup Rhizaria (BURKI et al., 2010BURKI, F. et al. Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evolutionary Biology, v.10, p.377, 2010. Available from: <Available from: https://doi.org/10.1186/1471-2148-10-377 >. Accessed: Jun. 30, 2020. doi: 10.1186/1471-2148-10-377.
https://doi.org/10.1186/1471-2148-10-377...
; SCHWELM et al., 2015SCHWELM, A. et al. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Scientific Reports, v.5, p.1-12, 2015. Available from: <Available from: https://doi.org/10.1038/srep11153 >. Accessed: Jun. 30, 2020. doi: 10.1038/srep11153.
https://doi.org/10.1038/srep11153...
; BHERING et al., 2020BHERING, A. S. et al. Soil management in a mountain agroecosystem and clubroot disease. Plant Pathology, v.69, n.2, 302-309, 2020. Available from: <Available from: https://doi.org/10.1111/ppa.13123 >. Accessed: Jun. 30, 2020. doi: 10.1111/ppa.13123.
https://doi.org/10.1111/ppa.13123...
).

Most reports involved the use of biofumigation or tests with species or products obtained from plants of the Brassicaceae family to control diseases in vegetables, such as tomatoes (Solanum lycopersicum), potatoes (S. tuberosum), peppers, and sweet peppers (Capsicum spp.) (GOUWS & WEHNER, 2004GOUWS, R.; WEHNER, F.C. Biofumigation as alternative control measure for common scab on seed potatoes in South Africa. Agroindustria, v.3, p.309-312, 2004.; TSROR et al., 2007TSROR, L. et al. Biofumigation for the control of soilborne diseases. Acta horticulturae, v.747, 389-394, 2007. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2007.747.48 >. Accessed: Nov. 17, 2019. doi: 10.17660/ActaHortic.2007.747.48.
https://doi.org/10.17660/ActaHortic.2007...
; HENDERSON et al., 2009HENDERSON, D. R. et al. Mustard biofumigation disrupts biological control by Steinernema spp. nematodes in the soil. Biological control, v.48, n.3, p.316-322, 2009. Available from: <Available from: https://doi.org/10.1016/j.biocontrol.2008.12.004 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.biocontrol.2008.12.004.
https://doi.org/10.1016/j.biocontrol.200...
; KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; OLIVEIRA et al., 2011OLIVEIRA, R. D. L. et al. Glucosinolate content and nematicidal activity of Brazilian wild mustard tissues against Meloidogyne incognita in tomato. Plant and Soil , v. 341, n. 1-2, p. 155-164, 2011. Available from: <Available from: https://doi.org/10.1007/s11104-010-0631-8 >. Accessed: Apr. 20, 2020. doi: 10.1007/s11104-010-0631-8.
https://doi.org/10.1007/s11104-010-0631-...
; NICOLA et al., 2013NICOLA, G.R. et al. A new biobased liquid formulation with biofumigant and fertilizing properties for drip irrigation distribution. Industrial Crops and Products, v.42, p.113-118, 2013. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2012.05.018 >. Accessed: Jul. 15, 2019. doi: 10.1016/j.indcrop.2012.05.018.
https://doi.org/10.1016/j.indcrop.2012.0...
; VILLALOBOS et al., 2013VILLALOBOS, J. A. M.; et al. Producción de chile (Capsicum annuum L.) a campo abierto con biofumigación del suelo. Durango: INIFAP, 2013. Available from: <Available from: http://biblioteca.inifap.gob.mx:8080/jspui/handle/123456789/4097 >. Accessed: Sep. 02, 2019.
http://biblioteca.inifap.gob.mx:8080/jsp...
; WANG et al., 2014aWANG, Q. et al. Effect of biofumigation and chemical fumigation on soil microbial community structure and control of pepper Phytophthora blight. World Journal of Microbiology and Biotechnology, v.30, n.2, p.507-518, 2014a. Available from: <Available from: https://doi.org/10.1007/s11274-013-1462-6 >. Accessed: Apr. 22, 2020. doi: 10.1007/s11274-013-1462-6.
https://doi.org/10.1007/s11274-013-1462-...
,b; NGALA et al., 2015NGALA, B. M. et al. Biofumigation with Brassica juncea, Raphanus sativus and Eruca sativa for the management of field populations of the potato cyst nematode Globodera pallida. Pest Management Science, v.71, n.5, p.759-769, 2015. Available from: <Available from: https://doi.org/ 10.1002/ps.3849 >. Accessed: Mar. 15, 2020. doi: 10.1002/ps.3849.
https://doi.org/ 10.1002/ps.3849...
; CURTO et al., 2016CURTO, G. et al. Biofumigant effect of new defatted seed meals against the southern root‐knot nematode, Meloidogyne incognita. Annals of applied biology, v.169, n.1, 17-26, 2016. Available from: <Available from: https://doi.org/10.1111/aab.12275 >. Accessed: Apr. 19, 2020. doi: 10.1111/aab.12275.
https://doi.org/10.1111/aab.12275...
; ROS et al., 2016ROS, C. et al. El cultivo de brásicas para biosolarización reduce las poblaciones de Meloidogyne incognita en los invernaderos de pimiento del Sudeste de España. Revista de la Asociación Interprofesional para el Desarrollo Agrario (AIDA), v.112, n.2, p.109-126, 2016. Available from: <Available from: http://dx.doi.org/10.12706/itea.2016.008 >. Accessed: Mar. 18, 2020. doi: 10.12706/itea.2016.008.
http://dx.doi.org/10.12706/itea.2016.008...
; AYDINLI & MENNAN, 2018AYDINLI, G.; MENNAN, S. Biofumigation studies by using Raphanus sativus and Eruca sativa as a winter cycle crops to control root-knot nematodes. Brazilian Archives of Biology and Technology, v.61, 2018. Available from: <Available from: https://doi.org/10.1590/1678-4324-2018180249 >. Accessed: Apr. 17, 2020. doi: 10.1590/1678-4324-2018180249.
https://doi.org/10.1590/1678-4324-201818...
; DANEEL et al., 2018DANEEL, M. et al. The host status of Brassicaceae to Meloidogyne and their effects as cover and biofumigant crops on root-knot nematode populations associated with potato and tomato under South African field conditions. Crop protection, v.110, p.198-206, 2018. Available from: <Available from: https://doi.org/10.1016/j.cropro.2017.09.001 >. Accessed: May, 02, 2020. doi: 10.1016/j.cropro.2017.09.001.
https://doi.org/10.1016/j.cropro.2017.09...
; RONCATO et al., 2018RONCATO, S. C. et al. Control of Meloidogyne incognita in tomato by crambe extract using different application forms. Summa Phytopathologica, v.44, n.3, p.261-266, 2018. Available from: <Available from: https://doi.org/10.1590/0100-5405/179533 >. Accessed: May, 7, 2020. doi: 10.1590/0100-5405/179533>.
https://doi.org/10.1590/0100-5405/179533...
; RUBAYET et al., 2018RUBAYET, M. T. et al. Effect of biofumigation and soil solarization on stem canker and black scurf diseases of potato (Solanum tuberosum L.) caused by Rhizoctonia solani isolate PR2. Advances in Agricultural Science, v.6, n.3, p.33-48, 2018. Available from: <Available from: https://aaasjournal.org/submission/index.php/aaas/article/view/80 >. Accessed: Apr. 19, 2020.
https://aaasjournal.org/submission/index...
; PONTES et al., 2019PONTES, N. C. et al. Soil fumigation with mustard essential oil to control bacterial wilt in tomato. European Journal of Plant Pathology , v.155, p.435-444. 2019. Available from: <Available from: https://doi.org/10.1007/s10658-019-01777-0 >. Accessed: Apr. 20, 2020. doi: 10.1007/s10658-019-01777-0.
https://doi.org/10.1007/s10658-019-01777...
; MORRIS et al., 2020MORRIS, E. K. et al. Effective methods of biofumigation: a meta-analysis. Plant and Soil, v.446, p.379-392, 2020. Available from: <Available from: https://doi.org/10.1007/s11104-019-04352-y >. Accessed: Apr. 15, 2020. doi: 10.1007/s11104-019-04352-y.
https://doi.org/10.1007/s11104-019-04352...
). Studies have also reported the use of biofumigation to control diseases in less known species with promising results, such as bitter melon (Momordica charantia) and calabash (Lagenaria siceraria) (RELEVANTE & CUMAGUN, 2013RELEVANTE, C. A.; CUMAGUN, C. J. R. Control of Fusarium wilt in bittergourd and bottlegourd by biofumigation using mustard var. Monteverde. Archives of Phytopathology and Plant Protection, v.46, n.6, p.747-753, 2013. Available from: <Available from: https://doi.org/10.1080/03235408.2012.751285 >. Accessed: Apr. 26, 2020. doi: 10.1080/03235408.2012.751285.
https://doi.org/10.1080/03235408.2012.75...
); ginger (Zingiber officinale) (BANDYOPADHYAY & KHALKO, 2016BANDYOPADHYAY, S.; KHALKO, S. Biofumigation - An eco-friendly approach for managing bacterial wilt and soft rot disease of ginger. Indian Phytopathology, v.69, n.1, p.53-56, 2016. Available from: <Available from: https://bit.ly/2RV1gpUbiofumigation >. Accessed: Apr. 17, 2020.
https://bit.ly/2RV1gpUbiofumigation...
); oak (Quercus cerris) (MORALES-RODRÍGUEZ et al., 2016MORALES-RODRÍGUEZ, C. et al. Efficacy of biofumigation with Brassica carinata commercial pellets (BioFence) to control vegetative and reproductive structures of Phytophthora cinnamomi. Plant Disease, v.100, n.2, p.324-330, 2016. Available from: <Available from: https://doi.org/10.1094/PDIS-03-15-0245-RE >. Accessed: Mar. 16, 2020. doi: 10.1094/PDIS-03-15-0245-RE.
https://doi.org/10.1094/PDIS-03-15-0245-...
); creeping bentgrass (Agrostis stolonifera) (PAN et al., 2017PAN, X. et al. Effect of oriental mustard (Brassica juncea) seed meal for control of dollar spot on creeping bentgrass (Agrostis stolonifera) Turf. International Turfgrass Society Research Journal, v.13, n.1, p.166-174, 2017. Available from: <Available from: https://doi.org/10.2134/itsrj2016.06.0455 >. Accessed: Apr. 17, 2020. doi: 10.2134/itsrj2016.06.0455.
https://doi.org/10.2134/itsrj2016.06.045...
); yellow lupin (Lupinus luteus) (RÍOS et al., 2017RÍOS, P. et al. Brassica-based seedmeal biofumigation to control Phytophthora cinnamomi in the Spanish “dehesa” oak trees. Phytopathologia Mediterranea, v.56, n.3, p.392-399, 2017. Available from: <Available from: https://doi.org/10.14601/Phytopathol_Mediterr-20771 >. Accessed: Apr. 22, 2020. doi: 10.14601/Phytopathol_Mediterr-20771.
https://doi.org/10.14601/Phytopathol_Med...
); and pine (Pinus radiata) (MORALES-RODRÍGUEZ et al., 2018).

There have been positive reports on the suppressive effect of Brassicaceae species in relation to soilborne phytopathogens, such as Rhizoctonia solani, Verticillium dahliae, Sclerotinia sclerotiorum, Sclerotium rolfsii, Fusarium spp., and Phytophthora spp. (Tables 1 to 3). The growth of these agents has been reported to decrease in vitro, and the incidence of diseases they cause in the investigated host species has also been reported to decrease (TSROR et al., 2007TSROR, L. et al. Biofumigation for the control of soilborne diseases. Acta horticulturae, v.747, 389-394, 2007. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2007.747.48 >. Accessed: Nov. 17, 2019. doi: 10.17660/ActaHortic.2007.747.48.
https://doi.org/10.17660/ActaHortic.2007...
; BARRAU et al., 2009BARRAU, C. et al. Brassica carinata for control of Phytophthora spp. in strawberry field crops. Revista de Ciências Agrárias, v.32, n.2, p.135-138, 2009. Available from: <Available from: http://www.scielo.mec.pt/pdf/rca/v32n2/v32n2a13.pdf >. Accessed: Mar. 18, 2020.
http://www.scielo.mec.pt/pdf/rca/v32n2/v...
; OJAGHIAN et al., 2012OJAGHIAN, M. R. et al. In vitro biofumigation of Brassica tissues against potato stem rot caused by Sclerotinia sclerotiorum. The Plant Pathology Journal, v.28, n.2, p.185-190, 2012. Available from: <Available from: http://dx.doi.org/10.5423/PPJ-OA-11-2011-0206 >. Accessed: Mar. 15, 2020. doi: 10.5423/PPJ-OA-11-2011-0206.
http://dx.doi.org/10.5423/PPJ-OA-11-2011...
; PERNIOLA et al., 2012PERNIOLA, O. S et al. Biofumigación con Brassicáceas: actividad supresora sobre Fusarium graminearum. Revista de la Facultad de Agronomía, v.111, n.1, p.48-53, 2012. Available from: <Available from: http://revista.agro.unlp.edu.ar/index.php/revagro/article/view/71 >. Accessed: Apr. 16, 2020.
http://revista.agro.unlp.edu.ar/index.ph...
; DHINGRA et al., 2013DHINGRA, O. D. et al. Potential of soil fumigation with mustard essential oil to substitute biofumigation by cruciferous plant species. Tropical plant pathology, v.38, n.4, p.337-342, 2013. Available from: <Available from: https://doi.org/10.1590/S1982-56762013005000014 >. Accessed: Mar. 27, 2020. doi: 10.1590/S1982-56762013005000014.
https://doi.org/10.1590/S1982-5676201300...
; NEUBAUER et al., 2014NEUBAUER, C. et al. Biofumigation potential of Brassicaceae cultivars to Verticillium dahliae. European Journal of Plant Pathology , v.140, n.2, p.341-352, 2014. Available from: <Available from: https://doi.org/10.1007/s10658-014-0467-9 >. Accessed: Mar. 12, 2020. doi: 10.1007/s10658-014-0467-9.
https://doi.org/10.1007/s10658-014-0467-...
; WANG et al., 2014 a,b; RUBAYET et al., 2018RUBAYET, M. T. et al. Effect of biofumigation and soil solarization on stem canker and black scurf diseases of potato (Solanum tuberosum L.) caused by Rhizoctonia solani isolate PR2. Advances in Agricultural Science, v.6, n.3, p.33-48, 2018. Available from: <Available from: https://aaasjournal.org/submission/index.php/aaas/article/view/80 >. Accessed: Apr. 19, 2020.
https://aaasjournal.org/submission/index...
; CAMPANELLA et al., 2020CAMPANELLA, V. et al. Management of common root rot and Fusarium foot rot of wheat using Brassica carinata break crop green manure. Crop Protection, v.130, 2020. Available from: <Available from: https://doi.org/10.1016/j.cropro.2019.105073 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cropro.2019.105073.
https://doi.org/10.1016/j.cropro.2019.10...
).

The control of a series of phytoparasitic nematodes with biofumigation was reported by NTALLI & CARBONI (2017NTALLI, N.; CABONI, P. A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochemistry Reviews, v. 6, n.5, p.827-834, 2017. Available from: <Available from: https://doi.org/10.1007/s11101-017-9491-7 >. Accessed: Apr. 16, 2020. doi: 10.1007/s11101-017-9491-7.
https://doi.org/10.1007/s11101-017-9491-...
) and DUTTA et al. (2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
). Most studies have involved the action of brassica residues or derived products on species of the genus Meloidogyne (Table 4) (HENDERSON et al., 2009HENDERSON, D. R. et al. Mustard biofumigation disrupts biological control by Steinernema spp. nematodes in the soil. Biological control, v.48, n.3, p.316-322, 2009. Available from: <Available from: https://doi.org/10.1016/j.biocontrol.2008.12.004 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.biocontrol.2008.12.004.
https://doi.org/10.1016/j.biocontrol.200...
; OLIVEIRA et al., 2011OLIVEIRA, R. D. L. et al. Glucosinolate content and nematicidal activity of Brazilian wild mustard tissues against Meloidogyne incognita in tomato. Plant and Soil , v. 341, n. 1-2, p. 155-164, 2011. Available from: <Available from: https://doi.org/10.1007/s11104-010-0631-8 >. Accessed: Apr. 20, 2020. doi: 10.1007/s11104-010-0631-8.
https://doi.org/10.1007/s11104-010-0631-...
; NICOLA et al., 2013NICOLA, G.R. et al. A new biobased liquid formulation with biofumigant and fertilizing properties for drip irrigation distribution. Industrial Crops and Products, v.42, p.113-118, 2013. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2012.05.018 >. Accessed: Jul. 15, 2019. doi: 10.1016/j.indcrop.2012.05.018.
https://doi.org/10.1016/j.indcrop.2012.0...
; BARROS et al., 2014BARROS, A. F. et al. Exposure time of second stage juveniles to volatiles emitted by neem and mustard macerates and biofumigation against Meloidogyne incognita. Nematropica, v.44, n.2, p.190-199, 2014. Available from: <Available from: https://journals.flvc.org/nematropica/article/view/84284 >. Accessed: Mar. 15, 2019.
https://journals.flvc.org/nematropica/ar...
; CURTO et al., 2016CURTO, G. et al. Biofumigant effect of new defatted seed meals against the southern root‐knot nematode, Meloidogyne incognita. Annals of applied biology, v.169, n.1, 17-26, 2016. Available from: <Available from: https://doi.org/10.1111/aab.12275 >. Accessed: Apr. 19, 2020. doi: 10.1111/aab.12275.
https://doi.org/10.1111/aab.12275...
; ROS et al., 2016; AYDINLI & MENNAN, 2018; DANEEL et al., 2018DANEEL, M. et al. The host status of Brassicaceae to Meloidogyne and their effects as cover and biofumigant crops on root-knot nematode populations associated with potato and tomato under South African field conditions. Crop protection, v.110, p.198-206, 2018. Available from: <Available from: https://doi.org/10.1016/j.cropro.2017.09.001 >. Accessed: May, 02, 2020. doi: 10.1016/j.cropro.2017.09.001.
https://doi.org/10.1016/j.cropro.2017.09...
; RONCATO et al., 2018RONCATO, S. C. et al. Control of Meloidogyne incognita in tomato by crambe extract using different application forms. Summa Phytopathologica, v.44, n.3, p.261-266, 2018. Available from: <Available from: https://doi.org/10.1590/0100-5405/179533 >. Accessed: May, 7, 2020. doi: 10.1590/0100-5405/179533>.
https://doi.org/10.1590/0100-5405/179533...
). The use of E. sativa, Barbarea verna, and Brassica nigra DSM (defatted seed meals) reduced the occurrence of M. incognita and increased the development of tomato plants (CURTO et al., 2016). Crambe leaf extract (Crambe abyssinica) weekly incorporated into the soil reduced M. incognita second stage juveniles (J2) and eggs in tomato roots by up to 61.57% (RONCATO et al., 2018).

There have been few reports on the use and biofumigation potential of phytobacteria (Table 5); although, the technique is commonly associated with changes in bacterial community, structure, and diversity (WANG et al., 2014aWANG, Q. et al. Effect of biofumigation and chemical fumigation on soil microbial community structure and control of pepper Phytophthora blight. World Journal of Microbiology and Biotechnology, v.30, n.2, p.507-518, 2014a. Available from: <Available from: https://doi.org/10.1007/s11274-013-1462-6 >. Accessed: Apr. 22, 2020. doi: 10.1007/s11274-013-1462-6.
https://doi.org/10.1007/s11274-013-1462-...
,b; JIN et al., 2019JIN, X. et al. Rotations with Indian mustard and wild rocket suppressed cucumber Fusarium wilt disease and changed rhizosphere bacterial communities. Microorganisms, v.7, n.2, p.57, 2019. Available from: <Available from: http://dx.doi.org/10.3390/microorganisms7020057 >. Accessed: Mar. 19, 2020. doi: 10.3390/microorganisms7020057.
http://dx.doi.org/10.3390/microorganisms...
; HANSCHEN & WINKELMANN, 2020HANSCHEN, F. S.; WINKELMANN, T. Biofumigation for fighting replant disease- A Review. Agronomy, v.10, n.3, 2020. Available from: <Available from: https://doi.org/10.3390/agronomy10030425 >. Accessed: Apr. 15, 2020. doi: 10.3390/agronomy10030425.
https://doi.org/10.3390/agronomy10030425...
). Some promising results have been obtained with the incorporation of dry and ground B. oleracea residues to control bacterial wilt (Ralstonia solanacearum) in potatoes, ginger, and tomatoes (KIRKEGAARD, 2009KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.; BANDYOPADHYAY & KHALKO, 2016BANDYOPADHYAY, S.; KHALKO, S. Biofumigation - An eco-friendly approach for managing bacterial wilt and soft rot disease of ginger. Indian Phytopathology, v.69, n.1, p.53-56, 2016. Available from: <Available from: https://bit.ly/2RV1gpUbiofumigation >. Accessed: Apr. 17, 2020.
https://bit.ly/2RV1gpUbiofumigation...
; PONTES et al., 2019PONTES, N. C. et al. Soil fumigation with mustard essential oil to control bacterial wilt in tomato. European Journal of Plant Pathology , v.155, p.435-444. 2019. Available from: <Available from: https://doi.org/10.1007/s10658-019-01777-0 >. Accessed: Apr. 20, 2020. doi: 10.1007/s10658-019-01777-0.
https://doi.org/10.1007/s10658-019-01777...
), and common mange (Streptomyces scabies) in potatoes (GOUWS & WEHNER, 2004GOUWS, R.; WEHNER, F.C. Biofumigation as alternative control measure for common scab on seed potatoes in South Africa. Agroindustria, v.3, p.309-312, 2004.). For common mange, a reduction of up to 90% in disease intensity was reported (GOUWS & WEHNER, 2004). The incorporation of cabbage residues reduced the incidence of bacterial wilt (R. solanacearum) and increased yield in ginger (BANDYOPADHYAY & KHALKO, 2016BANDYOPADHYAY, S.; KHALKO, S. Biofumigation - An eco-friendly approach for managing bacterial wilt and soft rot disease of ginger. Indian Phytopathology, v.69, n.1, p.53-56, 2016. Available from: <Available from: https://bit.ly/2RV1gpUbiofumigation >. Accessed: Apr. 17, 2020.
https://bit.ly/2RV1gpUbiofumigation...
). The use of mustard essential oil (B. juncea) increased cell mortality and inhibited the growth of R. solanacearum colonies in vitro, thereby reducing the incidence of bacterial wilt in tomatoes (PONTES et al., 2019PONTES, N. C. et al. Soil fumigation with mustard essential oil to control bacterial wilt in tomato. European Journal of Plant Pathology , v.155, p.435-444. 2019. Available from: <Available from: https://doi.org/10.1007/s10658-019-01777-0 >. Accessed: Apr. 20, 2020. doi: 10.1007/s10658-019-01777-0.
https://doi.org/10.1007/s10658-019-01777...
).

In New Zealand, the prior cultivation and incorporation of B. rapa and B. napus residue reduced the severity of clubroot caused by the protozoan Plasmodiophora brassicae in Chinese cabbage (B. rapa), cauliflower (B. oleracea var. botrytis), and broccoli (B. oleracea var. italica), mainly with the use of B. rapa. These species positively influenced the yield of the respective crops (CHEAH et al., 2001CHEAH, L. H. et al. Brassica crops and a Streptomyces sp. as potential biocontrol for clubroot of brassicas. New Zealand Plant Protection, v.54, p.80-83, 2001. Available from: <Available from: https://doi.org/10.30843/nzpp.2001.54.3779 >. Accessed: Dec. 12, 2019. doi: 10.30843/nzpp.2001.54.3779.
https://doi.org/10.30843/nzpp.2001.54.37...
; 2006). In this case, it is notable that the species used for biofumigation are also pathogen hosts (DIXON & TILSTON, 2010DIXON, G. R.; TILSTON E. L. Soil-borne pathogens and their interactions with the soil environment. In: DIXON, G. R.; TILSTON, E. L. Soil Microbiology and Sustainable Crop Production. Dordrecht, Netherlands: Springer, 2010. Cap. 6, p. 197-271.). Thus, despite the positive reports by some authors, its use requires further analysis.

Biofumigation with brassica residues has also shown promising results in reducing weed seed banks and propagules in the soil (Table 6). The use of B. juncea residue (2.5 kg m-2) reduced the population of mono and dicotyledonous species, especially Digitaria sanguinalis, Portulaca oleracea, and Taraxacum officinalis (PERNIOLA et al., 2019PERNIOLA, O. S. et al. Biofumigación con Brassica juncea: efecto sobre la flora arvense. Revista de la Facultad de Agronomía, v.118, n.1, p.25-35, 2019. Available from: <Available from: https://revistas.unlp.edu.ar/revagro/article/view/7602 >. Accessed: Apr. 18, 2020.
https://revistas.unlp.edu.ar/revagro/art...
). Crushed residues of the same species also inhibited the germination of Anoda cristata, Picris echiodes, and P. oleracea seeds (PERNIOLA et al., 2016). The incorporation of B. juncea crushed residues effectively controlled weeds (> 85% mortality of small seeds) and decreased hard and large seed species (0-20%) (CAUWER et al., 2019CAUWER, B. et al. Impact of Brassica juncea biofumigation on viability of propagules of pernicious weed species. Weed Research, v.59, n.3, p.209-221, 2019. Available from: <Available from: https://doi.org/10.1111/wre.12358 >. Accessed: Apr. 27, 2020. doi: 10.1111/wre.12358.
https://doi.org/10.1111/wre.12358...
).

Fresh B. juncea residues and B. carinata DSM were evaluated against Agriotes brevis, A. sordidus, and A. ustulatus larvae by FURLAN et al. (2010FURLAN, L. et al. The efficacy of biofumigant meals and plants to control wireworm populations. Industrial crops and products, v.31, n.2, p.245-254, 2010. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2009.10.012 >. Accessed: Apr. 23, 2020. doi: 10.1016/j.indcrop.2009.10.012.
https://doi.org/10.1016/j.indcrop.2009.1...
). The B. carinata cake resulted in high larval mortality and prevented the larvae from damaging the crops (FURLAN et al., 2010). SHAAYA & KOSTYUKOVSKY (2010SHAAYA, E.; KOSTYUKOVSKY, M. The potential of biofumigants as alternatives to methyl bromide for the control of pest infestation in grain and dry food products. In: 10th International Working Conference on Stored Product Protection. Lisbon: Portugal, 2010. p.433- 437.) evaluated the toxicity of isothiocyanates extracted from E. sativa seeds against stored product pests. The authors reported that the use of isothiocyanates significantly increased the mortality of larvae and adults of the insect species evaluated.

Technique limitations

The literature also contains studies reporting negative results or with little consistency in the use of brassicas in biofumigation (LU et al., 2010LU, P. et al. Biofumigation with Brassica plants and its effect on the inoculum potential of Fusarium yellows of Brassica crops. European Journal of Plant Pathology, v.126, n.3, p.387-402, 2010. Available from: <Available from: https://doi.org/10.1007/s10658-009-9543-y >. Accessed: May, 1, 2020. doi: 10.1007/s10658-009-9543-y.
https://doi.org/10.1007/s10658-009-9543-...
; SMOLIŃSKA & KOWALCZYK, 2014SMOLIŃSKA, U.; KOWALCZYK, W. The impact of the Brassicaceae plant materials added to the soil on the population of Fusarium solani (Mart.) Sacc. and Fusarium oxysporum Schlecht. Journal of Horticultural Research, v.22, n.1, p.123-129, 2014. Available from: <Available from: https://doi.org/10.2478/johr-2014-0015 >. Accessed: Apr. 25, 2020. doi: 10.2478/johr-2014-0015.
https://doi.org/10.2478/johr-2014-0015...
; KRASNOW & HAUSBECK, 2015KRASNOW, C. S.; HAUSBECK, M. K. Pathogenicity of Phytophthora capsici to Brassica vegetable crops and biofumigation cover crops (Brassica spp.). Plant disease, v.99, n.12, p.1721-1726, 2015. Available from: <Available from: https://doi.org/10.1094/PDIS-03-15-0271-RE >. Accessed: Mar. 18, 2020. doi: 10.1094/PDIS-03-15-0271-RE.
https://doi.org/10.1094/PDIS-03-15-0271-...
; MAZZOLA et al., 2017MAZZOLA, M. et al. Incorporation of Brassica seed meal soil amendment and wheat cultivation for control of Macrophomina phaseolina in strawberry. European Journal of Plant Pathology , v.149, n.1, p.57-71, 2017. Available from: <Available from: https://doi.org/10.1007/s10658-017-1166-0 >. Accessed: Apr. 28, 2020. doi: 10.1007/s10658-017-1166-0.
https://doi.org/10.1007/s10658-017-1166-...
; DUTTA et al., 2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
). The factors associated with these variations include the brassica species, method and management used in biofumigation, the sensitivity of the target species, the phase of the target species cycle, and the influence of chemical, physical, and biological factors in the soil (KIRKEGAARD & MATTHIESSEN, 2004KIRKEGAARD, J.; MATTHIESSEN, J. Developing and refining the biofumigation concept. Agroindustria, v.3, p.233-239, 2004. Available from <Available from http://hdl.handle.net/102.100.100/181385?index=1 >. Accessed: Nov. 17, 2019.
http://hdl.handle.net/102.100.100/181385...
; FAN et al., 2008FAN, C. M. et al. Potential biofumigation effects of Brassica oleracea var. caulorapa on growth of fungi. Journal of Phytopathology, v.156, n.6, p.321-325, 2008. Available from: <Available from: https://doi.org/10.1111/j.1439-0434.2007.01343.x >. Accessed: Apr. 15, 2020. doi: 10.1111/j.1439-0434.2007.01343.x.
https://doi.org/10.1111/j.1439-0434.2007...
; KIRKEGAARD, 2009; CLARKSON et al., 2015CLARKSON, J. et al. Biofumigation for the control of soil-borne diseases. EPI-AGRI. Soil-borne diseases. 2015. Available from <Available from https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf >. Accessed: Sep. 16, 2019.
https://ec.europa.eu/eip/agriculture/sit...
; LADHALAKSHMI et al., 2015LADHALAKSHMI, D. et al. Biofumigation in crop disease management. In: GANESAN, S. et al. Sustainable Crop Disease Management using Natural Products. Boston: CAB International, 2015. Cap.19, p.389-402.; MAWAR & LODHA, 2015MAWAR, R.; LODHA, S. Suppression of soilborne plant pathogens by cruciferous residues. In: MEGHVANSI, M.; VARMA, A. (eds). Organic Amendments and Soil Suppressiveness in Plant Disease Management. Cham: Springer , 2015. Cap.20, p.413-433.; KUMAR et al., 2018KUMAR, G. N. K. et al. Disease management by Biofumigation in organic farming system. Journal of Pharmacognosy and Phytochemistry, v.7, n.4, p.676-679, 2018. Available from: <Available from: http://www.phytojournal.com/archives/2018/vol7issue4/PartK/7-3-654-578.pdf >. Accessed: Sep. 8, 2019.
http://www.phytojournal.com/archives/201...
; CAMPANELLA et al., 2020). Thus, the methodology and products must be adjusted according to different situations and objects of control: pathogen, pest, or weed. Hence, specific studies are needed to elucidate the species and products most appropriate to each context and production system (CLARKSON et al., 2015), especially in Brazil, where limited information is currently available. The susceptibility of biofumigant species to target organisms or other pathogens and crop pests that are part of the production system can also be a limitation (DONALD et al., 2010DONALD, D. et al. Managing Soilborne Diseases in Vegetables: Rotation with green manure and biofumigant crops shows disease control & yield benefits. Victoria: Department of Primary Industries, 2010. Available from: <Available from: https://ausveg.com.au/app/data/technical-insights/docs/VG07125_Soilborne_Diseases_brochure.pdf >. Accessed: Nov. 27, 2019.
https://ausveg.com.au/app/data/technical...
; LU et al., 2010; KRASNOW & HAUSBECK, 2015).

Additionally, most studies on biofumigation have been conducted in laboratory or greenhouse environments (Tables 1 to 6) (DUTTA et al., 2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
; MORRIS et al., 2020MORRIS, E. K. et al. Effective methods of biofumigation: a meta-analysis. Plant and Soil, v.446, p.379-392, 2020. Available from: <Available from: https://doi.org/10.1007/s11104-019-04352-y >. Accessed: Apr. 15, 2020. doi: 10.1007/s11104-019-04352-y.
https://doi.org/10.1007/s11104-019-04352...
). Despite the importance of studies performed under controlled conditions to better understand the phenomena involved, studies under field conditions are also essential (DUTTA et al., 2019DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
https://doi.org/10.1016/j.cpb.2019.02.00...
). Only results from these studies can provide subsidies to improve and implement the technique in commercial crops.

Additionally, the influence of biofumigation on beneficial microorganisms present in the soil should also be highlighted, since it is not a selective technique. It can change the soil microbial community, and some authors believe it affects beneficial invertebrates present in the soil (HANSCHEN & WINKELMANN, 2020HANSCHEN, F. S.; WINKELMANN, T. Biofumigation for fighting replant disease- A Review. Agronomy, v.10, n.3, 2020. Available from: <Available from: https://doi.org/10.3390/agronomy10030425 >. Accessed: Apr. 15, 2020. doi: 10.3390/agronomy10030425.
https://doi.org/10.3390/agronomy10030425...
). Studies showing the effects of this technique on the effectiveness of associated strategies, such as the use of biocontrol agents, are also necessary (HENDERSON et al., 2009HENDERSON, D. R. et al. Mustard biofumigation disrupts biological control by Steinernema spp. nematodes in the soil. Biological control, v.48, n.3, p.316-322, 2009. Available from: <Available from: https://doi.org/10.1016/j.biocontrol.2008.12.004 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.biocontrol.2008.12.004.
https://doi.org/10.1016/j.biocontrol.200...
). WANG et al (2014bWANG, Q. et al. Integration of biofumigation with antagonistic microorganism can control Phytophthora blight of pepper plants by regulating soil bacterial community structure. European Journal of Soil Biology, v.61, p.58-67, 2014b. Available from: <Available from: https://doi.org/10.1016/j.ejsobi.2013.12.004 >. Accessed: Apr. 22, 2020. doi: 10.1016/j.ejsobi.2013.12.004.
https://doi.org/10.1016/j.ejsobi.2013.12...
) reported that the combination of biofumigation with Brassica spp. residues and the antagonist Bacillus amyloliquefaciens increased the bacterial diversity of the soil and influenced certain microbial populations, both positively and negatively. The increased bacterial diversity may have played a significant role in the suppression of Phytophthora capsici in pepper (Capsicum annuum). Nevertheless, the authors suggested that further studies should be conducted before recommending this integrated approach.

Potential use of non-brassica plants and agricultural residues in biofumigation

In addition to plants of the Brassicaceae family, other species and residues can be investigated and explored for use in biofumigation (ARNAULT et al., 2013ARNAULT, I. et al. Use of Alliaceae residues to control soil-borne pathogens. Industrial crops and products, v.49, p.265-272, 2013. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2013.05.007 >. Accessed: Nov. 12, 2019. doi: 10.1016/j.indcrop.2013.05.007.
https://doi.org/10.1016/j.indcrop.2013.0...
; CURTO et al., 2016CURTO, G. et al. Biofumigant effect of new defatted seed meals against the southern root‐knot nematode, Meloidogyne incognita. Annals of applied biology, v.169, n.1, 17-26, 2016. Available from: <Available from: https://doi.org/10.1111/aab.12275 >. Accessed: Apr. 19, 2020. doi: 10.1111/aab.12275.
https://doi.org/10.1111/aab.12275...
; GAMLIEL & BRUGGEN, 2016GAMLIEL, A.; BRUGGEN, A. H. C. Maintaining soil health for crop production in organic greenhouses. Scientia Horticulturae, v.208, p.120-130, 2016. Available from <Available from https://doi.org/10.1016/j.scienta.2015.12.030 >. Accessed: Sep. 15, 2019. doi: 10.1016/j.scienta.2015.12.030.
https://doi.org/10.1016/j.scienta.2015.1...
; WEI et al., 2016WEI, F. et al. Effects of individual and combined use of bio-fumigation-derived products on the viability of Verticillium dahliae microsclerotia in soil. Crop Protection, v.79, p.170-176, 2016. Available from: <Available from: https://doi.org/10.1016/j.cropro.2015.09.008 >. Accessed: Dec. 18, 2019. doi: 10.1016/j.cropro.2015.09.008.
https://doi.org/10.1016/j.cropro.2015.09...
). The effects of these materials are related to the production of volatile biotoxic compounds by increasing the microbial activity in the soil and changing its structure (GAMLIEL & BRUGGEN, 2016). Some species of the genus Allium exert biocidal activity and are recommended for use in biofumigation (ARNAULT et al., 2013) such as, lavender (Lavandula sp.) (WEI et al., 2016), neem (Azadirachta indica) (BARROS et al., 2014BARROS, A. F. et al. Exposure time of second stage juveniles to volatiles emitted by neem and mustard macerates and biofumigation against Meloidogyne incognita. Nematropica, v.44, n.2, p.190-199, 2014. Available from: <Available from: https://journals.flvc.org/nematropica/article/view/84284 >. Accessed: Mar. 15, 2019.
https://journals.flvc.org/nematropica/ar...
), medicinal plants such as citronella (Cymbopogon nardus) and wormseed (Dysphania ambrosioides) (SILVA et al., 2020SILVA, M. F. et al. Medicinal plant volatiles applied against the root-knot nematode Meloidogyne incognita. Crop Protection, v.130, 2020. Available from: <Available from: https://doi.org/10.1016/j.cropro.2019.105057 >. Accessed: Apr. 28, 2020. doi: 10.1016/j.cropro.2019.105057.
https://doi.org/10.1016/j.cropro.2019.10...
), and papaya seeds (Carica papaya L.) (NEVES et al., 2008NEVES, W. S. et al. The use of papaya-seed and solarization for the control of Meloidogyne javanica and Meloidogyne incognita. Nematologia Brasileira, v.32, n.4, p.253-259, 2008. Available from: <Available from: https://nematologia.com.br/files/revnb/32_4.pdf >. Accessed: Jun. 28, 2020.
https://nematologia.com.br/files/revnb/3...
).

The use of organic fertilizers, manure, residues, and nitrogen-rich compounds can also be considered in soil biofumigation due to the release of allelochemicals (MEGHVANSI & VARMA, 2015MEGHVANSI, M. K., VARMA, A. (Eds.). Organic amendments and soil suppressiveness in plant disease management. Dordrecht: Springer, 2015.; ZEIST et al., 2019ZEIST, A.R. et al. Combination of solarization, biofumigation and grafting techniques for the management of bacterial wilt in tomato. Horticultura Brasileira, v.37, p.260-265, 2019. Available from: <Available from: http://dx.doi.org/10.1590/S0102-053620190302 >. Accessed: Apr. 18. 2020. doi: 10.1590/S0102-053620190302.
http://dx.doi.org/10.1590/S0102-05362019...
). Some examples of residues with promising results are castor bean cake and poultry litter or chicken manure, with or without soil solarization. In this case, it may be classified as soil biosolarization (ROS et al., 2008ROS, M. et al. Effects of biosolarization as methyl bromide alternative for Meloidogyne incognita control on quality of soil under pepper. Biology and Fertility of Soils, v.45, p.37-44, 2008. Available from: <Available from: https://link.springer.com/article/10.1007/s00374-008-0307-1 >. Accessed: Sep. 8, 2019. doi: 10.1007/s00374-008-0307-1.
https://link.springer.com/article/10.100...
; VILLALOBOS et al., 2013VILLALOBOS, J. A. M.; et al. Producción de chile (Capsicum annuum L.) a campo abierto con biofumigación del suelo. Durango: INIFAP, 2013. Available from: <Available from: http://biblioteca.inifap.gob.mx:8080/jspui/handle/123456789/4097 >. Accessed: Sep. 02, 2019.
http://biblioteca.inifap.gob.mx:8080/jsp...
; ROS et al., 2016).

CONCLUSION:

Biofumigation with plant residues from the family Brassicaceae can be an important strategy in the integrated management of soil organisms that are harmful to crops. Positive results have been reported when the methodologies are correctly used. In biofumigation, brassicas are the most commonly used plants for accumulating GSLs, which release ITCs after enzymatic hydrolysis, with strong biocidal action. However, other plant species (non-brassicas) and organic residues already used in agriculture have potential for use in this way; however, further studies are needed to validate and optimize their use in agriculture.

Biofumigation controls harmful agents by releasing volatile biocidal compounds, with some indirect benefits related to the supply of organic matter to the soil. Therefore, this technique represents a comprehensive management system involving chemical, physical, and biological soil changes, with multiple effects on phytopathogenic agents, pests, and weed species, the soil environment, and plants of economic interest. This technique may be of particular interest for organic production systems and can be integrated with other alternative strategies, such as soil solarization, with projections of improved effects.

However, biofumigation is not a selective practice. Studies investigating the effects of biofumigation on the beneficial soil microbiota, and on the interaction between biofumigation and biological control with microorganisms remain inconclusive.

Owing to the multiplicity of factors involved, such as biofumigant species, amount of biomass, form of use, physical characteristics of the soil and the target organisms, many studies are required, especially under tropical conditions. There is also a need to fill knowledge gaps and understand the processes and mechanisms involved, the specifics of each material used, and the effects on different groups of phytopathogens, pests, and on the soil microbiota and microfauna. Finally, the cultural component should also be considered, with reluctance to replace chemical fumigants with biofumigation, which is a less harmful option to the environment.

ACKNOWLEDGEMENTS

To the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPq) by scholarship (140566/2017-1). This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil - Finance code 001.

REFERENCES

  • AGROFIT. Sistema de Agrotóxicos Fitossanitários do Ministério da Agricultura. 2020. Available from: <Available from: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons >. Accessed: Apr. 15, 2020.
    » http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons
  • ARNAULT, I. et al. Use of Alliaceae residues to control soil-borne pathogens. Industrial crops and products, v.49, p.265-272, 2013. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2013.05.007 >. Accessed: Nov. 12, 2019. doi: 10.1016/j.indcrop.2013.05.007.
    » https://doi.org/10.1016/j.indcrop.2013.05.007.» https://doi.org/10.1016/j.indcrop.2013.05.007
  • AYDINLI, G.; MENNAN, S. Biofumigation studies by using Raphanus sativus and Eruca sativa as a winter cycle crops to control root-knot nematodes. Brazilian Archives of Biology and Technology, v.61, 2018. Available from: <Available from: https://doi.org/10.1590/1678-4324-2018180249 >. Accessed: Apr. 17, 2020. doi: 10.1590/1678-4324-2018180249.
    » https://doi.org/10.1590/1678-4324-2018180249.» https://doi.org/10.1590/1678-4324-2018180249
  • BAKER, L. W. et al. Ambient air concentrations of pesticides in California. Environmental Science & Technology, v.30, p.365-1368, 1996. Available from <Available from https://doi.org/10.1021/es950608l >. Accessed: Nov. 20, 2019. doi: 10.1021/es950608l.
    » https://doi.org/10.1021/es950608l.» https://doi.org/10.1021/es950608l
  • BANDYOPADHYAY, S.; KHALKO, S. Biofumigation - An eco-friendly approach for managing bacterial wilt and soft rot disease of ginger. Indian Phytopathology, v.69, n.1, p.53-56, 2016. Available from: <Available from: https://bit.ly/2RV1gpUbiofumigation >. Accessed: Apr. 17, 2020.
    » https://bit.ly/2RV1gpUbiofumigation
  • BARRAU, C. et al. Brassica carinata for control of Phytophthora spp. in strawberry field crops. Revista de Ciências Agrárias, v.32, n.2, p.135-138, 2009. Available from: <Available from: http://www.scielo.mec.pt/pdf/rca/v32n2/v32n2a13.pdf >. Accessed: Mar. 18, 2020.
    » http://www.scielo.mec.pt/pdf/rca/v32n2/v32n2a13.pdf
  • BARROS, A. F. et al. Exposure time of second stage juveniles to volatiles emitted by neem and mustard macerates and biofumigation against Meloidogyne incognita Nematropica, v.44, n.2, p.190-199, 2014. Available from: <Available from: https://journals.flvc.org/nematropica/article/view/84284 >. Accessed: Mar. 15, 2019.
    » https://journals.flvc.org/nematropica/article/view/84284
  • BHERING, A. S. et al. Soil management in a mountain agroecosystem and clubroot disease. Plant Pathology, v.69, n.2, 302-309, 2020. Available from: <Available from: https://doi.org/10.1111/ppa.13123 >. Accessed: Jun. 30, 2020. doi: 10.1111/ppa.13123.
    » https://doi.org/10.1111/ppa.13123.» https://doi.org/10.1111/ppa.13123
  • BRUGGEN, A. H. C. et al. Plant disease management in organic farming systems. Pest Management Science, v. 72, n. 1, p. 30-44, 2016. Available from: <Available from: https://doi.org/10.1002/ps.4145 >. Accessed: Jun. 28, 2020. doi: 10.1002/ps.4145.
    » https://doi.org/10.1002/ps.4145.» https://doi.org/10.1002/ps.4145
  • BRUGGEN, A. H. C.; FINCKH, M. R. Plant diseases and management approaches in organic farming systems. Annual Review of Phytopathology, v.54, p.25-54, 2016. Available from: <Available from: https://www.annualreviews.org/doi/10.1146/annurev-phyto-080615-100123 >. Accessed: Dec. 20, 2019. doi: 10.1146/annurev-phyto-080615-100123.
    » https://doi.org/10.1146/annurev-phyto-080615-100123.» https://www.annualreviews.org/doi/10.1146/annurev-phyto-080615-100123
  • BURKI, F. et al. Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evolutionary Biology, v.10, p.377, 2010. Available from: <Available from: https://doi.org/10.1186/1471-2148-10-377 >. Accessed: Jun. 30, 2020. doi: 10.1186/1471-2148-10-377.
    » https://doi.org/10.1186/1471-2148-10-377.» https://doi.org/10.1186/1471-2148-10-377
  • CAMPANELLA, V. et al. Management of common root rot and Fusarium foot rot of wheat using Brassica carinata break crop green manure. Crop Protection, v.130, 2020. Available from: <Available from: https://doi.org/10.1016/j.cropro.2019.105073 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cropro.2019.105073.
    » https://doi.org/10.1016/j.cropro.2019.105073.» https://doi.org/10.1016/j.cropro.2019.105073
  • CAUWER, B. et al. Impact of Brassica juncea biofumigation on viability of propagules of pernicious weed species. Weed Research, v.59, n.3, p.209-221, 2019. Available from: <Available from: https://doi.org/10.1111/wre.12358 >. Accessed: Apr. 27, 2020. doi: 10.1111/wre.12358.
    » https://doi.org/10.1111/wre.12358.» https://doi.org/10.1111/wre.12358
  • CHEAH, L. H. et al. Brassica crops and a Streptomyces sp. as potential biocontrol for clubroot of brassicas. New Zealand Plant Protection, v.54, p.80-83, 2001. Available from: <Available from: https://doi.org/10.30843/nzpp.2001.54.3779 >. Accessed: Dec. 12, 2019. doi: 10.30843/nzpp.2001.54.3779.
    » https://doi.org/10.30843/nzpp.2001.54.3779.» https://doi.org/10.30843/nzpp.2001.54.3779
  • CHEAH, L. H. et al. Clubroot control using Brassica break crops. Acta Hort, v.706, p.329-332, 2006. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2006.706.39 >. Accessed: Nov. 27, 2020. doi: 10.17660/ActaHortic.2006.706.39.
    » https://doi.org/10.17660/ActaHortic.2006.706.39.» https://doi.org/10.17660/ActaHortic.2006.706.39
  • CLARKSON, J. et al. Biofumigation for the control of soil-borne diseases. EPI-AGRI. Soil-borne diseases. 2015. Available from <Available from https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf >. Accessed: Sep. 16, 2019.
    » https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf
  • CURTO, G. et al. Biofumigant effect of new defatted seed meals against the southern root‐knot nematode, Meloidogyne incognita Annals of applied biology, v.169, n.1, 17-26, 2016. Available from: <Available from: https://doi.org/10.1111/aab.12275 >. Accessed: Apr. 19, 2020. doi: 10.1111/aab.12275.
    » https://doi.org/10.1111/aab.12275.» https://doi.org/10.1111/aab.12275
  • DANEEL, M. et al. The host status of Brassicaceae to Meloidogyne and their effects as cover and biofumigant crops on root-knot nematode populations associated with potato and tomato under South African field conditions. Crop protection, v.110, p.198-206, 2018. Available from: <Available from: https://doi.org/10.1016/j.cropro.2017.09.001 >. Accessed: May, 02, 2020. doi: 10.1016/j.cropro.2017.09.001.
    » https://doi.org/10.1016/j.cropro.2017.09.001.» https://doi.org/10.1016/j.cropro.2017.09.001
  • DHINGRA, O. D. et al. Potential of soil fumigation with mustard essential oil to substitute biofumigation by cruciferous plant species. Tropical plant pathology, v.38, n.4, p.337-342, 2013. Available from: <Available from: https://doi.org/10.1590/S1982-56762013005000014 >. Accessed: Mar. 27, 2020. doi: 10.1590/S1982-56762013005000014.
    » https://doi.org/10.1590/S1982-56762013005000014.» https://doi.org/10.1590/S1982-56762013005000014
  • DIXON, G. R.; TILSTON E. L. Soil-borne pathogens and their interactions with the soil environment. In: DIXON, G. R.; TILSTON, E. L. Soil Microbiology and Sustainable Crop Production. Dordrecht, Netherlands: Springer, 2010. Cap. 6, p. 197-271.
  • DONALD, D. et al. Managing Soilborne Diseases in Vegetables: Rotation with green manure and biofumigant crops shows disease control & yield benefits. Victoria: Department of Primary Industries, 2010. Available from: <Available from: https://ausveg.com.au/app/data/technical-insights/docs/VG07125_Soilborne_Diseases_brochure.pdf >. Accessed: Nov. 27, 2019.
    » https://ausveg.com.au/app/data/technical-insights/docs/VG07125_Soilborne_Diseases_brochure.pdf
  • DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v.17, p.17-32, 2019. Available from: <Available from: https://doi.org/10.1016/j.cpb.2019.02.001 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.cpb.2019.02.001.
    » https://doi.org/10.1016/j.cpb.2019.02.001.» https://doi.org/10.1016/j.cpb.2019.02.001
  • EPSTEIN, L. Fifty Years Since Silent Spring. Annual Review of Phytopathology, v.52, p.377-402, 2014. Available from: <Available from: https://doi.org/10.1146/annurev-phyto-102313-045900 >. Accessed: Sep. 20, 2019. doi: 10.1146/annurev-phyto-102313-045900.
    » https://doi.org/10.1146/annurev-phyto-102313-045900.» https://doi.org/10.1146/annurev-phyto-102313-045900
  • FAN, C. M. et al. Potential biofumigation effects of Brassica oleracea var. caulorapa on growth of fungi. Journal of Phytopathology, v.156, n.6, p.321-325, 2008. Available from: <Available from: https://doi.org/10.1111/j.1439-0434.2007.01343.x >. Accessed: Apr. 15, 2020. doi: 10.1111/j.1439-0434.2007.01343.x.
    » https://doi.org/10.1111/j.1439-0434.2007.01343.x.» https://doi.org/10.1111/j.1439-0434.2007.01343.x
  • FURLAN, L. et al. The efficacy of biofumigant meals and plants to control wireworm populations. Industrial crops and products, v.31, n.2, p.245-254, 2010. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2009.10.012 >. Accessed: Apr. 23, 2020. doi: 10.1016/j.indcrop.2009.10.012.
    » https://doi.org/10.1016/j.indcrop.2009.10.012.» https://doi.org/10.1016/j.indcrop.2009.10.012
  • GAMLIEL, A.; BRUGGEN, A. H. C. Maintaining soil health for crop production in organic greenhouses. Scientia Horticulturae, v.208, p.120-130, 2016. Available from <Available from https://doi.org/10.1016/j.scienta.2015.12.030 >. Accessed: Sep. 15, 2019. doi: 10.1016/j.scienta.2015.12.030.
    » https://doi.org/10.1016/j.scienta.2015.12.030.» https://doi.org/10.1016/j.scienta.2015.12.030
  • GAMLIEL, A.; KATAN, J. Control of plant disease through soil solarization. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell, 2009. Cap. 10, p. 196-220.
  • GIMSING, A. L.; KIRKEGAARD, J. A. Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochemistry Reviews, v.8, n.1, p.299-310, 2009. Available from <Available from https://doi.org/10.1007/s11101-008-9105-5 >. Accessed: Dec. 15, 2019. doi: 10.1007/s11101-008-9105-5.
    » https://doi.org/10.1007/s11101-008-9105-5.» https://doi.org/10.1007/s11101-008-9105-5
  • GOUWS, R.; WEHNER, F.C. Biofumigation as alternative control measure for common scab on seed potatoes in South Africa. Agroindustria, v.3, p.309-312, 2004.
  • GUREL, F. B. et al. Biofumigation: Opportunities and challenges for control of soilborne diseases in nursery production. Plant Health Progress, v. 19, n. 4, p. 332-337, 2018. Available from: <Available from: https://doi.org/10.1094/PHP-08-18-0049-RV >. Accessed: May, 15, 2020. doi: 10.1094/PHP-08-18-0049-RV.
    » https://doi.org/10.1094/PHP-08-18-0049-RV.» https://doi.org/10.1094/PHP-08-18-0049-RV
  • HANSCHEN, F. S.; WINKELMANN, T. Biofumigation for fighting replant disease- A Review. Agronomy, v.10, n.3, 2020. Available from: <Available from: https://doi.org/10.3390/agronomy10030425 >. Accessed: Apr. 15, 2020. doi: 10.3390/agronomy10030425.
    » https://doi.org/10.3390/agronomy10030425.» https://doi.org/10.3390/agronomy10030425
  • HENDERSON, D. R. et al. Mustard biofumigation disrupts biological control by Steinernema spp. nematodes in the soil. Biological control, v.48, n.3, p.316-322, 2009. Available from: <Available from: https://doi.org/10.1016/j.biocontrol.2008.12.004 >. Accessed: Apr. 15, 2020. doi: 10.1016/j.biocontrol.2008.12.004.
    » https://doi.org/10.1016/j.biocontrol.2008.12.004.» https://doi.org/10.1016/j.biocontrol.2008.12.004
  • IRIARTE, L. E. Efecto de la biofumigación con repollo sobre el control de Fusarium oxysporum en suelo. RIA. Revista de Investigaciones Agropecuarias, v.37, n.3, p.231-237, 2011. Available from: <Available from: https://www.redalyc.org/pdf/864/86421245007.pdf >. Accessed: Apr. 15, 2020.
    » https://www.redalyc.org/pdf/864/86421245007.pdf
  • JIN, X. et al. Rotations with Indian mustard and wild rocket suppressed cucumber Fusarium wilt disease and changed rhizosphere bacterial communities. Microorganisms, v.7, n.2, p.57, 2019. Available from: <Available from: http://dx.doi.org/10.3390/microorganisms7020057 >. Accessed: Mar. 19, 2020. doi: 10.3390/microorganisms7020057.
    » https://doi.org/10.3390/microorganisms7020057.» http://dx.doi.org/10.3390/microorganisms7020057
  • KARAVINA, C.; MANDUMBU, R. Biofumigation for crop protection: potential for adoption in Zimbabwe. Journal of Animal & Plant Sciences, v.14, n.3, 1996-2005, 2012. Available from: <Available from: http://www.m.elewa.org/JAPS/2012/14.3/3.pdf >. Accessed: Apr. 18, 2020.
    » http://www.m.elewa.org/JAPS/2012/14.3/3.pdf
  • KIRKEGAARD, J.A. et al. Biofumigation - using Brassica species to control pests and diseases in horticulture and agriculture. In: WRATTEN, N.: MAILER, R. J. Proceedings of the 9th Australian Research Assembly on Brassicas. Wagga Wagga, The Assembly, 1993. p.77-82.
  • KIRKEGAARD, J. Biofumigation for plant disease control - from the fundamentals to the farming system. In: WALTERS, D. Disease Control in Crops: Biological and Environmentally Friendly Approaches. Oxford: Wiley-Blackwell , 2009. Cap. 9, p. 172-195.
  • KIRKEGAARD, J.; MATTHIESSEN, J. Developing and refining the biofumigation concept. Agroindustria, v.3, p.233-239, 2004. Available from <Available from http://hdl.handle.net/102.100.100/181385?index=1 >. Accessed: Nov. 17, 2019.
    » http://hdl.handle.net/102.100.100/181385?index=1
  • KRASNOW, C. S.; HAUSBECK, M. K. Pathogenicity of Phytophthora capsici to Brassica vegetable crops and biofumigation cover crops (Brassica spp.). Plant disease, v.99, n.12, p.1721-1726, 2015. Available from: <Available from: https://doi.org/10.1094/PDIS-03-15-0271-RE >. Accessed: Mar. 18, 2020. doi: 10.1094/PDIS-03-15-0271-RE.
    » https://doi.org/10.1094/PDIS-03-15-0271-RE.» https://doi.org/10.1094/PDIS-03-15-0271-RE
  • KUMAR, G. N. K. et al. Disease management by Biofumigation in organic farming system. Journal of Pharmacognosy and Phytochemistry, v.7, n.4, p.676-679, 2018. Available from: <Available from: http://www.phytojournal.com/archives/2018/vol7issue4/PartK/7-3-654-578.pdf >. Accessed: Sep. 8, 2019.
    » http://www.phytojournal.com/archives/2018/vol7issue4/PartK/7-3-654-578.pdf
  • LADHALAKSHMI, D. et al. Biofumigation in crop disease management. In: GANESAN, S. et al. Sustainable Crop Disease Management using Natural Products. Boston: CAB International, 2015. Cap.19, p.389-402.
  • LARREGLA, S. et al. Biodisinfestation with organic amendments for soil fatigue and soil-Borne pathogens control in protected pepper crops. In: MEGHVANSI, M.; VARMA, A. Organic Amendments and Soil Suppressiveness in Plant Disease Management. Cham: Springer, 2015. Cap.21, p.437-456.
  • LAZZERI, L. et al. Biocidal plant dried pellets for biofumigation. Industrial Crops and Products, v.20, p.59-65, 2004. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2003.12.018 >. Accessed: Sep. 8, 2019. doi: 10.1016/j.indcrop.2003.12.018.
    » https://doi.org/10.1016/j.indcrop.2003.12.018.» https://doi.org/10.1016/j.indcrop.2003.12.018
  • LAZZERI, L. et al. Bio-based products from Brassica carinata A. Braun oils and defatted meals by a second generation biorefinery approach. Proc. 19th European Biomass Conference. Berlin, Germany, .6-10., p.1080-1092. 2011. Available from: <Available from: http://www.etaflorence.it/proceedings/?detail=7244 >. Accessed: Dec. 18, 2019. doi: 10.5071/19thEUBCE2011-OA12.5.
    » https://doi.org/10.5071/19thEUBCE2011-OA12.5.» http://www.etaflorence.it/proceedings/?detail=7244
  • LAZZERI, L. et al. The Brassicaceae biofumigation system for plant cultivation and defence. An Italian twenty-year experience of study and application. Acta Hortic, v.1005, p.375-382, 2013. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2013.1005.44 > Accessed: Sep. 8, 2019. doi: 10.17660/ActaHortic.2013.1005.44.
    » https://doi.org/10.17660/ActaHortic.2013.1005.44.» https://doi.org/10.17660/ActaHortic.2013.1005.44
  • LEFEBVRE, M. Seed dormancy and seed morphology related to weed susceptibility to biofumigation. Weed Science, v. 66, n. 2, p. 199-214, 2018. Available from: <Available from: https://doi.org/10.1017/wsc.2017.66 > Accessed: Mar. 27, 2020. doi: 10.1017/wsc.2017.66.
    » https://doi.org/10.1017/wsc.2017.66.» https://doi.org/10.1017/wsc.2017.66
  • LEITE, I. C. H.; LOPES, U. P. Controle químico de patógenos radiculares. In: LOPES, U. P.; MICHEREFF, S. J. (eds). Desafios do Manejo de Doenças Radiculares Causadas por Fungos. Recife: EDUFRPE, 2018. Cap. 11, p. 179-192.
  • LOBO JÚNIOR, M. L. et al. Panorama da pesquisa com patógenos radiculares no Brasil. In: LOPES, U. P.; MICHEREFF, S. J. (eds). Desafios do Manejo de Doenças Radiculares Causadas por Fungos . Recife: EDUFRPE , 2018. Cap.2, p.17-34.
  • LORD, J. S., et al. Biofumigation for control of pale potato cyst nematodes: activity of brassica leaf extracts and green manures on Globodera pallida in vitro and in soil. Journal of Agricultural and Food Chemistry, v.59, p.7882-7890, 2011. Available from: <Available from: https://doi.org/10.1021/jf200925k > Accessed: Jun. 12, 2019. doi: 10.1021/jf200925k.
    » https://doi.org/10.1021/jf200925k.» https://doi.org/10.1021/jf200925k
  • LU, P. et al. Biofumigation with Brassica plants and its effect on the inoculum potential of Fusarium yellows of Brassica crops. European Journal of Plant Pathology, v.126, n.3, p.387-402, 2010. Available from: <Available from: https://doi.org/10.1007/s10658-009-9543-y >. Accessed: May, 1, 2020. doi: 10.1007/s10658-009-9543-y.
    » https://doi.org/10.1007/s10658-009-9543-y.» https://doi.org/10.1007/s10658-009-9543-y
  • MARSCHNER, P.; RENGEL, Z. The effects of plant breeding on soil microbes. In: DIXON, G. R.; TILSTON, E. L. Soil Microbiology and Sustainable Crop Production. Dordrecht, Netherlands: Springer , 2010. Cap. 8, p. 297-315.
  • MATTHIESSEN, J. N.; KIRKEGAARD, J. A. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, v.25, p.235-65, 2006. Available from: <Available from: https://doi.org/10.1080/07352680600611543 > Accessed: Jun. 12, 2019. doi: 10.1080/07352680600611543.
    » https://doi.org/10.1080/07352680600611543.» https://doi.org/10.1080/07352680600611543
  • MAWAR, R.; LODHA, S. Suppression of soilborne plant pathogens by cruciferous residues. In: MEGHVANSI, M.; VARMA, A. (eds). Organic Amendments and Soil Suppressiveness in Plant Disease Management. Cham: Springer , 2015. Cap.20, p.413-433.
  • MAZZOLA, M. et al. Incorporation of Brassica seed meal soil amendment and wheat cultivation for control of Macrophomina phaseolina in strawberry. European Journal of Plant Pathology , v.149, n.1, p.57-71, 2017. Available from: <Available from: https://doi.org/10.1007/s10658-017-1166-0 >. Accessed: Apr. 28, 2020. doi: 10.1007/s10658-017-1166-0.
    » https://doi.org/10.1007/s10658-017-1166-0.» https://doi.org/10.1007/s10658-017-1166-0
  • MEGHVANSI, M. K., VARMA, A. (Eds.). Organic amendments and soil suppressiveness in plant disease management. Dordrecht: Springer, 2015.
  • MICHEL, V.V. Ten years of biofumigation research in Switzerland. Aspects of Applied Biology, v.126, p.33-42, 2014. Available from: <Available from: http://link.ira.agroscope.ch/en-US/publication/34214 >. Accessed: Sep. 8, 2019.
    » http://link.ira.agroscope.ch/en-US/publication/34214
  • MORALES-RODRÍGUEZ, C. et al. Efficacy of biofumigation with Brassica carinata commercial pellets (BioFence) to control vegetative and reproductive structures of Phytophthora cinnamomi Plant Disease, v.100, n.2, p.324-330, 2016. Available from: <Available from: https://doi.org/10.1094/PDIS-03-15-0245-RE >. Accessed: Mar. 16, 2020. doi: 10.1094/PDIS-03-15-0245-RE.
    » https://doi.org/10.1094/PDIS-03-15-0245-RE.» https://doi.org/10.1094/PDIS-03-15-0245-RE
  • MORALES-RODRÍGUEZ, C. et al. Application of Trichoderma spp. complex and biofumigation to control damping-off of Pinus radiata D. Don caused by Fusarium circinatum Nirenberg and O’Donnell. Forests, v.9, n.7, p.421, 2018. Available from: <Available from: https://doi.org/10.3390/f9070421 >. Accessed: Mar. 16, 2020. doi: 10.3390/f9070421.
    » https://doi.org/10.3390/f9070421.» https://doi.org/10.3390/f9070421
  • MORRIS, E. K. et al. Effective methods of biofumigation: a meta-analysis. Plant and Soil, v.446, p.379-392, 2020. Available from: <Available from: https://doi.org/10.1007/s11104-019-04352-y >. Accessed: Apr. 15, 2020. doi: 10.1007/s11104-019-04352-y.
    » https://doi.org/10.1007/s11104-019-04352-y.» https://doi.org/10.1007/s11104-019-04352-y
  • MOTISI, N. et al. Epidemiological analysis of the effects of biofumigation for biological control of root rot in sugar beet. Plant Pathology, v.62, n.1, p.69-78, 2013. Available from: <Available from: https://doi.org/10.1111/j.1365-3059.2012.02618.x >. Accessed: Apr. 24, 2020. doi: 10.1111/j.1365-3059.2012.02618.x.
    » https://doi.org/10.1111/j.1365-3059.2012.02618.x.» https://doi.org/10.1111/j.1365-3059.2012.02618.x
  • NEUBAUER, C. et al. Biofumigation potential of Brassicaceae cultivars to Verticillium dahliae European Journal of Plant Pathology , v.140, n.2, p.341-352, 2014. Available from: <Available from: https://doi.org/10.1007/s10658-014-0467-9 >. Accessed: Mar. 12, 2020. doi: 10.1007/s10658-014-0467-9.
    » https://doi.org/10.1007/s10658-014-0467-9.» https://doi.org/10.1007/s10658-014-0467-9
  • NEVES, W. S. et al. The use of papaya-seed and solarization for the control of Meloidogyne javanica and Meloidogyne incognita Nematologia Brasileira, v.32, n.4, p.253-259, 2008. Available from: <Available from: https://nematologia.com.br/files/revnb/32_4.pdf >. Accessed: Jun. 28, 2020.
    » https://nematologia.com.br/files/revnb/32_4.pdf
  • NGALA, B. M. et al. Biofumigation with Brassica juncea, Raphanus sativus and Eruca sativa for the management of field populations of the potato cyst nematode Globodera pallida Pest Management Science, v.71, n.5, p.759-769, 2015. Available from: <Available from: https://doi.org/ 10.1002/ps.3849 >. Accessed: Mar. 15, 2020. doi: 10.1002/ps.3849.
    » https://doi.org/10.1002/ps.3849.» https://doi.org/ 10.1002/ps.3849
  • NICOLA, G.R. et al. A new biobased liquid formulation with biofumigant and fertilizing properties for drip irrigation distribution. Industrial Crops and Products, v.42, p.113-118, 2013. Available from: <Available from: https://doi.org/10.1016/j.indcrop.2012.05.018 >. Accessed: Jul. 15, 2019. doi: 10.1016/j.indcrop.2012.05.018.
    » https://doi.org/10.1016/j.indcrop.2012.05.018.» https://doi.org/10.1016/j.indcrop.2012.05.018
  • NTALLI, N.; CABONI, P. A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochemistry Reviews, v. 6, n.5, p.827-834, 2017. Available from: <Available from: https://doi.org/10.1007/s11101-017-9491-7 >. Accessed: Apr. 16, 2020. doi: 10.1007/s11101-017-9491-7.
    » https://doi.org/10.1007/s11101-017-9491-7.» https://doi.org/10.1007/s11101-017-9491-7
  • OJAGHIAN, M. R. et al. In vitro biofumigation of Brassica tissues against potato stem rot caused by Sclerotinia sclerotiorum The Plant Pathology Journal, v.28, n.2, p.185-190, 2012. Available from: <Available from: http://dx.doi.org/10.5423/PPJ-OA-11-2011-0206 >. Accessed: Mar. 15, 2020. doi: 10.5423/PPJ-OA-11-2011-0206.
    » https://doi.org/10.5423/PPJ-OA-11-2011-0206.» http://dx.doi.org/10.5423/PPJ-OA-11-2011-0206
  • OLIVEIRA, R. D. L. et al. Glucosinolate content and nematicidal activity of Brazilian wild mustard tissues against Meloidogyne incognita in tomato. Plant and Soil , v. 341, n. 1-2, p. 155-164, 2011. Available from: <Available from: https://doi.org/10.1007/s11104-010-0631-8 >. Accessed: Apr. 20, 2020. doi: 10.1007/s11104-010-0631-8.
    » https://doi.org/10.1007/s11104-010-0631-8.» https://doi.org/10.1007/s11104-010-0631-8
  • PAN, X. et al. Effect of oriental mustard (Brassica juncea) seed meal for control of dollar spot on creeping bentgrass (Agrostis stolonifera) Turf. International Turfgrass Society Research Journal, v.13, n.1, p.166-174, 2017. Available from: <Available from: https://doi.org/10.2134/itsrj2016.06.0455 >. Accessed: Apr. 17, 2020. doi: 10.2134/itsrj2016.06.0455.
    » https://doi.org/10.2134/itsrj2016.06.0455.» https://doi.org/10.2134/itsrj2016.06.0455
  • PERNIOLA, O. S et al. Biofumigación con Brassicáceas: actividad supresora sobre Fusarium graminearum Revista de la Facultad de Agronomía, v.111, n.1, p.48-53, 2012. Available from: <Available from: http://revista.agro.unlp.edu.ar/index.php/revagro/article/view/71 >. Accessed: Apr. 16, 2020.
    » http://revista.agro.unlp.edu.ar/index.php/revagro/article/view/71
  • PERNIOLA, O. S. et al. Control biológico de Fusarium graminearum: utilización de Trichoderma spp. y biofumigación con parte aérea de Brassica juncea Revista de la Facultad de Ciencias Agrarias, v.46, n.2, p.45-56, 2014. Available from: <Available from: https://ri.conicet.gov.ar/handle/11336/33015 >. Accessed: Apr. 16, 2020.
    » https://ri.conicet.gov.ar/handle/11336/33015
  • PERNIOLA, O. S. et al. Biofumigación in vitro con Brassica juncea y Sinapis alba Inhibición de la germinación y del crecimiento de plántulas de malezas. Revista de la Facultad de Agronomía, v.115, n.1, p.91-98, 2016. Available from: <Available from: http://revista.agro.unlp.edu.ar/index.php/revagro/article/view/290 >. Accessed: Apr. 18, 2020.
    » http://revista.agro.unlp.edu.ar/index.php/revagro/article/view/290
  • PERNIOLA, O. S. et al. Biofumigación con Brassica juncea: efecto sobre la flora arvense. Revista de la Facultad de Agronomía, v.118, n.1, p.25-35, 2019. Available from: <Available from: https://revistas.unlp.edu.ar/revagro/article/view/7602 >. Accessed: Apr. 18, 2020.
    » https://revistas.unlp.edu.ar/revagro/article/view/7602
  • PONTES, N. C. et al. Soil fumigation with mustard essential oil to control bacterial wilt in tomato. European Journal of Plant Pathology , v.155, p.435-444. 2019. Available from: <Available from: https://doi.org/10.1007/s10658-019-01777-0 >. Accessed: Apr. 20, 2020. doi: 10.1007/s10658-019-01777-0.
    » https://doi.org/10.1007/s10658-019-01777-0.» https://doi.org/10.1007/s10658-019-01777-0
  • PRASAD, P. et al. Biofumigation: Success and Prospects in Soilborne Plant Disease Management. International Journal of Applied And Pure Science and Agriculture, v.1, n.6, p.47-59, 2015. Available from <Available from https://ijapsa.com/published-papers/volume-1/issue-6/biofumigation-success-and-prospects-in-soilborne-plant-disease-management.pdf >. Accessed: Sep. 8, 2019.
    » https://ijapsa.com/published-papers/volume-1/issue-6/biofumigation-success-and-prospects-in-soilborne-plant-disease-management.pdf
  • PRASAD, P. et al. Investigating disease controlling ability of Brassica volatiles and their compatibility with Trichoderma harzianum The National Academy of Sciences, 2016. Available from: <Available from: https://doi.org/10.1007/s40011-016-0829-5 >. Accessed: Apr. 16, 2020. doi: 10.1007/s40011-016-0829-5.
    » https://doi.org/10.1007/s40011-016-0829-5.» https://doi.org/10.1007/s40011-016-0829-5
  • RAHMAN, M. et al. Brassicaceae mustards: Traditional and agronomic uses in Australia and New Zealand. Molecules, v.23, n.1, 2018. Available from: <Available from: https://www.ncbi.nlm.nih.gov/pubmed/29361740 >. Accessed: Apr. 15, 2020. doi: doi:10.3390/molecules23010231.
    » https://doi.org/doi:10.3390/molecules23010231.» https://www.ncbi.nlm.nih.gov/pubmed/29361740
  • RELEVANTE, C. A.; CUMAGUN, C. J. R. Control of Fusarium wilt in bittergourd and bottlegourd by biofumigation using mustard var. Monteverde. Archives of Phytopathology and Plant Protection, v.46, n.6, p.747-753, 2013. Available from: <Available from: https://doi.org/10.1080/03235408.2012.751285 >. Accessed: Apr. 26, 2020. doi: 10.1080/03235408.2012.751285.
    » https://doi.org/10.1080/03235408.2012.751285» https://doi.org/10.1080/03235408.2012.751285
  • RÍOS, P. et al. Brassica-based seedmeal biofumigation to control Phytophthora cinnamomi in the Spanish “dehesa” oak trees. Phytopathologia Mediterranea, v.56, n.3, p.392-399, 2017. Available from: <Available from: https://doi.org/10.14601/Phytopathol_Mediterr-20771 >. Accessed: Apr. 22, 2020. doi: 10.14601/Phytopathol_Mediterr-20771.
    » https://doi.org/10.14601/Phytopathol_Mediterr-20771.» https://doi.org/10.14601/Phytopathol_Mediterr-20771
  • RONCATO, S. C. et al. Control of Meloidogyne incognita in tomato by crambe extract using different application forms. Summa Phytopathologica, v.44, n.3, p.261-266, 2018. Available from: <Available from: https://doi.org/10.1590/0100-5405/179533 >. Accessed: May, 7, 2020. doi: 10.1590/0100-5405/179533>.
    » https://doi.org/10.1590/0100-5405/179533» https://doi.org/10.1590/0100-5405/179533
  • ROS, M. et al. Effects of biosolarization as methyl bromide alternative for Meloidogyne incognita control on quality of soil under pepper. Biology and Fertility of Soils, v.45, p.37-44, 2008. Available from: <Available from: https://link.springer.com/article/10.1007/s00374-008-0307-1 >. Accessed: Sep. 8, 2019. doi: 10.1007/s00374-008-0307-1.
    » https://doi.org/10.1007/s00374-008-0307-1.» https://link.springer.com/article/10.1007/s00374-008-0307-1
  • ROS, C. et al. El cultivo de brásicas para biosolarización reduce las poblaciones de Meloidogyne incognita en los invernaderos de pimiento del Sudeste de España. Revista de la Asociación Interprofesional para el Desarrollo Agrario (AIDA), v.112, n.2, p.109-126, 2016. Available from: <Available from: http://dx.doi.org/10.12706/itea.2016.008 >. Accessed: Mar. 18, 2020. doi: 10.12706/itea.2016.008.
    » https://doi.org/10.12706/itea.2016.008.» http://dx.doi.org/10.12706/itea.2016.008
  • ROSA, E. A. S. et al. GSLs in crop plants. Horticultural Reviews, v.19, p.99-215, 1997. Available from: <Available from: https://www.wiley.com/en-us/Horticultural+Reviews%2C+Volume+19-p-9780471165293 >. Accessed: Nov. 15, 2019.
    » https://www.wiley.com/en-us/Horticultural+Reviews%2C+Volume+19-p-9780471165293
  • ROSSKOPF, E. N. et al. Anaerobic Soil Disinfestation and Soilborne Pest Management In: MEGHVANSI, M.; VARMA, A. (eds). Organic Amendments and Soil Suppressiveness in Plant Disease Management. Cham: Springer , 2015. Cap. 13, p. 277-306.
  • RUBAYET, M. T. et al. Effect of biofumigation and soil solarization on stem canker and black scurf diseases of potato (Solanum tuberosum L.) caused by Rhizoctonia solani isolate PR2. Advances in Agricultural Science, v.6, n.3, p.33-48, 2018. Available from: <Available from: https://aaasjournal.org/submission/index.php/aaas/article/view/80 >. Accessed: Apr. 19, 2020.
    » https://aaasjournal.org/submission/index.php/aaas/article/view/80
  • SCHWELM, A. et al. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Scientific Reports, v.5, p.1-12, 2015. Available from: <Available from: https://doi.org/10.1038/srep11153 >. Accessed: Jun. 30, 2020. doi: 10.1038/srep11153.
    » https://doi.org/10.1038/srep11153.» https://doi.org/10.1038/srep11153
  • SERRANO-PÉREZ, P. et al. Efficacy of Brassica carinata pellets to inhibit mycelial growth and chlamydospores germination of Phytophthora nicotianae at different temperature regimes. Scientia horticulturae, v.216, p.126-133, 2017. Available from: <Available from: https://doi.org/10.1016/j.scienta.2017.01.002 >. Accessed: Nov. 18, 2019. doi: 10.1016/j.scienta.2017.01.002.
    » https://doi.org/10.1016/j.scienta.2017.01.002.» https://doi.org/10.1016/j.scienta.2017.01.002
  • SHAAYA, E.; KOSTYUKOVSKY, M. The potential of biofumigants as alternatives to methyl bromide for the control of pest infestation in grain and dry food products. In: 10th International Working Conference on Stored Product Protection. Lisbon: Portugal, 2010. p.433- 437.
  • SILVA, M. F. et al. Medicinal plant volatiles applied against the root-knot nematode Meloidogyne incognita. Crop Protection, v.130, 2020. Available from: <Available from: https://doi.org/10.1016/j.cropro.2019.105057 >. Accessed: Apr. 28, 2020. doi: 10.1016/j.cropro.2019.105057.
    » https://doi.org/10.1016/j.cropro.2019.105057.» https://doi.org/10.1016/j.cropro.2019.105057
  • SMOLIŃSKA, U.; KOWALCZYK, W. The impact of the Brassicaceae plant materials added to the soil on the population of Fusarium solani (Mart.) Sacc. and Fusarium oxysporum Schlecht. Journal of Horticultural Research, v.22, n.1, p.123-129, 2014. Available from: <Available from: https://doi.org/10.2478/johr-2014-0015 >. Accessed: Apr. 25, 2020. doi: 10.2478/johr-2014-0015.
    » https://doi.org/10.2478/johr-2014-0015» https://doi.org/10.2478/johr-2014-0015
  • TRIUMPH ITALIA. Catalogo. 2015. Available from: <Available from: http://www.ortobiodomestico.com/catalogo/files/assets/basic-html/index.html#1 >. Accessed: Jun. 28, 2020.
    » http://www.ortobiodomestico.com/catalogo/files/assets/basic-html/index.html#1
  • TSROR, L. et al. Biofumigation for the control of soilborne diseases. Acta horticulturae, v.747, 389-394, 2007. Available from: <Available from: https://doi.org/10.17660/ActaHortic.2007.747.48 >. Accessed: Nov. 17, 2019. doi: 10.17660/ActaHortic.2007.747.48.
    » https://doi.org/10.17660/ActaHortic.2007.747.48.» https://doi.org/10.17660/ActaHortic.2007.747.48
  • UGRENOVIĆ, V. et al. Effect of Brassicaceae as cover crops. Selekcija I Semenarstvo, v.25, n.2, p.1-8, 2019. Available from: <Available from: http://dx.doi.org/10.5937/SelSem1902001U >. Accessed: Apr. 15, 2020. doi: doi:10.3390/molecules23010231.
    » https://doi.org/10.3390/molecules23010231» http://dx.doi.org/10.5937/SelSem1902001U
  • VILLALOBOS, J. A. M.; et al. Producción de chile (Capsicum annuum L.) a campo abierto con biofumigación del suelo. Durango: INIFAP, 2013. Available from: <Available from: http://biblioteca.inifap.gob.mx:8080/jspui/handle/123456789/4097 >. Accessed: Sep. 02, 2019.
    » http://biblioteca.inifap.gob.mx:8080/jspui/handle/123456789/4097
  • WANG, K. H et al. Effects of cover cropping, solarization, and soil fumigation on nematode communities. Plant and Soil , v.286, n.1-2, p.229-243, 2006. Available from: <Available from: https://doi.org/10.1007/s11104-006-9040-4 >. Accessed: Mar. 21, 2020. doi: 10.1007/s11104-006-9040-4.
    » https://doi.org/10.1007/s11104-006-9040-4.» https://doi.org/10.1007/s11104-006-9040-4
  • WANG, Q. et al. Effect of biofumigation and chemical fumigation on soil microbial community structure and control of pepper Phytophthora blight World Journal of Microbiology and Biotechnology, v.30, n.2, p.507-518, 2014a. Available from: <Available from: https://doi.org/10.1007/s11274-013-1462-6 >. Accessed: Apr. 22, 2020. doi: 10.1007/s11274-013-1462-6.
    » https://doi.org/10.1007/s11274-013-1462-6.» https://doi.org/10.1007/s11274-013-1462-6
  • WANG, Q. et al. Integration of biofumigation with antagonistic microorganism can control Phytophthora blight of pepper plants by regulating soil bacterial community structure. European Journal of Soil Biology, v.61, p.58-67, 2014b. Available from: <Available from: https://doi.org/10.1016/j.ejsobi.2013.12.004 >. Accessed: Apr. 22, 2020. doi: 10.1016/j.ejsobi.2013.12.004.
    » https://doi.org/10.1016/j.ejsobi.2013.12.004.» https://doi.org/10.1016/j.ejsobi.2013.12.004
  • WARMINGTON, R.; CLARKSON, J. P. Volatiles from biofumigant plants have a direct effect on carpogenic germination of sclerotia and mycelial growth of Sclerotinia sclerotiorum Plant and Soil , v.401, n.1-2, p. 213-229, 2016. Available from: <Available from: https://doi.org/10.1007/s11104-015-2742-8 >. Accessed: Apr. 18, 2020. doi: 10.1007/s11104-015-2742-8.
    » https://doi.org/10.1007/s11104-015-2742-8.» https://doi.org/10.1007/s11104-015-2742-8
  • WEI, F. et al. Effects of individual and combined use of bio-fumigation-derived products on the viability of Verticillium dahliae microsclerotia in soil. Crop Protection, v.79, p.170-176, 2016. Available from: <Available from: https://doi.org/10.1016/j.cropro.2015.09.008 >. Accessed: Dec. 18, 2019. doi: 10.1016/j.cropro.2015.09.008.
    » https://doi.org/10.1016/j.cropro.2015.09.008.» https://doi.org/10.1016/j.cropro.2015.09.008
  • ZEIST, A.R. et al. Combination of solarization, biofumigation and grafting techniques for the management of bacterial wilt in tomato. Horticultura Brasileira, v.37, p.260-265, 2019. Available from: <Available from: http://dx.doi.org/10.1590/S0102-053620190302 >. Accessed: Apr. 18. 2020. doi: 10.1590/S0102-053620190302.
    » https://doi.org/10.1590/S0102-053620190302.» http://dx.doi.org/10.1590/S0102-053620190302
  • CR-2020-0440.R1

Publication Dates

  • Publication in this collection
    11 Dec 2020
  • Date of issue
    2021

History

  • Received
    11 May 2020
  • Accepted
    21 July 2020
  • Reviewed
    17 Sept 2020
Universidade Federal de Santa Maria Universidade Federal de Santa Maria, Centro de Ciências Rurais , 97105-900 Santa Maria RS Brazil , Tel.: +55 55 3220-8698 , Fax: +55 55 3220-8695 - Santa Maria - RS - Brazil
E-mail: cienciarural@mail.ufsm.br